Ejemplo n.º 1
0
/**
 * Lower a Sel node. Do not touch Sels accessing entities on the frame type.
 */
static void lower_sel(ir_node *sel)
{
	ir_graph  *irg   = get_irn_irg(sel);
	ir_entity *ent   = get_Sel_entity(sel);
	ir_type   *owner = get_entity_owner(ent);
	dbg_info  *dbg   = get_irn_dbg_info(sel);
	ir_mode   *mode  = get_irn_mode(sel);
	ir_node   *bl    = get_nodes_block(sel);
	ir_node   *newn;

	/* we can only replace Sels when the layout of the owner type is decided. */
	if (get_type_state(owner) != layout_fixed)
		return;

	if (0 < get_Sel_n_indexs(sel)) {
		/* an Array access */
		ir_type *basetyp = get_entity_type(ent);
		ir_mode *basemode;
		ir_node *index;
		if (is_Primitive_type(basetyp))
			basemode = get_type_mode(basetyp);
		else
			basemode = mode_P_data;

		assert(basemode && "no mode for lowering Sel");
		assert((get_mode_size_bits(basemode) % 8 == 0) && "can not deal with unorthodox modes");
		index = get_Sel_index(sel, 0);

		if (is_Array_type(owner)) {
			ir_type *arr_ty = owner;
			size_t   dims   = get_array_n_dimensions(arr_ty);
			size_t  *map    = ALLOCAN(size_t, dims);
			ir_mode *mode_Int = get_reference_mode_signed_eq(mode);
			ir_tarval *tv;
			ir_node *last_size;
			size_t   i;

			assert(dims == (size_t)get_Sel_n_indexs(sel)
				&& "array dimension must match number of indices of Sel node");

			for (i = 0; i < dims; i++) {
				size_t order = get_array_order(arr_ty, i);

				assert(order < dims &&
					"order of a dimension must be smaller than the arrays dim");
				map[order] = i;
			}
			newn = get_Sel_ptr(sel);

			/* Size of the array element */
			tv = new_tarval_from_long(get_type_size_bytes(basetyp), mode_Int);
			last_size = new_rd_Const(dbg, irg, tv);

			/*
			 * We compute the offset part of dimension d_i recursively
			 * with the the offset part of dimension d_{i-1}
			 *
			 *     off_0 = sizeof(array_element_type);
			 *     off_i = (u_i - l_i) * off_{i-1}  ; i >= 1
			 *
			 * whereas u_i is the upper bound of the current dimension
			 * and l_i the lower bound of the current dimension.
			 */
			for (i = dims; i > 0;) {
				size_t dim = map[--i];
				ir_node *lb, *ub, *elms, *n, *ind;

				elms = NULL;
				lb = get_array_lower_bound(arr_ty, dim);
				ub = get_array_upper_bound(arr_ty, dim);

				if (! is_Unknown(lb))
					lb = new_rd_Conv(dbg, bl, copy_const_value(get_irn_dbg_info(sel), lb, bl), mode_Int);
				else
					lb = NULL;

				if (! is_Unknown(ub))
					ub = new_rd_Conv(dbg, bl, copy_const_value(get_irn_dbg_info(sel), ub, bl), mode_Int);
				else
					ub = NULL;

				/*
				 * If the array has more than one dimension, lower and upper
				 * bounds have to be set in the non-last dimension.
				 */
				if (i > 0) {
					assert(lb != NULL && "lower bound has to be set in multi-dim array");
					assert(ub != NULL && "upper bound has to be set in multi-dim array");

					/* Elements in one Dimension */
					elms = new_rd_Sub(dbg, bl, ub, lb, mode_Int);
				}

				ind = new_rd_Conv(dbg, bl, get_Sel_index(sel, dim), mode_Int);

				/*
				 * Normalize index, id lower bound is set, also assume
				 * lower bound == 0
			 */
				if (lb != NULL)
					ind = new_rd_Sub(dbg, bl, ind, lb, mode_Int);

				n = new_rd_Mul(dbg, bl, ind, last_size, mode_Int);

				/*
				 * see comment above.
				 */
				if (i > 0)
					last_size = new_rd_Mul(dbg, bl, last_size, elms, mode_Int);

				newn = new_rd_Add(dbg, bl, newn, n, mode);
			}
		} else {
			/* no array type */
			ir_mode   *idx_mode = get_irn_mode(index);
			ir_tarval *tv       = new_tarval_from_long(get_mode_size_bytes(basemode), idx_mode);

			newn = new_rd_Add(dbg, bl, get_Sel_ptr(sel),
				new_rd_Mul(dbg, bl, index,
				new_r_Const(irg, tv),
				idx_mode),
				mode);
		}
	} else if (is_Method_type(get_entity_type(ent)) && is_Class_type(owner)) {
		/* We need an additional load when accessing methods from a dispatch
		 * table.
		 * Matze TODO: Is this really still used? At least liboo does its own
		 * lowering of Method-Sels...
		 */
		ir_mode   *ent_mode = get_type_mode(get_entity_type(ent));
		int        offset   = get_entity_offset(ent);
		ir_mode   *mode_Int = get_reference_mode_signed_eq(mode);
		ir_tarval *tv       = new_tarval_from_long(offset, mode_Int);
		ir_node   *cnst     = new_rd_Const(dbg, irg, tv);
		ir_node   *add      = new_rd_Add(dbg, bl, get_Sel_ptr(sel), cnst, mode);
		ir_node   *mem      = get_Sel_mem(sel);
		newn = new_rd_Load(dbg, bl, mem, add, ent_mode, cons_none);
		newn = new_r_Proj(newn, ent_mode, pn_Load_res);
	} else {
		int offset = get_entity_offset(ent);

		/* replace Sel by add(obj, const(ent.offset)) */
		newn = get_Sel_ptr(sel);
		if (offset != 0) {
			ir_mode   *mode_UInt = get_reference_mode_unsigned_eq(mode);
			ir_tarval *tv        = new_tarval_from_long(offset, mode_UInt);
			ir_node   *cnst      = new_r_Const(irg, tv);
			newn = new_rd_Add(dbg, bl, newn, cnst, mode);
		}
	}

	/* run the hooks */
	hook_lower(sel);

	exchange(sel, newn);
}
Ejemplo n.º 2
0
/*-------------------------------------------------------------------------*/
vector_t *
order_alist (svalue_t *inlists, int listnum, Bool reuse)

/* Order the alist <inlists> and return a new vector with it. The sorting
 * order is the internal order defined by alist_cmp().
 *
 * <inlists> is a vector of <listnum> vectors:
 *   <inlists> = ({ ({ keys }), ({ data1 }), ..., ({ data<listnum-1> }) })
 *
 * If <reuse> is true, the vectors of <inlists> are reused for the
 * vectors of the result when possible, and their entries in <inlists> are
 * set to T_INVALID.
 *
 * As a side effect, strings in the key vector are made shared, and
 * destructed objects in key and data vectors are replaced by svalue 0s.
 *
 * This function is also called by the compiler for constant expressions.
 */

{
    vector_t *outlist;   /* The result vector of vectors */
    vector_t *v;         /* Aux vector pointer */
    svalue_t *outlists;  /* Next element in outlist to fill in */
    ptrdiff_t * sorted;  /* The vector elements in sorted order */
    svalue_t *inpnt;     /* Pointer to the value to copy into the result */
    mp_int keynum;       /* Number of keys */
    int i, j;

    keynum = (mp_int)VEC_SIZE(inlists[0].u.vec);

    /* Get the sorting order */

    sorted = get_array_order(inlists[0].u.vec);

    /* Generate the result vectors from the sorting order.
     */

    outlist = allocate_array(listnum);
    outlists = outlist->item;

    /* Copy the elements from all inlist vectors into the outlist
     * vectors.
     *
     * At the beginning of every loop v points to the vector to
     * use as the next 'out' vector. It may be a re-used 'in' vector
     * from the previous run.
     */
    v = allocate_array(keynum);
    for (i = listnum; --i >= 0; ) {

        svalue_t *outpnt; /* Next result value element to fill in */

        /* Set the new array v as the next 'out' vector, and init outpnt
         * and offs.
         */
        put_array(outlists + i, v);
        outpnt = v->item;

        v = inlists[i].u.vec; /* Next vector to fill if reusable */

        /* Copy the elements.
         * For a reusable 'in' vector, a simple memory copy is sufficient.
         * For a new vector, a full assignment is due to keep the refcounters
         * happy.
         */
        if (reuse && inlists[i].u.vec->ref == 1) {

            if (i) /* not the last iteration */
                inlists[i].type = T_INVALID;

            for (j = keynum; --j >= 0; ) {
                inpnt = inlists[i].u.vec->item + sorted[j];
                if (destructed_object_ref(inpnt))
                {
                    free_svalue(inpnt);
                    put_number(outpnt, 0);
                    outpnt++;
                } else {
                    *outpnt++ = *inpnt;
                }
                inpnt->type = T_INVALID;
            }

        } else {

            if (i) /* Not the last iteration: get new out-vector */
                v = allocate_array(keynum);

            for (j = keynum; --j >= 0; ) {
                inpnt = inlists[i].u.vec->item + sorted[j];
                if (destructed_object_ref(inpnt))
                {
                    put_number(outpnt, 0);
                    outpnt++;
                } else {
                    assign_svalue_no_free(outpnt++, inpnt);
                }
            }
        } /* if (reuse) */
    } /* for (listnum) */

    xfree(sorted);

    return outlist;
} /* order_alist() */