/** * Calculate a weight for each argument of an entity. * * @param ent The entity of the ir_graph. */ static void analyze_method_params_weight(ir_entity *ent) { /* allocate a new array. currently used as 'analysed' flag */ ir_type *mtp = get_entity_type(ent); size_t nparams = get_method_n_params(mtp); ent->attr.mtd_attr.param_weight = NEW_ARR_F(unsigned, nparams); /* If the method haven't parameters we have nothing to do. */ if (nparams <= 0) return; /* First we initialize the parameter weights with 0. */ for (size_t i = nparams; i-- > 0; ) ent->attr.mtd_attr.param_weight[i] = null_weight; ir_graph *irg = get_entity_irg(ent); if (irg == NULL) { /* no graph, no better info */ return; } /* Call algorithm that computes the out edges */ assure_irg_outs(irg); ir_node *irg_args = get_irg_args(irg); for (int i = get_irn_n_outs(irg_args); i-- > 0; ) { ir_node *arg = get_irn_out(irg_args, i); long proj_nr = get_Proj_proj(arg); ent->attr.mtd_attr.param_weight[proj_nr] += calc_method_param_weight(arg); } }
/** * Check if a argument of the ir graph with mode * reference is read, write or both. * * @param irg The ir graph to analyze. */ static void analyze_ent_args(ir_entity *ent) { ir_type *mtp = get_entity_type(ent); size_t nparams = get_method_n_params(mtp); ent->attr.mtd_attr.param_access = NEW_ARR_F(ptr_access_kind, nparams); /* If the method haven't parameters we have * nothing to do. */ if (nparams <= 0) return; /* we have not yet analyzed the graph, set ALL access for pointer args */ for (size_t i = nparams; i-- > 0; ) { ir_type *type = get_method_param_type(mtp, i); ent->attr.mtd_attr.param_access[i] = is_Pointer_type(type) ? ptr_access_all : ptr_access_none; } ir_graph *irg = get_entity_irg(ent); if (irg == NULL) { /* no graph, no better info */ return; } assure_irg_outs(irg); ir_node *irg_args = get_irg_args(irg); /* A array to save the information for each argument with mode reference.*/ ptr_access_kind *rw_info; NEW_ARR_A(ptr_access_kind, rw_info, nparams); /* We initialize the element with none state. */ for (size_t i = nparams; i-- > 0; ) rw_info[i] = ptr_access_none; /* search for arguments with mode reference to analyze them.*/ for (int i = get_irn_n_outs(irg_args); i-- > 0; ) { ir_node *arg = get_irn_out(irg_args, i); ir_mode *arg_mode = get_irn_mode(arg); long proj_nr = get_Proj_proj(arg); if (mode_is_reference(arg_mode)) rw_info[proj_nr] |= analyze_arg(arg, rw_info[proj_nr]); } /* copy the temporary info */ memcpy(ent->attr.mtd_attr.param_access, rw_info, nparams * sizeof(ent->attr.mtd_attr.param_access[0])); }
/** * Analyse the stuff that anayse_switch0() left out */ static void analyse_switch1(switch_info_t *info) { const ir_node *switchn = info->switchn; unsigned n_outs = get_Switch_n_outs(switchn); target_t *targets = XMALLOCNZ(target_t, n_outs); foreach_irn_out_r(switchn, i, proj) { unsigned pn = get_Proj_num(proj); ir_node *target = get_irn_out(proj, 0); assert((unsigned)pn < n_outs); assert(targets[(unsigned)pn].block == NULL); targets[(unsigned)pn].block = target; }
/* * Optimize the frame type of an irg by removing * never touched entities. */ void opt_frame_irg(ir_graph *irg) { ir_type *frame_tp = get_irg_frame_type(irg); ir_entity *ent, *list; ir_node *frame, *sel; size_t i, n = get_class_n_members(frame_tp); int o; if (n <= 0) return; assure_irg_properties(irg, IR_GRAPH_PROPERTY_CONSISTENT_OUTS); irp_reserve_resources(irp, IRP_RESOURCE_ENTITY_LINK); /* clear all entity links */ for (i = n; i > 0;) { ent = get_class_member(frame_tp, --i); set_entity_link(ent, NULL); } /* look for uses */ frame = get_irg_frame(irg); /* mark all used entities */ for (o = get_irn_n_outs(frame) - 1; o >= 0; --o) { sel = get_irn_out(frame, o); if (is_Sel(sel)) { ent = get_Sel_entity(sel); /* only entities on the frame */ if (get_entity_owner(ent) == frame_tp) set_entity_link(ent, ent); } } /* link unused ones */ list = NULL; for (i = n; i > 0;) { ent = get_class_member(frame_tp, --i); /* beware of inner functions: those are NOT unused */ if (get_entity_link(ent) == NULL && !is_method_entity(ent)) { set_entity_link(ent, list); list = ent; } } if (list != NULL) { /* delete list members */ for (ent = list; ent; ent = list) { list = (ir_entity*)get_entity_link(ent); free_entity(ent); } /* we changed the frame type, its layout should be redefined */ set_type_state(frame_tp, layout_undefined); } irp_free_resources(irp, IRP_RESOURCE_ENTITY_LINK); /* we changed the type, this affects none of the currently known graph * properties, but I don't use ALL because I don't know if someone adds * type-based properties at some point */ confirm_irg_properties(irg, IR_GRAPH_PROPERTIES_CONTROL_FLOW | IR_GRAPH_PROPERTY_NO_BADS | IR_GRAPH_PROPERTY_NO_TUPLES | IR_GRAPH_PROPERTY_CONSISTENT_OUT_EDGES | IR_GRAPH_PROPERTY_CONSISTENT_OUTS | IR_GRAPH_PROPERTY_CONSISTENT_ENTITY_USAGE | IR_GRAPH_PROPERTY_MANY_RETURNS); }
/** * Walk recursive the successors of a graph argument * with mode reference and mark if it will be read, * written or stored. * * @param arg The graph argument with mode reference, * that must be checked. */ static ptr_access_kind analyze_arg(ir_node *arg, ptr_access_kind bits) { /* We must visit a node once to avoid endless recursion.*/ mark_irn_visited(arg); for (int i = get_irn_n_outs(arg); i-- > 0; ) { ir_node *succ = get_irn_out(arg, i); if (irn_visited(succ)) continue; /* We should not walk over the memory edge.*/ if (get_irn_mode(succ) == mode_M) continue; /* If we reach with the recursion a Call node and our reference isn't the address of this Call we accept that the reference will be read and written if the graph of the method represented by "Call" isn't computed else we analyze that graph. If our reference is the address of this Call node that mean the reference will be read.*/ switch (get_irn_opcode(succ)) { case iro_Call: { ir_node *ptr = get_Call_ptr(succ); if (ptr == arg) { /* Hmm: not sure what this is, most likely a read */ bits |= ptr_access_read; } else { ir_entity *meth_ent; if (is_SymConst_addr_ent(ptr)) { meth_ent = get_SymConst_entity(ptr); for (int p = get_Call_n_params(succ); p-- > 0; ) { if (get_Call_param(succ, p) == arg) { /* an arg can be used more than once ! */ bits |= get_method_param_access(meth_ent, p); } } } else if (is_Sel(ptr) && get_irp_callee_info_state() == irg_callee_info_consistent) { /* is be a polymorphic call but callee information is available */ size_t n_params = get_Call_n_params(succ); /* simply look into ALL possible callees */ for (int c = get_Call_n_callees(succ); c-- > 0; ) { meth_ent = get_Call_callee(succ, c); /* unknown_entity is used to signal that we don't know what is called */ if (is_unknown_entity(meth_ent)) { bits |= ptr_access_all; break; } for (size_t p = n_params; p-- > 0; ) { if (get_Call_param(succ, p) == arg) { /* an arg can be used more than once ! */ bits |= get_method_param_access(meth_ent, p); } } } } else /* can do anything */ bits |= ptr_access_all; } /* search stops here anyway */ continue; } case iro_Store: /* We have reached a Store node => the reference is written or stored. */ if (get_Store_ptr(succ) == arg) { /* written to */ bits |= ptr_access_write; } else { /* stored itself */ bits |= ptr_access_store; } /* search stops here anyway */ continue; case iro_Load: /* We have reached a Load node => the reference is read. */ bits |= ptr_access_read; /* search stops here anyway */ continue; case iro_Conv: /* our address is casted into something unknown. Break our search. */ bits = ptr_access_all; break; default: break; } /* If we know that, the argument will be read, write and stored, we can break the recursion.*/ if (bits == ptr_access_all) { bits = ptr_access_all; break; } /* * A calculation that do not lead to a reference mode ends our search. * This is dangerous: It would allow to cast into integer and that cast back ... * so, when we detect a Conv we go mad, see the Conv case above. */ if (!mode_is_reference(get_irn_mode(succ))) continue; /* follow further the address calculation */ bits = analyze_arg(succ, bits); } set_irn_link(arg, NULL); return bits; }
/** * Compute the weight of a method parameter * * @param arg The parameter them weight muss be computed. */ static unsigned calc_method_param_weight(ir_node *arg) { /* We mark the nodes to avoid endless recursion */ mark_irn_visited(arg); unsigned weight = null_weight; for (int i = get_irn_n_outs(arg); i-- > 0; ) { ir_node *succ = get_irn_out(arg, i); if (irn_visited(succ)) continue; /* We should not walk over the memory edge.*/ if (get_irn_mode(succ) == mode_M) continue; switch (get_irn_opcode(succ)) { case iro_Call: if (get_Call_ptr(succ) == arg) { /* the arguments is used as an pointer input for a call, we can probably change an indirect Call into a direct one. */ weight += indirect_call_weight; } break; case iro_Cmp: { /* We have reached a cmp and we must increase the weight with the cmp_weight. */ ir_node *op; if (get_Cmp_left(succ) == arg) op = get_Cmp_right(succ); else op = get_Cmp_left(succ); if (is_irn_constlike(op)) { weight += const_cmp_weight; } else weight += cmp_weight; break; } case iro_Cond: /* the argument is used for a SwitchCond, a big win */ weight += const_cmp_weight * get_irn_n_outs(succ); break; case iro_Id: /* when looking backward we might find Id nodes */ weight += calc_method_param_weight(succ); break; case iro_Tuple: /* unoptimized tuple */ for (int j = get_Tuple_n_preds(succ); j-- > 0; ) { ir_node *pred = get_Tuple_pred(succ, j); if (pred == arg) { /* look for Proj(j) */ for (int k = get_irn_n_outs(succ); k-- > 0; ) { ir_node *succ_succ = get_irn_out(succ, k); if (is_Proj(succ_succ)) { if (get_Proj_proj(succ_succ) == j) { /* found */ weight += calc_method_param_weight(succ_succ); } } else { /* this should NOT happen */ } } } } break; default: if (is_binop(succ)) { /* We have reached a BinOp and we must increase the weight with the binop_weight. If the other operand of the BinOp is a constant we increase the weight with const_binop_weight and call the function recursive. */ ir_node *op; if (get_binop_left(succ) == arg) op = get_binop_right(succ); else op = get_binop_left(succ); if (is_irn_constlike(op)) { weight += const_binop_weight; weight += calc_method_param_weight(succ); } else weight += binop_weight; } else if (get_irn_arity(succ) == 1) { /* We have reached a binop and we must increase the weight with the const_binop_weight and call the function recursive.*/ weight += const_binop_weight; weight += calc_method_param_weight(succ); } break; } } set_irn_link(arg, NULL); return weight; }