void threads_initialize(void) { int i; struct thread *t; u8 *stack_top; struct cpu_info *ci; u8 *thread_stacks; thread_stacks = arch_get_thread_stackbase(); /* Initialize the BSP thread first. The cpu_info structure is assumed * to be just under the top of the stack. */ t = &all_threads[0]; ci = cpu_info(); ci->thread = t; t->stack_orig = (uintptr_t)ci; t->id = 0; stack_top = &thread_stacks[CONFIG_STACK_SIZE] - sizeof(struct cpu_info); for (i = 1; i < TOTAL_NUM_THREADS; i++) { t = &all_threads[i]; t->stack_orig = (uintptr_t)stack_top; t->id = i; stack_top += CONFIG_STACK_SIZE; free_thread(t); } idle_thread_init(); }
void test_add_thread() { Board *board; Thread *thread; board = new_board("test", "TEST", 2, 0); assert(board != NULL); thread = new_thread(NULL, 0, 0); /* Add the first thread */ add_thread_to_board(board, thread); assert(board->first_thread == 0); assert(board->last_thread == 0); /* Add a second thread */ add_thread_to_board(board, thread); assert(board->first_thread == 0); assert(board->last_thread == 1); /* Make sure the post count hasn't magically changed */ assert(board->post_count == 0); /* Add a third thread, should remove the first one */ add_thread_to_board(board, thread); assert(board->first_thread == 1); assert(board->last_thread == 0); /* Check post count again */ assert(board->post_count == 0); free_board(board); free_thread(thread); }
int _papi_hwi_initialize_thread( ThreadInfo_t ** dest, int tid ) { int retval; ThreadInfo_t *thread; int i; if ( ( thread = allocate_thread( tid ) ) == NULL ) { *dest = NULL; return PAPI_ENOMEM; } /* Call the substrate to fill in anything special. */ for ( i = 0; i < papi_num_components; i++ ) { retval = _papi_hwd[i]->init( thread->context[i] ); if ( retval ) { free_thread( &thread ); *dest = NULL; return retval; } } insert_thread( thread, tid ); *dest = thread; return PAPI_OK; }
int thread_join(thread_t *t, void **ret) { if (t == NULL) return_errno(FALSE, EINVAL); if ( !( t->joinable ) ) return_errno(FALSE, EINVAL); assert(t->state != GHOST); // A thread can be joined only once if (t->join_thread) return_errno(FALSE, EACCES); t->join_thread = current_thread; // Wait for the thread to complete tdebug( "**** thread state: %d\n" ,t->state); if (t->state != ZOMBIE) { CAP_SET_SYSCALL(); thread_suspend_self(0); CAP_CLEAR_SYSCALL(); } // clean up the dead thread if (ret != NULL) *ret = t->ret; free_thread( t ); return TRUE; }
void BrickFactory::FreeAllSurfaces() { for (auto it = brick_map_.begin(); it != brick_map_.end(); ++it) { // safe to const cast as surface is not changed // SDL_FreeSurface is not const enabled // Nothing is relying on these anymore so they can be freed concurrently std::thread free_thread( SDL_FreeSurface, const_cast<SDL_Surface*>(it->second.GetBrickSurface())); free_thread.detach(); } }
int test_thread_full(void* data) { (void) data; int status = 1; /* create dummy post */ Post *post = new_post("title", "name", "text", 0, 0, 0); Thread *thread = new_thread(NULL, 1, 0); add_post_to_thread(thread, post); add_post_to_thread(thread, post); assert(thread->nreplies == 1); free_thread(thread); free_post(post); return status; }
/* Creates and empty thread. */ int test_empty_thread(void *data) { (void) data; int status = 1; /* test is correct */ Thread *thread = new_thread(NULL, 1, 0); /* Test that values have correctly been set */ assert(thread != NULL); assert(thread->replies != NULL); assert(thread->op == NULL); assert(thread->max_replies == 1); assert(thread->first_post == -1); assert(thread->last_post == -1); assert(thread->nreplies == 0); free_thread(thread); return status; }
int test_add_post(void *data) { (void) data; int status = 1; /* create posts */ Post *op = new_post("nameOP", "titleOP", "textOP", 0, -1, 0); Post *reply = new_post("name", "title", "text", 1, 0, 0); Thread *thread = new_thread(op, 150, 0); add_post_to_thread(thread, reply); assert(thread->nreplies == 1); assert(thread->first_post == 0); assert(thread->last_post == 0); free_thread(thread); free_post(op); free_post(reply); return status; }
void free_board(Board *board) { int i, j; if (board->flags & BOARD_AUTO_FREE) { for (i = 0; i < board->max_threads; ++i) { free_post(board->threads[i]->op); for (j = 0; j < board->threads[i]->max_replies; ++j) { if (board->threads[i]->replies[j] != 0) { free_post(board->threads[i]->replies[j]); } } free_thread(board->threads[i]); } } free(board->threads); free(board); }
static void *pthread_handler(void *data) { struct pthread_arg *parg = (struct pthread_arg *)data; ThreadPool *tp = parg->tp; Pthread_t *th = parg->th; sem_post(&parg->sem); while (1) { pthread_mutex_lock(&th->lock); if (th->handler) th->handler(th->arg); free_thread(tp, th); } return NULL; }
int _papi_hwi_shutdown_thread( ThreadInfo_t * thread ) { int retval = PAPI_OK; unsigned long tid; int i, failure = 0; if ( _papi_hwi_thread_id_fn ) tid = ( *_papi_hwi_thread_id_fn ) ( ); else tid = ( unsigned long ) getpid( ); THRDBG("Want to shutdown thread %ld, alloc %ld, our_tid: %ld\n", thread->tid, thread->allocator_tid, tid); if ((thread->tid==tid) || ( thread->allocator_tid == tid )) { _papi_hwi_thread_free_eventsets(tid); remove_thread( thread ); THRDBG( "Shutting down thread %ld at %p\n", thread->tid, thread ); for ( i = 0; i < papi_num_components; i++ ) { retval = _papi_hwd[i]->shutdown( thread->context[i] ); if ( retval != PAPI_OK ) failure = retval; } free_thread( &thread ); return ( failure ); } THRDBG( "Skipping shutdown thread %ld at %p, thread %ld not allocator!\n", thread->tid, thread, tid ); return PAPI_EBUG; }
static void terminate_thread(struct thread *t) { free_thread(t); schedule(NULL); }
struct node *make_node(int id, const char *hostname, const char *local_ip, const char *remote_ip, const char *local_port, const char *remote_port) { struct node *node; struct queue *q; struct thread *thr; node = alloc_node(); if(node == NULL) { return NULL; } node->id = id; strncpy(node->hostname, hostname, MAX_HOSTNAME_LEN); strncpy(node->local_ip, local_ip, MAX_IPADDR_LEN); strncpy(node->remote_ip, remote_ip, MAX_IPADDR_LEN); strncpy(node->local_port, local_port, MAX_PORT_LEN); strncpy(node->remote_port, remote_port, MAX_PORT_LEN); node->data_handler = node_data_handler; node->meta_handler = node_meta_handler; q = init_queue(); if(q == NULL) { free_node(node); return NULL; } node->data_q = q; q = init_queue(); if(q == NULL) { free_queue(node->data_q); free_node(node); return NULL; } node->meta_q = q; q = init_queue(); if(q == NULL) { free_queue(node->data_q); free_queue(node->meta_q); free_node(node); return NULL; } node->work_q = q; thr = create_thread(node_data_worker_function, node); if(thr == NULL) { goto err_data; } node->data_worker = thr; thr = create_thread(node_meta_worker_function, node); if(thr == NULL) { goto err_meta; } node->meta_worker = thr; return node; err_worker: free_thread(node->meta_worker); err_meta: free_thread(node->data_worker); err_data: free_queue(node->data_q); free_queue(node->meta_q); free_node(node); return NULL; }
/** * Main scheduling loop **/ static void* do_scheduler(void *arg) { static cpu_tick_t next_poll=0, next_overload_check=0, next_info_dump=0, next_graph_stats=0, now=0; static int pollcount=1000; static int init_done = 0; (void) arg; // suppress GCC "unused parameter" warning in_scheduler = 1; // make sure we start out by saving edge stats for a while if( !init_done ) { init_done = 1; if (conf_no_statcollect) bg_save_stats = 0; else bg_save_stats = 1; GET_REAL_CPU_TICKS( now ); next_graph_stats = now + 1 * ticks_per_second; start_timer(&scheduler_timer); } while( 1 ) { //current_thread = scheduler_thread; sanity_check_threadcounts(); sanity_check_io_stats(); // wake up threads that have timeouts sleepq_check(0); sanity_check_threadcounts(); // break out if there are only daemon threads if(unlikely (num_suspended_threads == 0 && num_runnable_threads == num_daemon_threads)) { // dump the blocking graph if( exit_func_done && conf_dump_blocking_graph ) { tdebug("dumping blocking graph from do_scheduler()\n"); dump_blocking_graph(); } // go back to mainthread, which should now be in exit_func() current_thread = main_thread; in_scheduler = 0; co_call(main_thread->coro, NULL); in_scheduler = 1; if( unlikely(current_thread_exited) ) { // free memory from deleted threads current_thread_exited=0; if (current_thread != main_thread) // main_thread is needed for whole program exit free_thread( current_thread ); } return NULL; } // cheesy way of handling things with timing requirements { GET_REAL_CPU_TICKS( now ); // toggle stats collection if( conf_no_statcollect == 0 && next_graph_stats < now ) { bg_save_stats = 1 - bg_save_stats; if( bg_save_stats ) { // record stats for 100 ms next_graph_stats = now + 100 * ticks_per_millisecond; // update the stats epoch, to allow proper handling of the first data items bg_stats_epoch++; } else { // avoid stats for 2000 ms next_graph_stats = now + 2000 * ticks_per_millisecond; } //output(" *********************** graph stats %s\n", bg_save_stats ? "ON" : "OFF" ); } // resource utalization if( unlikely (next_overload_check < now) ) { check_overload( now ); next_overload_check = now + OVERLOAD_CHECK_INTERVAL; } // poll if( likely( (int)io_polling_func) ) { if( num_runnable_threads==0 || --pollcount <= 0 || next_poll < now ) { //if( num_runnable_threads==0 ) { // poll long long timeout = 0; if( num_runnable_threads==0 ) { if (first_wake_usecs == 0) { timeout = -1; } else { // there are threads in the sleep queue // so poll for i/o till at most that time unsigned long long now; now = current_usecs(); tdebug ("first_wake: %lld, now: %lld\n", first_wake_usecs, now); if (first_wake_usecs > now) timeout = first_wake_usecs - now; } } stop_timer(&scheduler_timer); //if( timeout != -1 ) output("timeout is not zero\n"); io_polling_func( timeout ); // allow blocking start_timer(&scheduler_timer); sanity_check_threadcounts(); #ifndef USE_NIO // sleep for a bit, if there was nothing to do // FIXME: let the IO functions block instead?? if( num_runnable_threads == 0 ) { syscall(SYS_sched_yield); } #endif // vary the poll rate depending on the workload #if 0 if( num_runnable_threads < 5 ) { next_poll = now + (10*ticks_per_millisecond); pollcount = 1000; } else if( num_runnable_threads < 10 ) { next_poll = now + (50*ticks_per_millisecond); pollcount = 2000; } else { next_poll = now + (100*ticks_per_millisecond); pollcount = 3000; } #else next_poll = now + (ticks_per_millisecond << 13); pollcount = 10000; #endif } } // debug stats if( 0 && next_info_dump < now ) { dump_debug_info(); next_info_dump = now + 5 * ticks_per_second; } } // get the head of the run list current_thread = sched_next_thread(); // scheduler gave an invlid even though there are runnable // threads. This indicates that every runnable thead is likely to // require use of an overloaded resource. if( !valid_thread(current_thread) ) { pollcount = 0; continue; } // barf, if the returned thread is still on the sleep queue assert( current_thread->sleep == -1 ); tdebug("running TID %d (%s)\n", current_thread->tid, current_thread->name ? current_thread->name : "no name"); sanity_check_threadcounts(); // call thread stop_timer(&scheduler_timer); start_timer(&app_timer); in_scheduler = 0; co_call(current_thread->coro, NULL); in_scheduler = 1; stop_timer(&app_timer); start_timer(&scheduler_timer); if( unlikely(current_thread_exited) ) { // free memory from deleted threads current_thread_exited=0; if (current_thread != main_thread) // main_thread is needed for whole program exit free_thread( current_thread ); } #ifdef NO_SCHEDULER_THREAD return NULL; #endif } return NULL; }
/* * Some notes on new thread creation and first time initializion * to enable multi-threading. * * There are basically two things that need to be done. * * 1) The internal library variables must be initialized. * 2) Upcalls need to be enabled to allow multiple threads * to be run. * * The first may be done as a result of other pthread functions * being called. When _thr_initial is null, _libpthread_init is * called to initialize the internal variables; this also creates * or sets the initial thread. It'd be nice to automatically * have _libpthread_init called on program execution so we don't * have to have checks throughout the library. * * The second part is only triggered by the creation of the first * thread (other than the initial/main thread). If the thread * being created is a scope system thread, then a new KSE/KSEG * pair needs to be allocated. Also, if upcalls haven't been * enabled on the initial thread's KSE, they must be now that * there is more than one thread; this could be delayed until * the initial KSEG has more than one thread. */ int _pthread_create(pthread_t * thread, const pthread_attr_t * attr, void *(*start_routine) (void *), void *arg) { struct pthread *curthread, *new_thread; struct kse *kse = NULL; struct kse_group *kseg = NULL; kse_critical_t crit; int ret = 0; if (_thr_initial == NULL) _libpthread_init(NULL); /* * Turn on threaded mode, if failed, it is unnecessary to * do further work. */ if (_kse_isthreaded() == 0 && _kse_setthreaded(1)) { return (EAGAIN); } curthread = _get_curthread(); /* * Allocate memory for the thread structure. * Some functions use malloc, so don't put it * in a critical region. */ if ((new_thread = _thr_alloc(curthread)) == NULL) { /* Insufficient memory to create a thread: */ ret = EAGAIN; } else { /* Check if default thread attributes are required: */ if (attr == NULL || *attr == NULL) /* Use the default thread attributes: */ new_thread->attr = _pthread_attr_default; else { new_thread->attr = *(*attr); if ((*attr)->sched_inherit == PTHREAD_INHERIT_SCHED) { /* inherit scheduling contention scop */ if (curthread->attr.flags & PTHREAD_SCOPE_SYSTEM) new_thread->attr.flags |= PTHREAD_SCOPE_SYSTEM; else new_thread->attr.flags &= ~PTHREAD_SCOPE_SYSTEM; /* * scheduling policy and scheduling parameters will be * inherited in following code. */ } } if (_thread_scope_system > 0) new_thread->attr.flags |= PTHREAD_SCOPE_SYSTEM; else if ((_thread_scope_system < 0) && (thread != &_thr_sig_daemon)) new_thread->attr.flags &= ~PTHREAD_SCOPE_SYSTEM; if (create_stack(&new_thread->attr) != 0) { /* Insufficient memory to create a stack: */ ret = EAGAIN; _thr_free(curthread, new_thread); } else if (((new_thread->attr.flags & PTHREAD_SCOPE_SYSTEM) != 0) && (((kse = _kse_alloc(curthread, 1)) == NULL) || ((kseg = _kseg_alloc(curthread)) == NULL))) { /* Insufficient memory to create a new KSE/KSEG: */ ret = EAGAIN; if (kse != NULL) { kse->k_kcb->kcb_kmbx.km_flags |= KMF_DONE; _kse_free(curthread, kse); } free_stack(&new_thread->attr); _thr_free(curthread, new_thread); } else { if (kseg != NULL) { /* Add the KSE to the KSEG's list of KSEs. */ TAILQ_INSERT_HEAD(&kseg->kg_kseq, kse, k_kgqe); kseg->kg_ksecount = 1; kse->k_kseg = kseg; kse->k_schedq = &kseg->kg_schedq; } /* * Write a magic value to the thread structure * to help identify valid ones: */ new_thread->magic = THR_MAGIC; new_thread->slice_usec = -1; new_thread->start_routine = start_routine; new_thread->arg = arg; new_thread->cancelflags = PTHREAD_CANCEL_ENABLE | PTHREAD_CANCEL_DEFERRED; /* No thread is wanting to join to this one: */ new_thread->joiner = NULL; /* * Initialize the machine context. * Enter a critical region to get consistent context. */ crit = _kse_critical_enter(); THR_GETCONTEXT(&new_thread->tcb->tcb_tmbx.tm_context); /* Initialize the thread for signals: */ new_thread->sigmask = curthread->sigmask; _kse_critical_leave(crit); new_thread->tcb->tcb_tmbx.tm_udata = new_thread; new_thread->tcb->tcb_tmbx.tm_context.uc_sigmask = new_thread->sigmask; new_thread->tcb->tcb_tmbx.tm_context.uc_stack.ss_size = new_thread->attr.stacksize_attr; new_thread->tcb->tcb_tmbx.tm_context.uc_stack.ss_sp = new_thread->attr.stackaddr_attr; makecontext(&new_thread->tcb->tcb_tmbx.tm_context, (void (*)(void))thread_start, 3, new_thread, start_routine, arg); /* * Check if this thread is to inherit the scheduling * attributes from its parent: */ if (new_thread->attr.sched_inherit == PTHREAD_INHERIT_SCHED) { /* * Copy the scheduling attributes. * Lock the scheduling lock to get consistent * scheduling parameters. */ THR_SCHED_LOCK(curthread, curthread); new_thread->base_priority = curthread->base_priority & ~THR_SIGNAL_PRIORITY; new_thread->attr.prio = curthread->base_priority & ~THR_SIGNAL_PRIORITY; new_thread->attr.sched_policy = curthread->attr.sched_policy; THR_SCHED_UNLOCK(curthread, curthread); } else { /* * Use just the thread priority, leaving the * other scheduling attributes as their * default values: */ new_thread->base_priority = new_thread->attr.prio; } new_thread->active_priority = new_thread->base_priority; new_thread->inherited_priority = 0; /* Initialize the mutex queue: */ TAILQ_INIT(&new_thread->mutexq); /* Initialise hooks in the thread structure: */ new_thread->specific = NULL; new_thread->specific_data_count = 0; new_thread->cleanup = NULL; new_thread->flags = 0; new_thread->tlflags = 0; new_thread->sigbackout = NULL; new_thread->continuation = NULL; new_thread->wakeup_time.tv_sec = -1; new_thread->lock_switch = 0; sigemptyset(&new_thread->sigpend); new_thread->check_pending = 0; new_thread->locklevel = 0; new_thread->rdlock_count = 0; new_thread->sigstk.ss_sp = 0; new_thread->sigstk.ss_size = 0; new_thread->sigstk.ss_flags = SS_DISABLE; new_thread->oldsigmask = NULL; if (new_thread->attr.suspend == THR_CREATE_SUSPENDED) { new_thread->state = PS_SUSPENDED; new_thread->flags = THR_FLAGS_SUSPENDED; } else new_thread->state = PS_RUNNING; /* * System scope threads have their own kse and * kseg. Process scope threads are all hung * off the main process kseg. */ if ((new_thread->attr.flags & PTHREAD_SCOPE_SYSTEM) == 0) { new_thread->kseg = _kse_initial->k_kseg; new_thread->kse = _kse_initial; } else { kse->k_curthread = NULL; kse->k_kseg->kg_flags |= KGF_SINGLE_THREAD; new_thread->kse = kse; new_thread->kseg = kse->k_kseg; kse->k_kcb->kcb_kmbx.km_udata = kse; kse->k_kcb->kcb_kmbx.km_curthread = NULL; } /* * Schedule the new thread starting a new KSEG/KSE * pair if necessary. */ ret = _thr_schedule_add(curthread, new_thread); if (ret != 0) free_thread(curthread, new_thread); else { /* Return a pointer to the thread structure: */ (*thread) = new_thread; } } } /* Return the status: */ return (ret); }