Ejemplo n.º 1
0
Coefficient::Coefficient(QString s) : fractionRep{s}
{
    getNumer(fractionRep, numerInt, hasDenom);

    if(hasDenom)
        getDenom(fractionRep, denomInt);
}
Ejemplo n.º 2
0
void fraction::calcOverflowPts() const {
  if(getNumer() == 0) 
    interimMultOverflowPt = I64_MAX;
  else 
    interimMultOverflowPt = I64_MAX / getNumer();
  fraction recip;
  recip.setRaw(getDenom(), getNumer());
  if(recip.getDenom()==0 || recip.getD() > 1.0) 
    finalMultOverflowPt = I64_MAX;
  else
    finalMultOverflowPt = recip.multNoInterimOverflow(I64_MAX);
}
Ejemplo n.º 3
0
int64_t fraction::multReturnInt64(int64_t b) const {
  int64_t ret = 0;
  if(b < getInterimMultOverflowPt()) {
    //   b < interimMultOverflowPt
    fraction fres(b * getNumer(), getDenom());
    ret = fres.getI();
  } else if(b <= getFinalMultOverflowPt()) {
    //   interimMultOverflowPt <= b <= finalMultInterimPt
    ret = multNoInterimOverflow(b);
  } else {  //  finalMultInterimPt < b
    cerr << "fraction::multReturnInt64- a final overflow has occurred\n";    
    return I64_MAX;
  }
  return ret;
}
Ejemplo n.º 4
0
rational rational::operator /(const rational& second) const {
    return rational(getNum() * second.getDenom(), getDenom() * second.getNum());
}
Ejemplo n.º 5
0
rational rational::operator -(const rational& second) const {
    int n1 = getNum(), d1 = getDenom(), n2 = second.getNum(), d2 = second.getDenom();
    int denom = d1 * d2 / gcd(d1, d2);
    int num = n1 * denom / d1 - n2 * denom / d2;
    return rational(num, denom);
}