Ejemplo n.º 1
0
static int uPD98402_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
{
    switch (cmd) {

    case SONET_GETSTATZ:
    case SONET_GETSTAT:
        return fetch_stats(dev,arg, cmd == SONET_GETSTATZ);
    case SONET_SETFRAMING:
        return set_framing(dev, (int)(unsigned long)arg);
    case SONET_GETFRAMING:
        return put_user(PRIV(dev)->framing,(int __user *)arg) ?
               -EFAULT : 0;
    case SONET_GETFRSENSE:
        return get_sense(dev,arg);
    case ATM_SETLOOP:
        return set_loopback(dev, (int)(unsigned long)arg);
    case ATM_GETLOOP:
        return put_user(PRIV(dev)->loop_mode,(int __user *)arg) ?
               -EFAULT : 0;
    case ATM_QUERYLOOP:
        return put_user(ATM_LM_LOC_PHY | ATM_LM_LOC_ATM |
                        ATM_LM_RMT_PHY,(int __user *)arg) ? -EFAULT : 0;
    default:
        return -ENOIOCTLCMD;
    }
}
Ejemplo n.º 2
0
// Mass Storage device to test bulk transfers (non destructive test)
static int test_mass_storage(libusb_device_handle *handle, uint8_t endpoint_in, uint8_t endpoint_out)
{
	int r, size;
	uint8_t lun;
	uint32_t expected_tag;
	uint32_t i, max_lba, block_size;
	double device_size;
	uint8_t cdb[16];	// SCSI Command Descriptor Block
	uint8_t buffer[64];
	char vid[9], pid[9], rev[5];
	unsigned char *data;
	FILE *fd;

	printf("Reading Max LUN:\n");
	r = libusb_control_transfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
		BOMS_GET_MAX_LUN, 0, 0, &lun, 1, 1000);
	// Some devices send a STALL instead of the actual value.
	// In such cases we should set lun to 0.
	if (r == 0) {
		lun = 0;
	} else if (r < 0) {
		perr("   Failed: %s", libusb_strerror((enum libusb_error)r));
	}
	printf("   Max LUN = %d\n", lun);

	// Send Inquiry
	printf("Sending Inquiry:\n");
	memset(buffer, 0, sizeof(buffer));
	memset(cdb, 0, sizeof(cdb));
	cdb[0] = 0x12;	// Inquiry
	cdb[4] = INQUIRY_LENGTH;

	send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, INQUIRY_LENGTH, &expected_tag);
	CALL_CHECK(libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&buffer, INQUIRY_LENGTH, &size, 1000));
	printf("   received %d bytes\n", size);
	// The following strings are not zero terminated
	for (i=0; i<8; i++) {
		vid[i] = buffer[8+i];
		pid[i] = buffer[16+i];
		rev[i/2] = buffer[32+i/2];	// instead of another loop
	}
	vid[8] = 0;
	pid[8] = 0;
	rev[4] = 0;
	printf("   VID:PID:REV \"%8s\":\"%8s\":\"%4s\"\n", vid, pid, rev);
	if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
		get_sense(handle, endpoint_in, endpoint_out);
	}

	// Read capacity
	printf("Reading Capacity:\n");
	memset(buffer, 0, sizeof(buffer));
	memset(cdb, 0, sizeof(cdb));
	cdb[0] = 0x25;	// Read Capacity

	send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, READ_CAPACITY_LENGTH, &expected_tag);
	CALL_CHECK(libusb_bulk_transfer(handle, endpoint_in, (unsigned char*)&buffer, READ_CAPACITY_LENGTH, &size, 1000));
	printf("   received %d bytes\n", size);
	max_lba = be_to_int32(&buffer[0]);
	block_size = be_to_int32(&buffer[4]);
	device_size = ((double)(max_lba+1))*block_size/(1024*1024*1024);
	printf("   Max LBA: %08X, Block Size: %08X (%.2f GB)\n", max_lba, block_size, device_size);
	if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
		get_sense(handle, endpoint_in, endpoint_out);
	}

	// coverity[tainted_data]
	data = (unsigned char*) calloc(1, block_size);
	if (data == NULL) {
		perr("   unable to allocate data buffer\n");
		return -1;
	}

	// Send Read
	printf("Attempting to read %d bytes:\n", block_size);
	memset(cdb, 0, sizeof(cdb));

	cdb[0] = 0x28;	// Read(10)
	cdb[8] = 0x01;	// 1 block

	send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, block_size, &expected_tag);
	libusb_bulk_transfer(handle, endpoint_in, data, block_size, &size, 5000);
	printf("   READ: received %d bytes\n", size);
	if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
		get_sense(handle, endpoint_in, endpoint_out);
	} else {
		display_buffer_hex(data, size);
		if ((binary_dump) && ((fd = fopen(binary_name, "w")) != NULL)) {
			if (fwrite(data, 1, (size_t)size, fd) != (unsigned int)size) {
				perr("   unable to write binary data\n");
			}
			fclose(fd);
		}
	}
	free(data);

	return 0;
}
Ejemplo n.º 3
0
static void detection_work(struct work_struct *work)
{
	struct cpcap_usb_det_data *data =
		container_of(work, struct cpcap_usb_det_data, work.work);
#ifdef CONFIG_TTA_CHARGER
	static unsigned char first_time;
#endif

	printk(KERN_ERR "detection_work:data->state = %d\n", data->state);

	switch (data->state) {
	case CONFIG:
		vusb_enable(data);
		cpcap_irq_mask(data->cpcap, CPCAP_IRQ_CHRG_DET);
		cpcap_irq_mask(data->cpcap, CPCAP_IRQ_CHRG_CURR1);
		cpcap_irq_mask(data->cpcap, CPCAP_IRQ_SE1);
		cpcap_irq_mask(data->cpcap, CPCAP_IRQ_IDGND);
		cpcap_irq_mask(data->cpcap, CPCAP_IRQ_VBUSVLD);
		cpcap_irq_mask(data->cpcap, CPCAP_IRQ_DPI);
		cpcap_irq_mask(data->cpcap, CPCAP_IRQ_DMI);

		configure_hardware(data, CPCAP_ACCY_UNKNOWN);

		data->state = SAMPLE_1;
		schedule_delayed_work(&data->work, msecs_to_jiffies(11));
		break;

	case SAMPLE_1:
		get_sense(data);
#ifdef CONFIG_TTA_CHARGER
		if (!(data->sense_tta.gpio_val) &&
			(data->sense & CPCAP_BIT_SESSVLD_S)) {
			disable_tta();
			enable_tta();
		}
#endif
		data->state = SAMPLE_2;
		schedule_delayed_work(&data->work, msecs_to_jiffies(100));
		break;

	case SAMPLE_2:
		data->prev_sense = data->sense;
		get_sense(data);

		if (data->prev_sense != data->sense) {
			/* Stay in this state */
			data->state = SAMPLE_2;
			schedule_delayed_work(&data->work,
					      msecs_to_jiffies(100));
		} else if (!(data->sense & CPCAP_BIT_SE1_S) &&
			   (data->sense & CPCAP_BIT_ID_FLOAT_S) &&
			   !(data->sense & CPCAP_BIT_ID_GROUND_S) &&
			   !(data->sense & CPCAP_BIT_SESSVLD_S)) {
			data->state = IDENTIFY;
#ifdef CONFIG_TTA_CHARGER
			if (!(data->sense_tta.gpio_val))
				data->state = IDENTIFY_TTA;
#endif
			schedule_delayed_work(&data->work,
					      msecs_to_jiffies(100));
		} else {
			data->state = IDENTIFY;
#ifdef CONFIG_TTA_CHARGER
			if (!(data->sense & CPCAP_BIT_SESSVLD_S) &&
				!(data->sense_tta.gpio_val)) {
				data->state = IDENTIFY_TTA;
		}
#endif
			schedule_delayed_work(&data->work, 0);
		}
		break;
#ifdef CONFIG_TTA_CHARGER
	case IDENTIFY_TTA:
		configure_hardware(data, CPCAP_ACCY_TTA_CHARGER);
		data->state = IDENTIFY;
		schedule_delayed_work(&data->work, 0);
		break;
#endif
	case IDENTIFY:
		get_sense(data);
		data->state = CONFIG;

#ifdef CONFIG_TTA_CHARGER
		if ((data->sense_tta.dplus == data->sense_tta.dminus) &&
			!(data->sense_tta.gpio_val) &&
			!(data->sense & CPCAP_BIT_SESSVLD_S)) {
			notify_accy(data, CPCAP_ACCY_TTA_CHARGER);
			cpcap_irq_clear(data->cpcap, CPCAP_IRQ_DMI);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_DMI);
			data->state = TTA;
			disable_musb_int();

		} else if ((data->sense == SENSE_USB) ||
			(data->sense == SENSE_USB_FLASH)) {
			notify_accy(data, CPCAP_ACCY_USB);

			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_DET);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_CURR1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_SE1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_IDGND);

			/* Special handling of USB cable undetect. */
			data->state = USB;
		}
#else
		if ((data->sense == SENSE_USB) ||
		    (data->sense == SENSE_USB_FLASH)) {
			notify_accy(data, CPCAP_ACCY_USB);

			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_DET);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_CURR1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_SE1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_IDGND);

			/* Special handling of USB cable undetect. */
			data->state = USB;
		}
#endif
		else if (data->sense == SENSE_FACTORY) {
			notify_accy(data, CPCAP_ACCY_FACTORY);

			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_SE1);
#ifdef CONFIG_TTA_CHARGER
			disable_tta();
#endif
			/* Special handling of factory cable undetect. */
			data->state = FACTORY;
		} else if ((data->sense == SENSE_CHARGER_FLOAT) ||
			   (data->sense == SENSE_CHARGER)) {
			notify_accy(data, CPCAP_ACCY_CHARGER);

			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_CURR1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_SE1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_IDGND);

			/* Special handling of charger undetect. */
			data->state = CHARGER;
		} else if ((data->sense & CPCAP_BIT_VBUSVLD_S) &&
				(data->usb_accy == CPCAP_ACCY_NONE)) {
			data->state = CONFIG;
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_DET);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_DPI);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_DMI);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_SE1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_IDGND);

		} else {
			notify_accy(data, CPCAP_ACCY_NONE);

			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_DET);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_CURR1);

			/* When a charger is unpowered by unplugging from the
			 * wall, VBUS voltage will drop below CHRG_DET (3.5V)
			 * until the ICHRG bits are cleared.  Once ICHRG is
			 * cleared, VBUS will rise above CHRG_DET, but below
			 * VBUSVLD (4.4V) briefly as it decays.  If the charger
			 * is re-powered while VBUS is within this window, the
			 * VBUSVLD interrupt is needed to trigger charger
			 * detection.
			 *
			 * VBUSVLD must be masked before going into suspend.
			 * See cpcap_usb_det_suspend() for details.
			 */
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_VBUSVLD);
#ifdef CONFIG_TTA_CHARGER
			disable_tta();
			enable_tta();
#endif
		}
		break;
#ifdef CONFIG_TTA_CHARGER
	case TTA:
		get_sense(data);

		if ((data->sense_tta.dplus != data->sense_tta.dminus) ||
			(data->sense_tta.gpio_val)) {
			cpcap_irq_mask(data->cpcap, CPCAP_IRQ_DMI);
			disable_tta();
			enable_tta();
			data->state = CONFIG;
			enable_musb_int();
			schedule_delayed_work(&data->work, 0);
		} else {
			data->state = TTA;
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_DMI);
		}
		break;
#endif
	case USB:
		get_sense(data);

		if ((data->sense & CPCAP_BIT_SE1_S) ||
			(data->sense & CPCAP_BIT_ID_GROUND_S) ||
			(!(data->sense & CPCAP_BIT_VBUSVLD_S))) {
				data->state = CONFIG;
				schedule_delayed_work(&data->work, 0);
		} else {
			data->state = USB;
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_DET);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_CURR1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_SE1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_IDGND);
		}
		break;

	case FACTORY:
		get_sense(data);

		/* The removal of a factory cable can only be detected if a
		 * charger is attached.
		 */
		if (data->sense & CPCAP_BIT_SE1_S) {
#ifdef CONFIG_TTA_CHARGER
			enable_tta();
#endif
			data->state = CONFIG;
			schedule_delayed_work(&data->work, 0);
		} else {
			data->state = FACTORY;
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_SE1);
		}
		break;

	case CHARGER:
		get_sense(data);

		/* If the battery voltage is above the set charge voltage in
		 * CPCAP and ICHRG is set, CHRGCURR1 will be 0.  Do not undetect
		 * charger in this case. */
		if (!(data->sense & CPCAP_BIT_SE1_S) ||
		    (!(data->sense & CPCAP_BIT_VBUSVLD_S) &&
		     !(data->sense & CPCAP_BIT_CHRGCURR1_S))) {
			data->state = CONFIG;
			schedule_delayed_work(&data->work, 0);
		} else {
			data->state = CHARGER;

			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_CHRG_CURR1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_SE1);
			cpcap_irq_unmask(data->cpcap, CPCAP_IRQ_IDGND);
		}
		break;

	default:
		/* This shouldn't happen.  Need to reset state machine. */
		vusb_disable(data);
		data->state = CONFIG;
		schedule_delayed_work(&data->work, 0);
		break;
	}
#ifdef CONFIG_TTA_CHARGER
	temp_data = data;
	if (!first_time) {
		enable_musb_int();
		first_time = 1;
	}
#endif
}
Ejemplo n.º 4
0
static int configure_hardware(struct cpcap_usb_det_data *data,
			      enum cpcap_accy accy)
{
	int retval;

	/* Take control of pull up from ULPI. */
	retval  = cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC3,
				     CPCAP_BIT_PU_SPI,
				     CPCAP_BIT_PU_SPI);
	retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC1,
				    CPCAP_BIT_DP150KPU,
				    (CPCAP_BIT_DP150KPU | CPCAP_BIT_DP1K5PU |
				     CPCAP_BIT_DM1K5PU | CPCAP_BIT_DPPD |
				     CPCAP_BIT_DMPD));
#ifdef CONFIG_TTA_CHARGER
	get_sense(data);
	if (!(data->sense_tta.dplus)) {
		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC3,
						    CPCAP_BIT_PU_SPI |
						    CPCAP_BIT_DMPD_SPI |
						    CPCAP_BIT_DPPD_SPI,
						    CPCAP_BIT_PU_SPI |
						    CPCAP_BIT_DMPD_SPI |
						    CPCAP_BIT_DPPD_SPI);

		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC1,
				CPCAP_BIT_DP150KPU,
				(CPCAP_BIT_DP150KPU | CPCAP_BIT_DP1K5PU |
				CPCAP_BIT_DM1K5PU | CPCAP_BIT_DPPD |
				CPCAP_BIT_DMPD));
	}
#endif

	switch (accy) {
	case CPCAP_ACCY_USB:
	case CPCAP_ACCY_FACTORY:
		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC1, 0,
					     CPCAP_BIT_VBUSPD);
		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC2,
					     CPCAP_BIT_USBXCVREN,
					     CPCAP_BIT_USBXCVREN);
		/* Give USB driver control of pull up via ULPI. */
		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC3,
					     0,
					     CPCAP_BIT_PU_SPI |
					     CPCAP_BIT_DMPD_SPI |
					     CPCAP_BIT_DPPD_SPI |
					     CPCAP_BIT_SUSPEND_SPI |
					     CPCAP_BIT_ULPI_SPI_SEL);

		if ((data->cpcap->vendor == CPCAP_VENDOR_ST) &&
			(data->cpcap->revision == CPCAP_REVISION_2_0))
				vusb_enable(data);

		break;

	case CPCAP_ACCY_CHARGER:
		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC1,
					     CPCAP_BIT_VBUSPD,
					     CPCAP_BIT_VBUSPD);
		break;

#ifdef CONFIG_TTA_CHARGER
	case CPCAP_ACCY_TTA_CHARGER:
		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC3,
						   CPCAP_BIT_PU_SPI |
						   CPCAP_BIT_DMPD_SPI |
						   CPCAP_BIT_DPPD_SPI,
						   CPCAP_BIT_PU_SPI |
						   CPCAP_BIT_DMPD_SPI |
						   CPCAP_BIT_DPPD_SPI);

		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC2,
					     CPCAP_BIT_USBXCVREN,
					     CPCAP_BIT_USBXCVREN);
    break;
#endif

	case CPCAP_ACCY_UNKNOWN:
		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC1, 0,
					     CPCAP_BIT_VBUSPD);
		break;

	case CPCAP_ACCY_NONE:
	default:
#ifdef CONFIG_TTA_CHARGER
		retval |= cpcap_regacc_write(data->cpcap,
					CPCAP_REG_USBC3,
					CPCAP_BIT_PU_SPI,
					CPCAP_BIT_PU_SPI |
					CPCAP_BIT_DMPD_SPI |
					CPCAP_BIT_DPPD_SPI);
#endif
		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC1,
					     CPCAP_BIT_VBUSPD,
					     CPCAP_BIT_VBUSPD);
		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC2, 0,
					     CPCAP_BIT_USBXCVREN);
		retval |= cpcap_regacc_write(data->cpcap, CPCAP_REG_USBC3,
					     CPCAP_BIT_DMPD_SPI |
					     CPCAP_BIT_DPPD_SPI |
					     CPCAP_BIT_SUSPEND_SPI |
					     CPCAP_BIT_ULPI_SPI_SEL,
					     CPCAP_BIT_DMPD_SPI |
					     CPCAP_BIT_DPPD_SPI |
					     CPCAP_BIT_SUSPEND_SPI |
					     CPCAP_BIT_ULPI_SPI_SEL);
		break;
	}

	if (retval != 0)
		retval = -EFAULT;

	return retval;
}
Ejemplo n.º 5
0
/**
 * Wraps a CDB mass storage command in the appropriate gunk to get it down
 * @param handle
 * @param endpoint
 * @param cdb
 * @param cdb_length
 * @param lun
 * @param flags
 * @param expected_rx_size
 * @return
 */
int send_usb_mass_storage_command(libusb_device_handle *handle, uint8_t endpoint_out,
        uint8_t *cdb, uint8_t cdb_length,
        uint8_t lun, uint8_t flags, uint32_t expected_rx_size) {
    DLOG("Sending usb m-s cmd: cdblen:%d, rxsize=%d\n", cdb_length, expected_rx_size);
    dump_CDB_command(cdb, cdb_length);

    static uint32_t tag;
    if (tag == 0) {
        tag = 1;
    }

    int try = 0;
    int ret = 0;
    int real_transferred;
    int i = 0;

    uint8_t c_buf[STLINK_SG_SIZE];
    // tag is allegedly ignored... TODO - verify
    c_buf[i++] = 'U';
    c_buf[i++] = 'S';
    c_buf[i++] = 'B';
    c_buf[i++] = 'C';
    write_uint32(&c_buf[i], tag);
    uint32_t this_tag = tag++;
    write_uint32(&c_buf[i+4], expected_rx_size);
    i+= 8;
    c_buf[i++] = flags;
    c_buf[i++] = lun;

    c_buf[i++] = cdb_length;

    // Now the actual CDB request
    assert(cdb_length <= CDB_SL);
    memcpy(&(c_buf[i]), cdb, cdb_length);

    int sending_length = STLINK_SG_SIZE;

    // send....
    do {
        ret = libusb_bulk_transfer(handle, endpoint_out, c_buf, sending_length,
                &real_transferred, SG_TIMEOUT_MSEC);
        if (ret == LIBUSB_ERROR_PIPE) {
            libusb_clear_halt(handle, endpoint_out);
        }
        try++;
    } while ((ret == LIBUSB_ERROR_PIPE) && (try < 3));
    if (ret != LIBUSB_SUCCESS) {
        WLOG("sending failed: %d\n", ret);
        return -1;
    }
    return this_tag;
}


/**
 * Straight from stm8 stlink code...
 * @param handle
 * @param endpoint_in
 * @param endpoint_out
 */
    static void
get_sense(libusb_device_handle *handle, uint8_t endpoint_in, uint8_t endpoint_out)
{
    DLOG("Fetching sense...\n");
    uint8_t cdb[16];
    memset(cdb, 0, sizeof(cdb));
#define REQUEST_SENSE 0x03
#define REQUEST_SENSE_LENGTH 18
    cdb[0] = REQUEST_SENSE;
    cdb[4] = REQUEST_SENSE_LENGTH;
    uint32_t tag = send_usb_mass_storage_command(handle, endpoint_out, cdb, sizeof(cdb), 0,
            LIBUSB_ENDPOINT_IN, REQUEST_SENSE_LENGTH);
    if (tag == 0) {
        WLOG("refusing to send request sense with tag 0\n");
        return;
    }
    unsigned char sense[REQUEST_SENSE_LENGTH];
    int transferred;
    int ret;
    int try = 0;
    do {
        ret = libusb_bulk_transfer(handle, endpoint_in, sense, sizeof(sense),
                &transferred, SG_TIMEOUT_MSEC);
        if (ret == LIBUSB_ERROR_PIPE) {
            libusb_clear_halt(handle, endpoint_in);
        }
        try++;
    } while ((ret == LIBUSB_ERROR_PIPE) && (try < 3));
    if (ret != LIBUSB_SUCCESS) {
        WLOG("receiving sense failed: %d\n", ret);
        return;
    }
    if (transferred != sizeof(sense)) {
        WLOG("received unexpected amount of sense: %d != %d\n", transferred, sizeof(sense));
    }
    uint32_t received_tag;
    int status = get_usb_mass_storage_status(handle, endpoint_in, &received_tag);
    if (status != 0) {
        WLOG("receiving sense failed with status: %02x\n", status);
        return;
    }
    if (sense[0] != 0x70 && sense[0] != 0x71) {
        WLOG("No sense data\n");
    } else {
        WLOG("Sense KCQ: %02X %02X %02X\n", sense[2] & 0x0f, sense[12], sense[13]);
    }
}

/**
 * Just send a buffer on an endpoint, no questions asked.
 * Handles repeats, and time outs.  Also handles reading status reports and sense
 * @param handle libusb device *
 * @param endpoint_out sends
 * @param endpoint_in used to read status reports back in
 * @param cbuf  what to send
 * @param length how much to send
 * @return number of bytes actually sent, or -1 for failures.
 */
int send_usb_data_only(libusb_device_handle *handle, unsigned char endpoint_out,
        unsigned char endpoint_in, unsigned char *cbuf, unsigned int length) {
    int ret;
    int real_transferred;
    int try = 0;
    do {
        ret = libusb_bulk_transfer(handle, endpoint_out, cbuf, length,
                &real_transferred, SG_TIMEOUT_MSEC);
        if (ret == LIBUSB_ERROR_PIPE) {
            libusb_clear_halt(handle, endpoint_out);
        }
        try++;
    } while ((ret == LIBUSB_ERROR_PIPE) && (try < 3));
    if (ret != LIBUSB_SUCCESS) {
        WLOG("sending failed: %d\n", ret);
        return -1;
    }

    // now, swallow up the status, so that things behave nicely...
    uint32_t received_tag;
    // -ve is for my errors, 0 is good, +ve is libusb sense status bytes
    int status = get_usb_mass_storage_status(handle, endpoint_in, &received_tag);
    if (status < 0) {
        WLOG("receiving status failed: %d\n", status);
        return -1;
    }
    if (status != 0) {
        WLOG("receiving status not passed :(: %02x\n", status);
    }
    if (status == 1) {
        get_sense(handle, endpoint_in, endpoint_out);
        return -1;
    }

    return real_transferred;
}


int stlink_q(stlink_t *sl) {
    struct stlink_libsg* sg = sl->backend_data;
    //uint8_t cdb_len = 6;  // FIXME varies!!!
    uint8_t cdb_len = 10;  // FIXME varies!!!
    uint8_t lun = 0;  // always zero...
    uint32_t tag = send_usb_mass_storage_command(sg->usb_handle, sg->ep_req,
            sg->cdb_cmd_blk, cdb_len, lun, LIBUSB_ENDPOINT_IN, sl->q_len);


    // now wait for our response...
    // length copied from stlink-usb...
    int rx_length = sl->q_len;
    int try = 0;
    int real_transferred;
    int ret;
    if (rx_length > 0) {
        do {
            ret = libusb_bulk_transfer(sg->usb_handle, sg->ep_rep, sl->q_buf, rx_length,
                    &real_transferred, SG_TIMEOUT_MSEC);
            if (ret == LIBUSB_ERROR_PIPE) {
                libusb_clear_halt(sg->usb_handle, sg->ep_req);
            }
            try++;
        } while ((ret == LIBUSB_ERROR_PIPE) && (try < 3));

        if (ret != LIBUSB_SUCCESS) {
            WLOG("Receiving failed: %d\n", ret);
            return -1;
        }

        if (real_transferred != rx_length) {
            WLOG("received unexpected amount: %d != %d\n", real_transferred, rx_length);
        }
    }

    uint32_t received_tag;
    // -ve is for my errors, 0 is good, +ve is libusb sense status bytes
    int status = get_usb_mass_storage_status(sg->usb_handle, sg->ep_rep, &received_tag);
    if (status < 0) {
        WLOG("receiving status failed: %d\n", status);
        return -1;
    }
    if (status != 0) {
        WLOG("receiving status not passed :(: %02x\n", status);
    }
    if (status == 1) {
        get_sense(sg->usb_handle, sg->ep_rep, sg->ep_req);
        return -1;
    }
    if (received_tag != tag) {
        WLOG("received tag %d but expected %d\n", received_tag, tag);
        //return -1;
    }
    if (rx_length > 0 && real_transferred != rx_length) {
        return -1;
    }
    return 0;
}

// TODO thinking, cleanup

void stlink_stat(stlink_t *stl, char *txt) {
    if (stl->q_len <= 0)
        return;

    stlink_print_data(stl);

    switch (stl->q_buf[0]) {
    case STLINK_OK:
        DLOG("  %s: ok\n", txt);
        return;
    case STLINK_FALSE:
        DLOG("  %s: false\n", txt);
        return;
    default:
        DLOG("  %s: unknown\n", txt);
    }
}


int _stlink_sg_version(stlink_t *stl) {
    struct stlink_libsg *sl = stl->backend_data;
    clear_cdb(sl);
    sl->cdb_cmd_blk[0] = STLINK_GET_VERSION;
    stl->q_len = 6;
    sl->q_addr = 0;
    return stlink_q(stl);
}

// Get stlink mode:
// STLINK_DEV_DFU_MODE || STLINK_DEV_MASS_MODE || STLINK_DEV_DEBUG_MODE
// usb dfu             || usb mass             || jtag or swd

int _stlink_sg_current_mode(stlink_t *stl) {
    struct stlink_libsg *sl = stl->backend_data;
    clear_cdb(sl);
    sl->cdb_cmd_blk[0] = STLINK_GET_CURRENT_MODE;
    stl->q_len = 2;
    sl->q_addr = 0;
    if (stlink_q(stl))
        return -1;

    return stl->q_buf[0];
}

// Exit the mass mode and enter the swd debug mode.

int _stlink_sg_enter_swd_mode(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_ENTER;
    sg->cdb_cmd_blk[2] = STLINK_DEBUG_ENTER_SWD;
    sl->q_len = 0; // >0 -> aboard
    return stlink_q(sl);
}

// Exit the mass mode and enter the jtag debug mode.
// (jtag is disabled in the discovery's stlink firmware)

int _stlink_sg_enter_jtag_mode(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_enter_jtag_mode ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_ENTER;
    sg->cdb_cmd_blk[2] = STLINK_DEBUG_ENTER_JTAG;
    sl->q_len = 0;
    return stlink_q(sl);
}

// XXX kernel driver performs reset, the device temporally disappears
// Suspect this is no longer the case when we have ignore on? RECHECK
int _stlink_sg_exit_dfu_mode(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_exit_dfu_mode ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[0] = STLINK_DFU_COMMAND;
    sg->cdb_cmd_blk[1] = STLINK_DFU_EXIT;
    sl->q_len = 0; // ??
    return stlink_q(sl);
    /*
       [135121.844564] sd 19:0:0:0: [sdb] Unhandled error code
       [135121.844569] sd 19:0:0:0: [sdb] Result: hostbyte=DID_ERROR driverbyte=DRIVER_OK
       [135121.844574] sd 19:0:0:0: [sdb] CDB: Read(10): 28 00 00 00 10 00 00 00 08 00
       [135121.844584] end_request: I/O error, dev sdb, sector 4096
       [135121.844590] Buffer I/O error on device sdb, logical block 512
       [135130.122567] usb 6-1: reset full speed USB device using uhci_hcd and address 7
       [135130.274551] usb 6-1: device firmware changed
       [135130.274618] usb 6-1: USB disconnect, address 7
       [135130.275186] VFS: busy inodes on changed media or resized disk sdb
       [135130.275424] VFS: busy inodes on changed media or resized disk sdb
       [135130.286758] VFS: busy inodes on changed media or resized disk sdb
       [135130.292796] VFS: busy inodes on changed media or resized disk sdb
       [135130.301481] VFS: busy inodes on changed media or resized disk sdb
       [135130.304316] VFS: busy inodes on changed media or resized disk sdb
       [135130.431113] usb 6-1: new full speed USB device using uhci_hcd and address 8
       [135130.629444] usb-storage 6-1:1.0: Quirks match for vid 0483 pid 3744: 102a1
       [135130.629492] scsi20 : usb-storage 6-1:1.0
       [135131.625600] scsi 20:0:0:0: Direct-Access     STM32                          PQ: 0 ANSI: 0
       [135131.627010] sd 20:0:0:0: Attached scsi generic sg2 type 0
       [135131.633603] sd 20:0:0:0: [sdb] 64000 512-byte logical blocks: (32.7 MB/31.2 MiB)
       [135131.633613] sd 20:0:0:0: [sdb] Assuming Write Enabled
       [135131.633620] sd 20:0:0:0: [sdb] Assuming drive cache: write through
       [135131.640584] sd 20:0:0:0: [sdb] Assuming Write Enabled
       [135131.640592] sd 20:0:0:0: [sdb] Assuming drive cache: write through
       [135131.640609]  sdb:
       [135131.652634] sd 20:0:0:0: [sdb] Assuming Write Enabled
       [135131.652639] sd 20:0:0:0: [sdb] Assuming drive cache: write through
       [135131.652645] sd 20:0:0:0: [sdb] Attached SCSI removable disk
       [135131.671536] sd 20:0:0:0: [sdb] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE
       [135131.671548] sd 20:0:0:0: [sdb] Sense Key : Illegal Request [current]
       [135131.671553] sd 20:0:0:0: [sdb] Add. Sense: Logical block address out of range
       [135131.671560] sd 20:0:0:0: [sdb] CDB: Read(10): 28 00 00 00 f9 80 00 00 08 00
       [135131.671570] end_request: I/O error, dev sdb, sector 63872
       [135131.671575] Buffer I/O error on device sdb, logical block 7984
       [135131.678527] sd 20:0:0:0: [sdb] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE
       [135131.678532] sd 20:0:0:0: [sdb] Sense Key : Illegal Request [current]
       [135131.678537] sd 20:0:0:0: [sdb] Add. Sense: Logical block address out of range
       [135131.678542] sd 20:0:0:0: [sdb] CDB: Read(10): 28 00 00 00 f9 80 00 00 08 00
       [135131.678551] end_request: I/O error, dev sdb, sector 63872
       ...
       [135131.853565] end_request: I/O error, dev sdb, sector 4096
       */
}

int _stlink_sg_core_id(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    int ret;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_READCOREID;
    sl->q_len = 4;
    sg->q_addr = 0;
    ret = stlink_q(sl);
    if (ret)
        return ret;

    sl->core_id = read_uint32(sl->q_buf, 0);
    return 0;
}

// Arm-core reset -> halted state.

int _stlink_sg_reset(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_RESETSYS;
    sl->q_len = 2;
    sg->q_addr = 0;
    if (stlink_q(sl))
        return -1;

    stlink_stat(sl, "core reset");
    return 0;
}

// Arm-core reset -> halted state.

int _stlink_sg_jtag_reset(stlink_t *sl, int value) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_JTAG_DRIVE_NRST;
    sg->cdb_cmd_blk[2] = (value)?0:1;
    sl->q_len = 3;
    sg->q_addr = 2;
    if (stlink_q(sl))
        return -1;

    stlink_stat(sl, "core reset");

    return 0;
}

// Arm-core status: halted or running.

int _stlink_sg_status(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_GETSTATUS;
    sl->q_len = 2;
    sg->q_addr = 0;
    return stlink_q(sl);
}

// Force the core into the debug mode -> halted state.

int _stlink_sg_force_debug(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_FORCEDEBUG;
    sl->q_len = 2;
    sg->q_addr = 0;
    if (stlink_q(sl))
        return -1;

    stlink_stat(sl, "force debug");
    return 0;
}

// Read all arm-core registers.

int _stlink_sg_read_all_regs(stlink_t *sl, reg *regp) {
    struct stlink_libsg *sg = sl->backend_data;

    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_READALLREGS;
    sl->q_len = 84;
    sg->q_addr = 0;
    if (stlink_q(sl))
        return -1;

    stlink_print_data(sl);

    // TODO - most of this should be re-extracted up....

    // 0-3 | 4-7 | ... | 60-63 | 64-67 | 68-71   | 72-75      | 76-79 | 80-83
    // r0  | r1  | ... | r15   | xpsr  | main_sp | process_sp | rw    | rw2
    for (int i = 0; i < 16; i++) {
        regp->r[i] = read_uint32(sl->q_buf, 4 * i);
        if (sl->verbose > 1)
            DLOG("r%2d = 0x%08x\n", i, regp->r[i]);
    }
    regp->xpsr = read_uint32(sl->q_buf, 64);
    regp->main_sp = read_uint32(sl->q_buf, 68);
    regp->process_sp = read_uint32(sl->q_buf, 72);
    regp->rw = read_uint32(sl->q_buf, 76);
    regp->rw2 = read_uint32(sl->q_buf, 80);
    if (sl->verbose < 2)
        return 0;

    DLOG("xpsr       = 0x%08x\n", regp->xpsr);
    DLOG("main_sp    = 0x%08x\n", regp->main_sp);
    DLOG("process_sp = 0x%08x\n", regp->process_sp);
    DLOG("rw         = 0x%08x\n", regp->rw);
    DLOG("rw2        = 0x%08x\n", regp->rw2);

    return 0;
}

// Read an arm-core register, the index must be in the range 0..20.
//  0  |  1  | ... |  15   |  16   |   17    |   18       |  19   |  20
// r0  | r1  | ... | r15   | xpsr  | main_sp | process_sp | rw    | rw2

int _stlink_sg_read_reg(stlink_t *sl, int r_idx, reg *regp) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_READREG;
    sg->cdb_cmd_blk[2] = r_idx;
    sl->q_len = 4;
    sg->q_addr = 0;
    if (stlink_q(sl))
        return -1;

    //  0  |  1  | ... |  15   |  16   |   17    |   18       |  19   |  20
    // 0-3 | 4-7 | ... | 60-63 | 64-67 | 68-71   | 72-75      | 76-79 | 80-83
    // r0  | r1  | ... | r15   | xpsr  | main_sp | process_sp | rw    | rw2
    stlink_print_data(sl);

    uint32_t r = read_uint32(sl->q_buf, 0);
    DLOG("r_idx (%2d) = 0x%08x\n", r_idx, r);

    switch (r_idx) {
    case 16:
        regp->xpsr = r;
        break;
    case 17:
        regp->main_sp = r;
        break;
    case 18:
        regp->process_sp = r;
        break;
    case 19:
        regp->rw = r; //XXX ?(primask, basemask etc.)
        break;
    case 20:
        regp->rw2 = r; //XXX ?(primask, basemask etc.)
        break;
    default:
        regp->r[r_idx] = r;
    }

    return 0;
}

// Write an arm-core register. Index:
//  0  |  1  | ... |  15   |  16   |   17    |   18       |  19   |  20
// r0  | r1  | ... | r15   | xpsr  | main_sp | process_sp | rw    | rw2

int _stlink_sg_write_reg(stlink_t *sl, uint32_t reg, int idx) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_WRITEREG;
    //   2: reg index
    // 3-6: reg content
    sg->cdb_cmd_blk[2] = idx;
    write_uint32(sg->cdb_cmd_blk + 3, reg);
    sl->q_len = 2;
    sg->q_addr = 0;
    if (stlink_q(sl))
        return -1;

    stlink_stat(sl, "write reg");
    return 0;
}

// Write a register of the debug module of the core.
// XXX ?(atomic writes)
// TODO test

void stlink_write_dreg(stlink_t *sl, uint32_t reg, uint32_t addr) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_write_dreg ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_WRITEDEBUGREG;
    // 2-5: address of reg of the debug module
    // 6-9: reg content
    write_uint32(sg->cdb_cmd_blk + 2, addr);
    write_uint32(sg->cdb_cmd_blk + 6, reg);
    sl->q_len = 2;
    sg->q_addr = addr;
    stlink_q(sl);
    stlink_stat(sl, "write debug reg");
}

// Force the core exit the debug mode.

int _stlink_sg_run(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_RUNCORE;
    sl->q_len = 2;
    sg->q_addr = 0;
    if (stlink_q(sl))
        return -1;

    stlink_stat(sl, "run core");

    return 0;
}

// Step the arm-core.

int _stlink_sg_step(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_STEPCORE;
    sl->q_len = 2;
    sg->q_addr = 0;
    if (stlink_q(sl))
        return -1;

    stlink_stat(sl, "step core");
    return 0;
}

// TODO test
// see Cortex-M3 Technical Reference Manual
// TODO make delegate!
void stlink_set_hw_bp(stlink_t *sl, int fp_nr, uint32_t addr, int fp) {
    DLOG("\n*** stlink_set_hw_bp ***\n");
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_SETFP;
    // 2:The number of the flash patch used to set the breakpoint
    // 3-6: Address of the breakpoint (LSB)
    // 7: FP_ALL (0x02) / FP_UPPER (0x01) / FP_LOWER (0x00)
    sl->q_buf[2] = fp_nr;
    write_uint32(sl->q_buf, addr);
    sl->q_buf[7] = fp;

    sl->q_len = 2;
    stlink_q(sl);
    stlink_stat(sl, "set flash breakpoint");
}

// TODO test

// TODO make delegate!
void stlink_clr_hw_bp(stlink_t *sl, int fp_nr) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_clr_hw_bp ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_CLEARFP;
    sg->cdb_cmd_blk[2] = fp_nr;

    sl->q_len = 2;
    stlink_q(sl);
    stlink_stat(sl, "clear flash breakpoint");
}

// Read a "len" bytes to the sl->q_buf from the memory, max 6kB (6144 bytes)

int _stlink_sg_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_READMEM_32BIT;
    // 2-5: addr
    // 6-7: len
    write_uint32(sg->cdb_cmd_blk + 2, addr);
    write_uint16(sg->cdb_cmd_blk + 6, len);

    // data_in 0-0x40-len
    // !!! len _and_ q_len must be max 6k,
    //     i.e. >1024 * 6 = 6144 -> aboard)
    // !!! if len < q_len: 64*k, 1024*n, n=1..5  -> aboard
    //     (broken residue issue)
    sl->q_len = len;
    sg->q_addr = addr;
    if (stlink_q(sl))
        return -1;

    stlink_print_data(sl);
    return 0;
}

// Write a "len" bytes from the sl->q_buf to the memory, max 64 Bytes.

int _stlink_sg_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len) {
    struct stlink_libsg *sg = sl->backend_data;
    int ret;

    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_WRITEMEM_8BIT;
    // 2-5: addr
    // 6-7: len (>0x40 (64) -> aboard)
    write_uint32(sg->cdb_cmd_blk + 2, addr);
    write_uint16(sg->cdb_cmd_blk + 6, len);

    // this sends the command...
    ret = send_usb_mass_storage_command(sg->usb_handle,
            sg->ep_req, sg->cdb_cmd_blk, CDB_SL, 0, 0, 0);
    if (ret == -1)
        return ret;

    // This sends the data...
    ret = send_usb_data_only(sg->usb_handle,
            sg->ep_req, sg->ep_rep, sl->q_buf, len);
    if (ret == -1)
        return ret;

    stlink_print_data(sl);
    return 0;
}

// Write a "len" bytes from the sl->q_buf to the memory, max Q_BUF_LEN bytes.

int _stlink_sg_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
    struct stlink_libsg *sg = sl->backend_data;
    int ret;

    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_WRITEMEM_32BIT;
    // 2-5: addr
    // 6-7: len "unlimited"
    write_uint32(sg->cdb_cmd_blk + 2, addr);
    write_uint16(sg->cdb_cmd_blk + 6, len);

    // this sends the command...
    ret = send_usb_mass_storage_command(sg->usb_handle,
            sg->ep_req, sg->cdb_cmd_blk, CDB_SL, 0, 0, 0);
    if (ret == -1)
        return ret;

    // This sends the data...
    ret = send_usb_data_only(sg->usb_handle,
            sg->ep_req, sg->ep_rep, sl->q_buf, len);
    if (ret == -1)
        return ret;

    stlink_print_data(sl);
    return 0;
}

// Write one DWORD data to memory

int _stlink_sg_write_debug32(stlink_t *sl, uint32_t addr, uint32_t data) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_JTAG_WRITEDEBUG_32BIT;
    // 2-5: addr
    write_uint32(sg->cdb_cmd_blk + 2, addr);
    write_uint32(sg->cdb_cmd_blk + 6, data);
    sl->q_len = 2;
    return stlink_q(sl);
}

// Read one DWORD data from memory

int _stlink_sg_read_debug32(stlink_t *sl, uint32_t addr, uint32_t *data) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_JTAG_READDEBUG_32BIT;
    // 2-5: addr
    write_uint32(sg->cdb_cmd_blk + 2, addr);
    sl->q_len = 8;
    if (stlink_q(sl))
        return -1;

    *data = read_uint32(sl->q_buf, 4);
    return 0;
}

// Exit the jtag or swd mode and enter the mass mode.

int _stlink_sg_exit_debug_mode(stlink_t *stl)
{
    if (stl) {
        struct stlink_libsg* sl = stl->backend_data;
        clear_cdb(sl);
        sl->cdb_cmd_blk[1] = STLINK_DEBUG_EXIT;
        stl->q_len = 0; // >0 -> aboard
        return stlink_q(stl);
    }

    return 0;
}


// 1) open a sg device, switch the stlink from dfu to mass mode
// 2) wait 5s until the kernel driver stops reseting the broken device
// 3) reopen the device
// 4) the device driver is now ready for a switch to jtag/swd mode
// TODO thinking, better error handling, wait until the kernel driver stops reseting the plugged-in device

stlink_backend_t _stlink_sg_backend = {
    _stlink_sg_close,
    _stlink_sg_exit_debug_mode,
    _stlink_sg_enter_swd_mode,
    _stlink_sg_enter_jtag_mode,
    _stlink_sg_exit_dfu_mode,
    _stlink_sg_core_id,
    _stlink_sg_reset,
    _stlink_sg_jtag_reset,
    _stlink_sg_run,
    _stlink_sg_status,
    _stlink_sg_version,
    _stlink_sg_read_debug32,
    _stlink_sg_read_mem32,
    _stlink_sg_write_debug32,
    _stlink_sg_write_mem32,
    _stlink_sg_write_mem8,
    _stlink_sg_read_all_regs,
    _stlink_sg_read_reg,
    NULL,                   /* read_all_unsupported_regs */
    NULL,                   /* read_unsupported_regs */
    NULL,                   /* write_unsupported_regs */
    _stlink_sg_write_reg,
    _stlink_sg_step,
    _stlink_sg_current_mode,
    _stlink_sg_force_debug,
    NULL
};

static stlink_t* stlink_open(const int verbose) {

    stlink_t *sl = malloc(sizeof (stlink_t));
    memset(sl, 0, sizeof(stlink_t));
    struct stlink_libsg *slsg = malloc(sizeof (struct stlink_libsg));
    if (sl == NULL || slsg == NULL) {
        WLOG("Couldn't malloc stlink and stlink_sg structures out of memory!\n");
        return NULL;
    }

    if (libusb_init(&(slsg->libusb_ctx))) {
        WLOG("failed to init libusb context, wrong version of libraries?\n");
        free(sl);
        free(slsg);
        return NULL;
    }

    libusb_set_debug(slsg->libusb_ctx, 3);

    slsg->usb_handle = libusb_open_device_with_vid_pid(slsg->libusb_ctx, USB_ST_VID, USB_STLINK_PID);
    if (slsg->usb_handle == NULL) {
        WLOG("Failed to find an stlink v1 by VID:PID\n");
        libusb_close(slsg->usb_handle);
        libusb_exit(slsg->libusb_ctx);
        free(sl);
        free(slsg);
        return NULL;
    }

    // TODO
    // Could read the interface config descriptor, and assert lots of the assumptions

    // assumption: numInterfaces is always 1...
    if (libusb_kernel_driver_active(slsg->usb_handle, 0) == 1) {
        int r = libusb_detach_kernel_driver(slsg->usb_handle, 0);
        if (r < 0) {
            WLOG("libusb_detach_kernel_driver(() error %s\n", strerror(-r));
            libusb_close(slsg->usb_handle);
            libusb_exit(slsg->libusb_ctx);
            free(sl);
            free(slsg);
            return NULL;
        }
        DLOG("Kernel driver was successfully detached\n");
    }

    int config;
    if (libusb_get_configuration(slsg->usb_handle, &config)) {
        /* this may fail for a previous configured device */
        WLOG("libusb_get_configuration()\n");
        libusb_close(slsg->usb_handle);
        libusb_exit(slsg->libusb_ctx);
        free(sl);
        free(slsg);
        return NULL;

    }

    // assumption: bConfigurationValue is always 1
    if (config != 1) {
        WLOG("Your stlink got into a real weird configuration, trying to fix it!\n");
        DLOG("setting new configuration (%d -> 1)\n", config);
        if (libusb_set_configuration(slsg->usb_handle, 1)) {
            /* this may fail for a previous configured device */
            WLOG("libusb_set_configuration() failed\n");
            libusb_close(slsg->usb_handle);
            libusb_exit(slsg->libusb_ctx);
            free(sl);
            free(slsg);
            return NULL;
        }
    }

    if (libusb_claim_interface(slsg->usb_handle, 0)) {
        WLOG("libusb_claim_interface() failed\n");
        libusb_close(slsg->usb_handle);
        libusb_exit(slsg->libusb_ctx);
        free(sl);
        free(slsg);
        return NULL;
    }

    // assumption: endpoint config is fixed mang. really.
    slsg->ep_rep = 1 /* ep rep */ | LIBUSB_ENDPOINT_IN;
    slsg->ep_req = 2 /* ep req */ | LIBUSB_ENDPOINT_OUT;

    DLOG("Successfully opened stlinkv1 by libusb :)\n");

    sl->verbose = verbose;
    sl->backend_data = slsg;
    sl->backend = &_stlink_sg_backend;

    sl->core_stat = STLINK_CORE_STAT_UNKNOWN;
    slsg->q_addr = 0;

    return sl;
}
Ejemplo n.º 6
0
// Mass Storage device to test bulk transfers (non destructive test)
static int test_mass_storage(libusb_device_handle *handle, uint8_t endpoint_in, uint8_t endpoint_out)
{
	int r, size;
	uint8_t lun;
	uint32_t expected_tag;
	uint32_t i, max_lba, block_size;
	double device_size;
	uint8_t cdb[16];	// SCSI Command Descriptor Block
	uint8_t buffer[64];
	char vid[9], pid[9], rev[5];
	
	debug("Reading Max LUN:\n");
	r = sceUsbdControlTransfer(handle, LIBUSB_ENDPOINT_IN|LIBUSB_REQUEST_TYPE_CLASS|LIBUSB_RECIPIENT_INTERFACE,
		BOMS_GET_MAX_LUN, 0, 0, &lun, 1, 1000);
	// Some devices send a STALL instead of the actual value.
	// In such cases we should set lun to 0.
	if (r == 0) {
		lun = 0;
	} else if (r < 0) {
		debug("   Failed\n");
	}
	debug("   Max LUN = %d\n", lun);

	// Send Inquiry
	debug("Sending Inquiry:\n");
	memset(buffer, 0, sizeof(buffer));
	memset(cdb, 0, sizeof(cdb));
	cdb[0] = 0x12;	// Inquiry
	cdb[4] = INQUIRY_LENGTH;

	send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, INQUIRY_LENGTH, &expected_tag);
	CALL_CHECK(sceUsbdBulkTransfer(handle, endpoint_in, (unsigned char*)&buffer, INQUIRY_LENGTH, &size, 1000));
	debug("   received %d bytes\n", size);
	// The following strings are not zero terminated
	for (i=0; i<8; i++) {
		vid[i] = buffer[8+i];
		pid[i] = buffer[16+i];
		rev[i/2] = buffer[32+i/2];	// instead of another loop
	}
	vid[8] = 0;
	pid[8] = 0;
	rev[4] = 0;
	debug("   VID:PID:REV \"%8s\":\"%8s\":\"%4s\"\n", vid, pid, rev);
	if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
		get_sense(handle, endpoint_in, endpoint_out);
	}

	// Read capacity
	debug("Reading Capacity:\n");
	memset(buffer, 0, sizeof(buffer));
	memset(cdb, 0, sizeof(cdb));
	cdb[0] = 0x25;	// Read Capacity

	send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, READ_CAPACITY_LENGTH, &expected_tag);
	CALL_CHECK(sceUsbdBulkTransfer(handle, endpoint_in, (unsigned char*)&buffer, READ_CAPACITY_LENGTH, &size, 1000));
	debug("   received %d bytes\n", size);
	max_lba = be_to_int32(&buffer[0]);
	block_size = be_to_int32(&buffer[4]);
	device_size = ((double)(max_lba+1))*block_size/(1024*1024*1024);
	debug("   Max LBA: %08X, Block Size: %08X (%.2f GB)\n", max_lba, block_size, device_size);
	if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
		get_sense(handle, endpoint_in, endpoint_out);
	}

	// coverity[tainted_data]
	//data = (unsigned char*) calloc(1, block_size);
	//if (data == NULL) {
	//	debug("   unable to allocate data buffer\n");
	//	return -1;
	//}
	
	// Send Read
	debug("Attempting to read %d bytes:\n", block_size);
	memset(cdb, 0, sizeof(cdb));

	cdb[0] = 0x28;	// Read(10)
	//cdb[8] = 0x01;	// 1 block
	cdb[8] = sizeof(cart) / block_size;	// blocks

	//send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, block_size, &expected_tag);
	send_mass_storage_command(handle, endpoint_out, lun, cdb, LIBUSB_ENDPOINT_IN, sizeof(cart), &expected_tag);
	//sceUsbdBulkTransfer(handle, endpoint_in, cart, block_size, &size, 5000);
	sceUsbdBulkTransfer(handle, endpoint_in, cart, sizeof(cart), &size, 5000);
	debug("   READ: received %d bytes\n", size);
	if (get_mass_storage_status(handle, endpoint_in, expected_tag) == -2) {
		get_sense(handle, endpoint_in, endpoint_out);
	}// else {
		//display_buffer_hex(data, size);
	//}
	//free(data);

	return 0;
}
Ejemplo n.º 7
0
/**
 * Wraps a CDB mass storage command in the appropriate gunk to get it down
 * @param handle
 * @param endpoint
 * @param cdb
 * @param cdb_length
 * @param lun
 * @param flags
 * @param expected_rx_size
 * @return 
 */
int send_usb_mass_storage_command(libusb_device_handle *handle, uint8_t endpoint_out,
                              uint8_t *cdb, uint8_t cdb_length,
                              uint8_t lun, uint8_t flags, uint32_t expected_rx_size) {
    DLOG("Sending usb m-s cmd: cdblen:%d, rxsize=%d\n", cdb_length, expected_rx_size);
    dump_CDB_command(cdb, cdb_length);

    static uint32_t tag;
    if (tag == 0) {
        tag = 1;
    }

    int try = 0;
    int ret = 0;
    int real_transferred;
    int i = 0;

    uint8_t c_buf[STLINK_SG_SIZE];
    // tag is allegedly ignored... TODO - verify
    c_buf[i++] = 'U';
    c_buf[i++] = 'S';
    c_buf[i++] = 'B';
    c_buf[i++] = 'C';
    write_uint32(&c_buf[i], tag);
    uint32_t this_tag = tag++;
    write_uint32(&c_buf[i+4], expected_rx_size);
    i+= 8;
    c_buf[i++] = flags;
    c_buf[i++] = lun;

    c_buf[i++] = cdb_length;

    // Now the actual CDB request
    assert(cdb_length <= CDB_SL);
    memcpy(&(c_buf[i]), cdb, cdb_length);
    
    int sending_length = STLINK_SG_SIZE;
    DLOG("sending length set to: %d\n", sending_length);
    
    // send....
    do {
        DLOG("attempting tx...\n");
        ret = libusb_bulk_transfer(handle, endpoint_out, c_buf, sending_length,
                                   &real_transferred, SG_TIMEOUT_MSEC);
        if (ret == LIBUSB_ERROR_PIPE) {
            libusb_clear_halt(handle, endpoint_out);
        }
        try++;
    } while ((ret == LIBUSB_ERROR_PIPE) && (try < 3));
    if (ret != LIBUSB_SUCCESS) {
        WLOG("sending failed: %d\n", ret);
        return -1;
    }
    DLOG("Actually sent: %d, returning tag: %d\n", real_transferred, tag);
    return this_tag;
}


/**
 * Straight from stm8 stlink code...
 * @param handle
 * @param endpoint_in
 * @param endpoint_out
 */
static void
get_sense(libusb_device_handle *handle, uint8_t endpoint_in, uint8_t endpoint_out)
{
    DLOG("Fetching sense...\n");
    uint8_t cdb[16];
    memset(cdb, 0, sizeof(cdb));
#define REQUEST_SENSE 0x03
#define REQUEST_SENSE_LENGTH 18
    cdb[0] = REQUEST_SENSE;
    cdb[4] = REQUEST_SENSE_LENGTH;
    uint32_t tag = send_usb_mass_storage_command(handle, endpoint_out, cdb, sizeof(cdb), 0,
                                                 LIBUSB_ENDPOINT_IN, REQUEST_SENSE_LENGTH);
    if (tag == 0) {
        WLOG("refusing to send request sense with tag 0\n");
        return;
    }
    unsigned char sense[REQUEST_SENSE_LENGTH];
    int transferred;
    int ret;
    int try = 0;
    do {
        ret = libusb_bulk_transfer(handle, endpoint_in, sense, sizeof(sense),
                                   &transferred, SG_TIMEOUT_MSEC);
        if (ret == LIBUSB_ERROR_PIPE) {
            libusb_clear_halt(handle, endpoint_in);
        }
        try++;
    } while ((ret == LIBUSB_ERROR_PIPE) && (try < 3));
    if (ret != LIBUSB_SUCCESS) {
        WLOG("receiving sense failed: %d\n", ret);
        return;
    }
    if (transferred != sizeof(sense)) {
        WLOG("received unexpected amount of sense: %d != %d\n", transferred, sizeof(sense));
    }
    uint32_t received_tag;
    int status = get_usb_mass_storage_status(handle, endpoint_in, &received_tag);
    if (status != 0) {
        WLOG("receiving sense failed with status: %02x\n", status);
        return;
    }
    if (sense[0] != 0x70 && sense[0] != 0x71) {
        WLOG("No sense data\n");
    } else {
        WLOG("Sense KCQ: %02X %02X %02X\n", sense[2] & 0x0f, sense[12], sense[13]);
    }
}


//TODO rewrite/cleanup, save the error in sl

#if FINISHED_WITH_SG
static void stlink_confirm_inq(stlink_t *stl, struct sg_pt_base *ptvp) {
    struct stlink_libsg *sl = stl->backend_data;
    const int e = sl->do_scsi_pt_err;
    if (e < 0) {
        fprintf(stderr, "scsi_pt error: pass through os error: %s\n",
                safe_strerror(-e));
        return;
    } else if (e == SCSI_PT_DO_BAD_PARAMS) {
        fprintf(stderr, "scsi_pt error: bad pass through setup\n");
        return;
    } else if (e == SCSI_PT_DO_TIMEOUT) {
        fprintf(stderr, "  pass through timeout\n");
        return;
    }
    const int duration = get_scsi_pt_duration_ms(ptvp);
    if ((stl->verbose > 1) && (duration >= 0))
        DLOG("      duration=%d ms\n", duration);

    // XXX stlink fw sends broken residue, so ignore it and use the known q_len
    // "usb-storage quirks=483:3744:r"
    // forces residue to be ignored and calculated, but this causes aboard if
    // data_len = 0 and by some other data_len values.

    const int resid = get_scsi_pt_resid(ptvp);
    const int dsize = stl->q_len - resid;

    const int cat = get_scsi_pt_result_category(ptvp);
    char buf[512];
    unsigned int slen;

    switch (cat) {
        case SCSI_PT_RESULT_GOOD:
            if (stl->verbose && (resid > 0))
                DLOG("      notice: requested %d bytes but "
                    "got %d bytes, ignore [broken] residue = %d\n",
                    stl->q_len, dsize, resid);
            break;
        case SCSI_PT_RESULT_STATUS:
            if (stl->verbose) {
                sg_get_scsi_status_str(
                        get_scsi_pt_status_response(ptvp), sizeof (buf),
                        buf);
                DLOG("  scsi status: %s\n", buf);
            }
            return;
        case SCSI_PT_RESULT_SENSE:
            slen = get_scsi_pt_sense_len(ptvp);
            if (stl->verbose) {
                sg_get_sense_str("", sl->sense_buf, slen, (stl->verbose
                        > 1), sizeof (buf), buf);
                DLOG("%s", buf);
            }
            if (stl->verbose && (resid > 0)) {
                if ((stl->verbose) || (stl->q_len > 0))
                    DLOG("    requested %d bytes but "
                        "got %d bytes\n", stl->q_len, dsize);
            }
            return;
        case SCSI_PT_RESULT_TRANSPORT_ERR:
            if (stl->verbose) {
                get_scsi_pt_transport_err_str(ptvp, sizeof (buf), buf);
                // http://tldp.org/HOWTO/SCSI-Generic-HOWTO/x291.html
                // These codes potentially come from the firmware on a host adapter
                // or from one of several hosts that an adapter driver controls.
                // The 'host_status' field has the following values:
                //	[0x07] Internal error detected in the host adapter.
                // This may not be fatal (and the command may have succeeded).
                DLOG("  transport: %s", buf);
            }
            return;
        case SCSI_PT_RESULT_OS_ERR:
            if (stl->verbose) {
                get_scsi_pt_os_err_str(ptvp, sizeof (buf), buf);
                DLOG("  os: %s", buf);
            }
            return;
        default:
            fprintf(stderr, "  unknown pass through result "
                    "category (%d)\n", cat);
    }
}
#endif

/**
 * Just send a buffer on an endpoint, no questions asked.
 * Handles repeats, and time outs.  Also handles reading status reports and sense
 * @param handle libusb device *
 * @param endpoint_out sends 
 * @param endpoint_in used to read status reports back in 
 * @param cbuf  what to send
 * @param length how much to send
 * @return number of bytes actually sent, or -1 for failures.
 */
int send_usb_data_only(libusb_device_handle *handle, unsigned char endpoint_out,
    unsigned char endpoint_in, unsigned char *cbuf, unsigned int length) {
    int ret;
    int real_transferred;
    int try;
    do {
        DLOG("attempting tx...\n");
        ret = libusb_bulk_transfer(handle, endpoint_out, cbuf, length,
                                   &real_transferred, SG_TIMEOUT_MSEC);
        if (ret == LIBUSB_ERROR_PIPE) {
            libusb_clear_halt(handle, endpoint_out);
        }
        try++;
    } while ((ret == LIBUSB_ERROR_PIPE) && (try < 3));
    if (ret != LIBUSB_SUCCESS) {
        WLOG("sending failed: %d\n", ret);
        return -1;
    }
    DLOG("Actually sent: %d\n", real_transferred);
    
    // now, swallow up the status, so that things behave nicely...
    uint32_t received_tag;
    // -ve is for my errors, 0 is good, +ve is libusb sense status bytes
    int status = get_usb_mass_storage_status(handle, endpoint_in, &received_tag);
    if (status < 0) {
        WLOG("receiving status failed: %d\n", status);
        return -1;
    }
    if (status != 0) {
        WLOG("receiving status not passed :(: %02x\n", status);
    }
    if (status == 1) {
        get_sense(handle, endpoint_in, endpoint_out);
        return -1;
    }
    
    return real_transferred;
}


int stlink_q(stlink_t *sl) {
    struct stlink_libsg* sg = sl->backend_data;
    //uint8_t cdb_len = 6;  // FIXME varies!!!
    uint8_t cdb_len = 10;  // FIXME varies!!!
    uint8_t lun = 0;  // always zero...
    uint32_t tag = send_usb_mass_storage_command(sg->usb_handle, sg->ep_req, 
        sg->cdb_cmd_blk, cdb_len, lun, LIBUSB_ENDPOINT_IN, sl->q_len);
    
    
    // now wait for our response...
    // length copied from stlink-usb...
    int rx_length = sl->q_len;
    int try = 0;
    int real_transferred;
    int ret;
    if (rx_length > 0) {
        do {
            DLOG("attempting rx\n");
            ret = libusb_bulk_transfer(sg->usb_handle, sg->ep_rep, sl->q_buf, rx_length, 
                &real_transferred, SG_TIMEOUT_MSEC);
            if (ret == LIBUSB_ERROR_PIPE) {
                libusb_clear_halt(sg->usb_handle, sg->ep_req);
            }
            try++;
        } while ((ret == LIBUSB_ERROR_PIPE) && (try < 3));

        if (ret != LIBUSB_SUCCESS) {
            WLOG("Receiving failed: %d\n", ret);
            return -1;
        }

        if (real_transferred != rx_length) {
            WLOG("received unexpected amount: %d != %d\n", real_transferred, rx_length);
        }
    }

    uint32_t received_tag;
    // -ve is for my errors, 0 is good, +ve is libusb sense status bytes
    int status = get_usb_mass_storage_status(sg->usb_handle, sg->ep_rep, &received_tag);
    if (status < 0) {
        WLOG("receiving status failed: %d\n", status);
        return -1;
    }
    if (status != 0) {
        WLOG("receiving status not passed :(: %02x\n", status);
    }
    if (status == 1) {
        get_sense(sg->usb_handle, sg->ep_rep, sg->ep_req);
        return -1;
    }
    if (received_tag != tag) {
        WLOG("received tag %d but expected %d\n", received_tag, tag);
        //return -1;
    }
    if (rx_length > 0 && real_transferred != rx_length) {
        return -1;
    }
    return 0;

        
    DLOG("Actually received: %d\n", real_transferred);

#if FINISHED_WITH_SG
    // Get control command descriptor of scsi structure,
    // (one object per command!!)
    struct sg_pt_base *ptvp = construct_scsi_pt_obj();
    if (NULL == ptvp) {
        fprintf(stderr, "construct_scsi_pt_obj: out of memory\n");
        return;
    }

    set_scsi_pt_cdb(ptvp, sg->cdb_cmd_blk, sizeof (sg->cdb_cmd_blk));

    // set buffer for sense (error information) data
    set_scsi_pt_sense(ptvp, sg->sense_buf, sizeof (sg->sense_buf));

    // Set a buffer to be used for data transferred from device
    if (sg->q_data_dir == Q_DATA_IN) {
        //clear_buf(sl);
        set_scsi_pt_data_in(ptvp, sl->q_buf, sl->q_len);
    } else {
        set_scsi_pt_data_out(ptvp, sl->q_buf, sl->q_len);
    }
    // Executes SCSI command (or at least forwards it to lower layers).
    sg->do_scsi_pt_err = do_scsi_pt(ptvp, sg->sg_fd, SG_TIMEOUT_SEC,
            sl->verbose);

    // check for scsi errors
    stlink_confirm_inq(sl, ptvp);
    // TODO recycle: clear_scsi_pt_obj(struct sg_pt_base * objp);
    destruct_scsi_pt_obj(ptvp);
#endif
}

// TODO thinking, cleanup

void stlink_stat(stlink_t *stl, char *txt) {
    if (stl->q_len <= 0)
        return;

    stlink_print_data(stl);

    switch (stl->q_buf[0]) {
        case STLINK_OK:
            DLOG("  %s: ok\n", txt);
            return;
        case STLINK_FALSE:
            DLOG("  %s: false\n", txt);
            return;
        default:
            DLOG("  %s: unknown\n", txt);
    }
}


void _stlink_sg_version(stlink_t *stl) {
    struct stlink_libsg *sl = stl->backend_data;
    DLOG("\n*** stlink_version ***\n");
    clear_cdb(sl);
    sl->cdb_cmd_blk[0] = STLINK_GET_VERSION;
    stl->q_len = 6;
    sl->q_addr = 0;
    stlink_q(stl);
    // HACK use my own private version right now...
    
}

// Get stlink mode:
// STLINK_DEV_DFU_MODE || STLINK_DEV_MASS_MODE || STLINK_DEV_DEBUG_MODE
// usb dfu             || usb mass             || jtag or swd

int _stlink_sg_current_mode(stlink_t *stl) {
    struct stlink_libsg *sl = stl->backend_data;
    clear_cdb(sl);
    sl->cdb_cmd_blk[0] = STLINK_GET_CURRENT_MODE;
    stl->q_len = 2;
    sl->q_addr = 0;
    stlink_q(stl);
    return stl->q_buf[0];
}

// Exit the mass mode and enter the swd debug mode.

void _stlink_sg_enter_swd_mode(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_ENTER;
    sg->cdb_cmd_blk[2] = STLINK_DEBUG_ENTER_SWD;
    sl->q_len = 0; // >0 -> aboard
    stlink_q(sl);
}

// Exit the mass mode and enter the jtag debug mode.
// (jtag is disabled in the discovery's stlink firmware)

void _stlink_sg_enter_jtag_mode(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_enter_jtag_mode ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_ENTER;
    sg->cdb_cmd_blk[2] = STLINK_DEBUG_ENTER_JTAG;
    sl->q_len = 0;
    stlink_q(sl);
}

// XXX kernel driver performs reset, the device temporally disappears

void _stlink_sg_exit_dfu_mode(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_exit_dfu_mode ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[0] = STLINK_DFU_COMMAND;
    sg->cdb_cmd_blk[1] = STLINK_DFU_EXIT;
    sl->q_len = 0; // ??
    stlink_q(sl);
    /*
     [135121.844564] sd 19:0:0:0: [sdb] Unhandled error code
     [135121.844569] sd 19:0:0:0: [sdb] Result: hostbyte=DID_ERROR driverbyte=DRIVER_OK
     [135121.844574] sd 19:0:0:0: [sdb] CDB: Read(10): 28 00 00 00 10 00 00 00 08 00
     [135121.844584] end_request: I/O error, dev sdb, sector 4096
     [135121.844590] Buffer I/O error on device sdb, logical block 512
     [135130.122567] usb 6-1: reset full speed USB device using uhci_hcd and address 7
     [135130.274551] usb 6-1: device firmware changed
     [135130.274618] usb 6-1: USB disconnect, address 7
     [135130.275186] VFS: busy inodes on changed media or resized disk sdb
     [135130.275424] VFS: busy inodes on changed media or resized disk sdb
     [135130.286758] VFS: busy inodes on changed media or resized disk sdb
     [135130.292796] VFS: busy inodes on changed media or resized disk sdb
     [135130.301481] VFS: busy inodes on changed media or resized disk sdb
     [135130.304316] VFS: busy inodes on changed media or resized disk sdb
     [135130.431113] usb 6-1: new full speed USB device using uhci_hcd and address 8
     [135130.629444] usb-storage 6-1:1.0: Quirks match for vid 0483 pid 3744: 102a1
     [135130.629492] scsi20 : usb-storage 6-1:1.0
     [135131.625600] scsi 20:0:0:0: Direct-Access     STM32                          PQ: 0 ANSI: 0
     [135131.627010] sd 20:0:0:0: Attached scsi generic sg2 type 0
     [135131.633603] sd 20:0:0:0: [sdb] 64000 512-byte logical blocks: (32.7 MB/31.2 MiB)
     [135131.633613] sd 20:0:0:0: [sdb] Assuming Write Enabled
     [135131.633620] sd 20:0:0:0: [sdb] Assuming drive cache: write through
     [135131.640584] sd 20:0:0:0: [sdb] Assuming Write Enabled
     [135131.640592] sd 20:0:0:0: [sdb] Assuming drive cache: write through
     [135131.640609]  sdb:
     [135131.652634] sd 20:0:0:0: [sdb] Assuming Write Enabled
     [135131.652639] sd 20:0:0:0: [sdb] Assuming drive cache: write through
     [135131.652645] sd 20:0:0:0: [sdb] Attached SCSI removable disk
     [135131.671536] sd 20:0:0:0: [sdb] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE
     [135131.671548] sd 20:0:0:0: [sdb] Sense Key : Illegal Request [current]
     [135131.671553] sd 20:0:0:0: [sdb] Add. Sense: Logical block address out of range
     [135131.671560] sd 20:0:0:0: [sdb] CDB: Read(10): 28 00 00 00 f9 80 00 00 08 00
     [135131.671570] end_request: I/O error, dev sdb, sector 63872
     [135131.671575] Buffer I/O error on device sdb, logical block 7984
     [135131.678527] sd 20:0:0:0: [sdb] Result: hostbyte=DID_OK driverbyte=DRIVER_SENSE
     [135131.678532] sd 20:0:0:0: [sdb] Sense Key : Illegal Request [current]
     [135131.678537] sd 20:0:0:0: [sdb] Add. Sense: Logical block address out of range
     [135131.678542] sd 20:0:0:0: [sdb] CDB: Read(10): 28 00 00 00 f9 80 00 00 08 00
     [135131.678551] end_request: I/O error, dev sdb, sector 63872
     ...
     [135131.853565] end_request: I/O error, dev sdb, sector 4096
     */
}

void _stlink_sg_core_id(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_READCOREID;
    sl->q_len = 4;
    sg->q_addr = 0;
    stlink_q(sl);
    sl->core_id = read_uint32(sl->q_buf, 0);
}

// Arm-core reset -> halted state.

void _stlink_sg_reset(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_RESETSYS;
    sl->q_len = 2;
    sg->q_addr = 0;
    stlink_q(sl);
    stlink_stat(sl, "core reset");
}

// Arm-core status: halted or running.

void _stlink_sg_status(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_status ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_GETSTATUS;
    sl->q_len = 2;
    sg->q_addr = 0;
    stlink_q(sl);
}

// Force the core into the debug mode -> halted state.

void _stlink_sg_force_debug(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_force_debug ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_FORCEDEBUG;
    sl->q_len = 2;
    sg->q_addr = 0;
    stlink_q(sl);
    stlink_stat(sl, "force debug");
}

// Read all arm-core registers.

void _stlink_sg_read_all_regs(stlink_t *sl, reg *regp) {
    struct stlink_libsg *sg = sl->backend_data;

    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_READALLREGS;
    sl->q_len = 84;
    sg->q_addr = 0;
    stlink_q(sl);
    stlink_print_data(sl);

    // TODO - most of this should be re-extracted up....
    
    // 0-3 | 4-7 | ... | 60-63 | 64-67 | 68-71   | 72-75      | 76-79 | 80-83
    // r0  | r1  | ... | r15   | xpsr  | main_sp | process_sp | rw    | rw2
    for (int i = 0; i < 16; i++) {
        regp->r[i] = read_uint32(sl->q_buf, 4 * i);
        if (sl->verbose > 1)
            DLOG("r%2d = 0x%08x\n", i, regp->r[i]);
    }
    regp->xpsr = read_uint32(sl->q_buf, 64);
    regp->main_sp = read_uint32(sl->q_buf, 68);
    regp->process_sp = read_uint32(sl->q_buf, 72);
    regp->rw = read_uint32(sl->q_buf, 76);
    regp->rw2 = read_uint32(sl->q_buf, 80);
    if (sl->verbose < 2)
        return;

    DLOG("xpsr       = 0x%08x\n", regp->xpsr);
    DLOG("main_sp    = 0x%08x\n", regp->main_sp);
    DLOG("process_sp = 0x%08x\n", regp->process_sp);
    DLOG("rw         = 0x%08x\n", regp->rw);
    DLOG("rw2        = 0x%08x\n", regp->rw2);
}

// Read an arm-core register, the index must be in the range 0..20.
//  0  |  1  | ... |  15   |  16   |   17    |   18       |  19   |  20
// r0  | r1  | ... | r15   | xpsr  | main_sp | process_sp | rw    | rw2

void _stlink_sg_read_reg(stlink_t *sl, int r_idx, reg *regp) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_READREG;
    sg->cdb_cmd_blk[2] = r_idx;
    sl->q_len = 4;
    sg->q_addr = 0;
    stlink_q(sl);
    //  0  |  1  | ... |  15   |  16   |   17    |   18       |  19   |  20
    // 0-3 | 4-7 | ... | 60-63 | 64-67 | 68-71   | 72-75      | 76-79 | 80-83
    // r0  | r1  | ... | r15   | xpsr  | main_sp | process_sp | rw    | rw2
    stlink_print_data(sl);

    uint32_t r = read_uint32(sl->q_buf, 0);
    DLOG("r_idx (%2d) = 0x%08x\n", r_idx, r);

    switch (r_idx) {
        case 16:
            regp->xpsr = r;
            break;
        case 17:
            regp->main_sp = r;
            break;
        case 18:
            regp->process_sp = r;
            break;
        case 19:
            regp->rw = r; //XXX ?(primask, basemask etc.)
            break;
        case 20:
            regp->rw2 = r; //XXX ?(primask, basemask etc.)
            break;
        default:
            regp->r[r_idx] = r;
    }
}

// Write an arm-core register. Index:
//  0  |  1  | ... |  15   |  16   |   17    |   18       |  19   |  20
// r0  | r1  | ... | r15   | xpsr  | main_sp | process_sp | rw    | rw2

void _stlink_sg_write_reg(stlink_t *sl, uint32_t reg, int idx) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_WRITEREG;
    //   2: reg index
    // 3-6: reg content
    sg->cdb_cmd_blk[2] = idx;
    write_uint32(sg->cdb_cmd_blk + 3, reg);
    sl->q_len = 2;
    sg->q_addr = 0;
    stlink_q(sl);
    stlink_stat(sl, "write reg");
}

// Write a register of the debug module of the core.
// XXX ?(atomic writes)
// TODO test

void stlink_write_dreg(stlink_t *sl, uint32_t reg, uint32_t addr) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_write_dreg ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_WRITEDEBUGREG;
    // 2-5: address of reg of the debug module
    // 6-9: reg content
    write_uint32(sg->cdb_cmd_blk + 2, addr);
    write_uint32(sg->cdb_cmd_blk + 6, reg);
    sl->q_len = 2;
    sg->q_addr = addr;
    stlink_q(sl);
    stlink_stat(sl, "write debug reg");
}

// Force the core exit the debug mode.

void _stlink_sg_run(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_run ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_RUNCORE;
    sl->q_len = 2;
    sg->q_addr = 0;
    stlink_q(sl);
    stlink_stat(sl, "run core");
}

// Step the arm-core.

void _stlink_sg_step(stlink_t *sl) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_STEPCORE;
    sl->q_len = 2;
    sg->q_addr = 0;
    stlink_q(sl);
    stlink_stat(sl, "step core");
}

// TODO test
// see Cortex-M3 Technical Reference Manual
// TODO make delegate!
void stlink_set_hw_bp(stlink_t *sl, int fp_nr, uint32_t addr, int fp) {
    DLOG("\n*** stlink_set_hw_bp ***\n");
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_SETFP;
    // 2:The number of the flash patch used to set the breakpoint
    // 3-6: Address of the breakpoint (LSB)
    // 7: FP_ALL (0x02) / FP_UPPER (0x01) / FP_LOWER (0x00)
    sl->q_buf[2] = fp_nr;
    write_uint32(sl->q_buf, addr);
    sl->q_buf[7] = fp;

    sl->q_len = 2;
    stlink_q(sl);
    stlink_stat(sl, "set flash breakpoint");
}

// TODO test

// TODO make delegate!
void stlink_clr_hw_bp(stlink_t *sl, int fp_nr) {
    struct stlink_libsg *sg = sl->backend_data;
    DLOG("\n*** stlink_clr_hw_bp ***\n");
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_CLEARFP;
    sg->cdb_cmd_blk[2] = fp_nr;

    sl->q_len = 2;
    stlink_q(sl);
    stlink_stat(sl, "clear flash breakpoint");
}

// Read a "len" bytes to the sl->q_buf from the memory, max 6kB (6144 bytes)

void _stlink_sg_read_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_READMEM_32BIT;
    // 2-5: addr
    // 6-7: len
    write_uint32(sg->cdb_cmd_blk + 2, addr);
    write_uint16(sg->cdb_cmd_blk + 6, len);

    // data_in 0-0x40-len
    // !!! len _and_ q_len must be max 6k,
    //     i.e. >1024 * 6 = 6144 -> aboard)
    // !!! if len < q_len: 64*k, 1024*n, n=1..5  -> aboard
    //     (broken residue issue)
    sl->q_len = len;
    sg->q_addr = addr;
    stlink_q(sl);
    stlink_print_data(sl);
}

// Write a "len" bytes from the sl->q_buf to the memory, max 64 Bytes.

void _stlink_sg_write_mem8(stlink_t *sl, uint32_t addr, uint16_t len) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_WRITEMEM_8BIT;
    // 2-5: addr
    // 6-7: len (>0x40 (64) -> aboard)
    write_uint32(sg->cdb_cmd_blk + 2, addr);
    write_uint16(sg->cdb_cmd_blk + 6, len);

    // this sends the command...
    send_usb_mass_storage_command(sg->usb_handle, sg->ep_req, sg->cdb_cmd_blk, CDB_SL, 0, 0, 0);
    // This sends the data...
    send_usb_data_only(sg->usb_handle, sg->ep_req, sg->ep_rep, sl->q_buf, len);
    stlink_print_data(sl);
}

// Write a "len" bytes from the sl->q_buf to the memory, max Q_BUF_LEN bytes.

void _stlink_sg_write_mem32(stlink_t *sl, uint32_t addr, uint16_t len) {
    struct stlink_libsg *sg = sl->backend_data;
    clear_cdb(sg);
    sg->cdb_cmd_blk[1] = STLINK_DEBUG_WRITEMEM_32BIT;
    // 2-5: addr
    // 6-7: len "unlimited"
    write_uint32(sg->cdb_cmd_blk + 2, addr);
    write_uint16(sg->cdb_cmd_blk + 6, len);

    // this sends the command...
    send_usb_mass_storage_command(sg->usb_handle, sg->ep_req, sg->cdb_cmd_blk, CDB_SL, 0, 0, 0);
    // This sends the data...
    send_usb_data_only(sg->usb_handle, sg->ep_req, sg->ep_rep, sl->q_buf, len);

    stlink_print_data(sl);
}

#if 0 /* not working */

static int write_flash_mem16
(struct stlink* sl, uint32_t addr, uint16_t val) {
    /* half word writes */
    if (addr % 2) return -1;

    /* unlock if locked */
    unlock_flash_if(sl);

    /* set flash programming chosen bit */
    set_flash_cr_pg(sl);

    write_uint16(sl->q_buf, val);
    stlink_write_mem16(sl, addr, 2);

    /* wait for non business */
    wait_flash_busy(sl);

    lock_flash(sl);

    /* check the programmed value back */
    stlink_read_mem16(sl, addr, 2);
    if (*(const uint16_t*) sl->q_buf != val) {
        /* values differ at i * sizeof(uint16_t) */
        return -1;
    }

    /* success */
    return 0;
}
#endif /* not working */

// Exit the jtag or swd mode and enter the mass mode.

void _stlink_sg_exit_debug_mode(stlink_t *stl) {

    if (stl) {
        struct stlink_libsg* sl = stl->backend_data;
        clear_cdb(sl);
        sl->cdb_cmd_blk[1] = STLINK_DEBUG_EXIT;
        stl->q_len = 0; // >0 -> aboard
        stlink_q(stl);
    }
}


// 1) open a sg device, switch the stlink from dfu to mass mode
// 2) wait 5s until the kernel driver stops reseting the broken device
// 3) reopen the device
// 4) the device driver is now ready for a switch to jtag/swd mode
// TODO thinking, better error handling, wait until the kernel driver stops reseting the plugged-in device

stlink_backend_t _stlink_sg_backend = {
    _stlink_sg_close,
    _stlink_sg_exit_debug_mode,
    _stlink_sg_enter_swd_mode,
    _stlink_sg_enter_jtag_mode,
    _stlink_sg_exit_dfu_mode,
    _stlink_sg_core_id,
    _stlink_sg_reset,
    _stlink_sg_run,
    _stlink_sg_status,
    _stlink_sg_version,
    _stlink_sg_read_mem32,
    _stlink_sg_write_mem32,
    _stlink_sg_write_mem8,
    _stlink_sg_read_all_regs,
    _stlink_sg_read_reg,
    _stlink_sg_write_reg,
    _stlink_sg_step,
    _stlink_sg_current_mode,
    _stlink_sg_force_debug
};

static stlink_t* stlink_open(const int verbose) {
    
    stlink_t *sl = malloc(sizeof (stlink_t));
    memset(sl, 0, sizeof(stlink_t));
    struct stlink_libsg *slsg = malloc(sizeof (struct stlink_libsg));
    if (sl == NULL || slsg == NULL) {
        WLOG("Couldn't malloc stlink and stlink_sg structures out of memory!\n");
        return NULL;
    }
    
    if (libusb_init(&(slsg->libusb_ctx))) {
        WLOG("failed to init libusb context, wrong version of libraries?\n");
        free(sl);
        free(slsg);
        return NULL;
    }
    
    libusb_set_debug(slsg->libusb_ctx, 3);
    
    slsg->usb_handle = libusb_open_device_with_vid_pid(slsg->libusb_ctx, USB_ST_VID, USB_STLINK_PID);
    if (slsg->usb_handle == NULL) {
        WLOG("Failed to find an stlink v1 by VID:PID\n");
        libusb_close(slsg->usb_handle);
        free(sl);
        free(slsg);
        return NULL;
    }
    
    // TODO 
    // Could read the interface config descriptor, and assert lots of the assumptions
    
    // assumption: numInterfaces is always 1...
    if (libusb_kernel_driver_active(slsg->usb_handle, 0) == 1) {
        int r = libusb_detach_kernel_driver(slsg->usb_handle, 0);
        if (r < 0) {
            WLOG("libusb_detach_kernel_driver(() error %s\n", strerror(-r));
            libusb_close(slsg->usb_handle);
            free(sl);
            free(slsg);
            return NULL;
        }
        DLOG("Kernel driver was successfully detached\n");
    }

    int config;
    if (libusb_get_configuration(slsg->usb_handle, &config)) {
        /* this may fail for a previous configured device */
        WLOG("libusb_get_configuration()\n");
        libusb_close(slsg->usb_handle);
        free(sl);
        free(slsg);
        return NULL;

    }
    
    // assumption: bConfigurationValue is always 1
    if (config != 1) {
        WLOG("Your stlink got into a real weird configuration, trying to fix it!\n");
        DLOG("setting new configuration (%d -> 1)\n", config);
        if (libusb_set_configuration(slsg->usb_handle, 1)) {
            /* this may fail for a previous configured device */
            WLOG("libusb_set_configuration() failed\n");
            libusb_close(slsg->usb_handle);
            free(sl);
            free(slsg);
            return NULL;
        }
    }

    if (libusb_claim_interface(slsg->usb_handle, 0)) {
        WLOG("libusb_claim_interface() failed\n");
        libusb_close(slsg->usb_handle);
        free(sl);
        free(slsg);
        return NULL;
    }

    // assumption: endpoint config is fixed mang. really.
    slsg->ep_rep = 1 /* ep rep */ | LIBUSB_ENDPOINT_IN;
    slsg->ep_req = 2 /* ep req */ | LIBUSB_ENDPOINT_OUT;
    
    DLOG("Successfully opened stlinkv1 by libusb :)\n");
    
    sl->verbose = verbose;
    sl->backend_data = slsg;
    sl->backend = &_stlink_sg_backend;

    sl->core_stat = STLINK_CORE_STAT_UNKNOWN;
    slsg->q_addr = 0;

    /* flash memory settings */
    sl->flash_base = STM32_FLASH_BASE;
    sl->flash_size = STM32_FLASH_SIZE;
    sl->flash_pgsz = STM32_FLASH_PGSZ;

    /* system memory */
    sl->sys_base = STM32_SYSTEM_BASE;
    sl->sys_size = STM32_SYSTEM_SIZE;

    /* sram memory settings */
    sl->sram_base = STM32_SRAM_BASE;
    sl->sram_size = STM32_SRAM_SIZE;

    return sl;
}



stlink_t* stlink_v1_open(const int verbose) {
    ugly_init(verbose);
    stlink_t *sl = stlink_open(verbose);
    if (sl == NULL) {
        fputs("Error: could not open stlink device\n", stderr);
        return NULL;
    }

    stlink_version(sl);

    if ((sl->version.st_vid != USB_ST_VID) || (sl->version.stlink_pid != USB_STLINK_PID)) {
        ugly_log(UERROR, LOG_TAG, 
            "WTF? successfully opened, but unable to read version details. BROKEN!\n");
        return NULL;
    }

    DLOG("Reading current mode...\n");
    switch (stlink_current_mode(sl)) {
        case STLINK_DEV_MASS_MODE:
            return sl;
        case STLINK_DEV_DEBUG_MODE:
            // TODO go to mass?
            return sl;
    }

    DLOG("Attempting to exit DFU mode\n");
    _stlink_sg_exit_dfu_mode(sl);
    
    // exit the dfu mode -> the device is gone
    DLOG("\n*** reopen the stlink device ***\n");
    delay(1000);
    stlink_close(sl);
    delay(5000);

    DLOG("Attempting to reopen the stlink...\n");
    sl = stlink_open(verbose);
    if (sl == NULL) {
        fputs("Error: could not open stlink device\n", stderr);
        return NULL;
    }
    // re-query device info
    stlink_version(sl);
    return sl;
}