Ejemplo n.º 1
0
gf_t* galois_init_field(int w,
                        int mult_type,
                        int region_type,
                        int divide_type,
                        uint64_t prim_poly,
                        int arg1,
                        int arg2)
{
  int scratch_size;
  void *scratch_memory;
  gf_t *gfp;

  if (w <= 0 || w > 32) {
    fprintf(stderr, "ERROR -- cannot init default Galois field for w=%d\n", w);
    abort();
  }

  gfp = (gf_t *) malloc(sizeof(gf_t));
  if (!gfp) {
    fprintf(stderr, "ERROR -- cannot allocate memory for Galois field w=%d\n", w);
    abort();
  }

  scratch_size = gf_scratch_size(w, mult_type, region_type, divide_type, arg1, arg2);
  if (!scratch_size) {
    fprintf(stderr, "ERROR -- cannot get scratch size for base field w=%d\n", w);
    abort();
  }

  scratch_memory = malloc(scratch_size);
  if (!scratch_memory) {
    fprintf(stderr, "ERROR -- cannot get scratch memory for base field w=%d\n", w);
    abort();
  }

  if(!gf_init_hard(gfp,
                   w, 
                   mult_type, 
                   region_type, 
                   divide_type, 
                   prim_poly, 
                   arg1, 
                   arg2, 
                   NULL, 
                   scratch_memory))
  {
    fprintf(stderr, "ERROR -- cannot init default Galois field for w=%d\n", w);
    abort();
  }

  gfp_is_composite[w] = 0;
  return gfp;
}
Ejemplo n.º 2
0
int main(int argc, char **argv)
{
  uint16_t *a, *b;
  int i, j;
  gf_t gf;

  if (gf_init_hard(&gf, 16, GF_MULT_SPLIT_TABLE, GF_REGION_ALTMAP, GF_DIVIDE_DEFAULT, 
                   0, 16, 4, NULL, NULL) == 0) {
    fprintf(stderr, "gf_init_hard failed\n");
    exit(1);
  }

  a = (uint16_t *) malloc(200);
  b = (uint16_t *) malloc(200);

  a += 6;
  b += 6;

  MOA_Seed(0);

  for (i = 0; i < 30; i++) a[i] = MOA_Random_W(16, 1);

  gf.multiply_region.w32(&gf, a, b, 0x1234, 30*2, 0);

  printf("a: 0x%lx    b: 0x%lx\n", (unsigned long) a, (unsigned long) b);

  for (i = 0; i < 30; i += 10) {
    printf("\n");
    printf("  ");
    for (j = 0; j < 10; j++) printf(" %4d", i+j);
    printf("\n");

    printf("a:");
    for (j = 0; j < 10; j++) printf(" %04x", a[i+j]);
    printf("\n");

    printf("b:");
    for (j = 0; j < 10; j++) printf(" %04x", b[i+j]);
    printf("\n");
    printf("\n");
  }

  for (i = 0; i < 15; i ++) {
    printf("Word %2d: 0x%04x * 0x1234 = 0x%04x    ", i,
           gf.extract_word.w32(&gf, a, 30*2, i),
           gf.extract_word.w32(&gf, b, 30*2, i));
    printf("Word %2d: 0x%04x * 0x1234 = 0x%04x\n", i+15,
           gf.extract_word.w32(&gf, a, 30*2, i+15),
           gf.extract_word.w32(&gf, b, 30*2, i+15));
  }
  return 0;
}
Ejemplo n.º 3
0
gf_t* galois_init_composite_field(int w,
                                int region_type,
                                int divide_type,
                                int degree,
                                gf_t* base_gf)
{
  int scratch_size;
  void *scratch_memory;
  gf_t *gfp;
  
  if (w <= 0 || w > 32) {
    fprintf(stderr, "ERROR -- cannot init composite field for w=%d\n", w);
    abort();
  }
  
  gfp = (gf_t *) malloc(sizeof(gf_t));
  if (!gfp) {
    fprintf(stderr, "ERROR -- cannot allocate memory for Galois field w=%d\n", w);
    abort();
  }

  scratch_size = gf_scratch_size(w, GF_MULT_COMPOSITE, region_type, divide_type, degree, 0);
  if (!scratch_size) {
    fprintf(stderr, "ERROR -- cannot get scratch size for composite field w=%d\n", w);
    abort();
  }

  scratch_memory = malloc(scratch_size);
  if (!scratch_memory) {
    fprintf(stderr, "ERROR -- cannot get scratch memory for composite field w=%d\n", w);
    abort();
  }

  if(!gf_init_hard(gfp,
                   w,
                   GF_MULT_COMPOSITE,
                   region_type,
                   divide_type,
                   0, 
                   degree, 
                   0, 
                   base_gf,
                   scratch_memory))
  {
    fprintf(stderr, "ERROR -- cannot init default composite field for w=%d\n", w);
    abort();
  }
  gfp_is_composite[w] = 1;
  return gfp;
}
Ejemplo n.º 4
0
int main(int argc, char **argv)
{
  signal(SIGSEGV, SigHandler);

  int w, i, verbose, single, region, tested, top;
  int s_start, d_start, bytes, xor, alignment_test;
  gf_t   gf, gf_def;
  time_t t0;
  gf_internal_t *h;
  gf_general_t *a, *b, *c, *d, *ai, *bi;
  uint8_t a8, b8, c8, *mult4, *div4, *mult8, *div8;
  uint16_t a16, b16, c16, d16, *log16, *alog16;
  char as[50], bs[50], cs[50], ds[50], ais[50], bis[50];
  uint32_t mask;
  char *ra, *rb, *rc, *rd, *target;
  int align;


  if (argc < 4) usage(NULL);

  if (sscanf(argv[1], "%d", &w) == 0){
    usage("Bad w\n");
  }

  if (sscanf(argv[3], "%ld", &t0) == 0) usage("Bad seed\n");
  if (t0 == -1) t0 = time(0);
  MOA_Seed(t0);

  if (w > 32 && w != 64 && w != 128) usage("Bad w");
  
  if (create_gf_from_argv(&gf, w, argc, argv, 4) == 0) usage(BM);
  printf("Size (bytes): %d\n", gf_size(&gf));

  for (i = 0; i < strlen(argv[2]); i++) {
    if (strchr("ASRV", argv[2][i]) == NULL) usage("Bad test\n");
  }

  h = (gf_internal_t *) gf.scratch;
  a = (gf_general_t *) malloc(sizeof(gf_general_t));
  b = (gf_general_t *) malloc(sizeof(gf_general_t));
  c = (gf_general_t *) malloc(sizeof(gf_general_t));
  d = (gf_general_t *) malloc(sizeof(gf_general_t));
  ai = (gf_general_t *) malloc(sizeof(gf_general_t));
  bi = (gf_general_t *) malloc(sizeof(gf_general_t));

  //15 bytes extra to make sure it's 16byte aligned
  ra = (char *) malloc(sizeof(char)*REGION_SIZE+15);
  rb = (char *) malloc(sizeof(char)*REGION_SIZE+15);
  rc = (char *) malloc(sizeof(char)*REGION_SIZE+15);
  rd = (char *) malloc(sizeof(char)*REGION_SIZE+15);

  //this still assumes 8 byte aligned pointer from malloc
  //(which is usual on 32-bit machines)
  ra += (uint64_t)ra & 0xf;
  rb += (uint64_t)rb & 0xf;
  rc += (uint64_t)rc & 0xf;
  rd += (uint64_t)rd & 0xf;

  if (w <= 32) {
    mask = 0;
    for (i = 0; i < w; i++) mask |= (1 << i);
  }

  verbose = (strchr(argv[2], 'V') != NULL);
  single = (strchr(argv[2], 'S') != NULL || strchr(argv[2], 'A') != NULL);
  region = (strchr(argv[2], 'R') != NULL || strchr(argv[2], 'A') != NULL);

  if (!gf_init_hard(&gf_def, w, GF_MULT_DEFAULT, GF_REGION_DEFAULT, GF_DIVIDE_DEFAULT,
      (h->mult_type != GF_MULT_COMPOSITE) ? h->prim_poly : 0, 0, 0, NULL, NULL))
    problem("No default for this value of w");
  if (w == 4) {
    mult4 = gf_w4_get_mult_table(&gf);
    div4 = gf_w4_get_div_table(&gf);
  }

  if (w == 8) {
    mult8 = gf_w8_get_mult_table(&gf);
    div8 = gf_w8_get_div_table(&gf);
  }

  if (w == 16) {
    log16 = gf_w16_get_log_table(&gf);
    alog16 = gf_w16_get_mult_alog_table(&gf);
  }

  if (verbose) printf("Seed: %ld\n", t0);

  if (single) {
    
    if (gf.multiply.w32 == NULL) problem("No multiplication operation defined.");
    if (verbose) { printf("Testing single multiplications/divisions.\n"); fflush(stdout); }
    if (w <= 10) {
      top = (1 << w)*(1 << w);
    } else {
      top = 1024*1024;
    }
    for (i = 0; i < top; i++) {
      if (w <= 10) {
        a->w32 = i % (1 << w);
        b->w32 = (i >> w);

      //Allen: the following conditions were being run 10 times each. That didn't seem like nearly enough to
      //me for these special cases, so I converted to doing this mod stuff to easily make the number of times
      //run both larger and proportional to the total size of the run.
      } else {
        switch (i % 32)
        {
          case 0: 
            gf_general_set_zero(a, w);
            gf_general_set_random(b, w, 1);
            break;
          case 1:
            gf_general_set_random(a, w, 1);
            gf_general_set_zero(b, w);
            break;
          case 2:
            gf_general_set_one(a, w);
            gf_general_set_random(b, w, 1);
            break;
          case 3:
            gf_general_set_random(a, w, 1);
            gf_general_set_one(b, w);
            break;
          default:
            gf_general_set_random(a, w, 1);
            gf_general_set_random(b, w, 1);
        }
      }

      //Allen: the following special cases for w=64 are based on the code below for w=128.
      //These w=64 cases are based on Dr. Plank's suggestion because some of the methods for w=64
      //involve splitting it in two. I think they're less likely to give errors than the 128-bit case
      //though, because the 128 bit case is always split in two.
      //As with w=128, I'm arbitrarily deciding to do this sort of thing with a quarter of the cases
      if (w == 64) {
        switch (i % 32)
        {
          case 0: if (!gf_general_is_one(a, w)) a->w64 &= RMASK; break;
          case 1: if (!gf_general_is_one(a, w)) a->w64 &= LMASK; break;
          case 2: if (!gf_general_is_one(a, w)) a->w64 &= RMASK; if (!gf_general_is_one(b, w)) b->w64 &= RMASK; break;
          case 3: if (!gf_general_is_one(a, w)) a->w64 &= RMASK; if (!gf_general_is_one(b, w)) b->w64 &= LMASK; break;
          case 4: if (!gf_general_is_one(a, w)) a->w64 &= LMASK; if (!gf_general_is_one(b, w)) b->w64 &= RMASK; break;
          case 5: if (!gf_general_is_one(a, w)) a->w64 &= LMASK; if (!gf_general_is_one(b, w)) b->w64 &= LMASK; break;
          case 6: if (!gf_general_is_one(b, w)) b->w64 &= RMASK; break;
          case 7: if (!gf_general_is_one(b, w)) b->w64 &= LMASK; break;
        }
      }

      //Allen: for w=128, we have important special cases where one half or the other of the number is all
      //zeros. The probability of hitting such a number randomly is 1^-64, so if we don't force these cases
      //we'll probably never hit them. This could be implemented more efficiently by changing the set-random
      //function for w=128, but I think this is easier to follow.
      //I'm arbitrarily deciding to do this sort of thing with a quarter of the cases
      if (w == 128) {
        switch (i % 32)
        {
          case 0: if (!gf_general_is_one(a, w)) a->w128[0] = 0; break;
          case 1: if (!gf_general_is_one(a, w)) a->w128[1] = 0; break;
          case 2: if (!gf_general_is_one(a, w)) a->w128[0] = 0; if (!gf_general_is_one(b, w)) b->w128[0] = 0; break;
          case 3: if (!gf_general_is_one(a, w)) a->w128[0] = 0; if (!gf_general_is_one(b, w)) b->w128[1] = 0; break;
          case 4: if (!gf_general_is_one(a, w)) a->w128[1] = 0; if (!gf_general_is_one(b, w)) b->w128[0] = 0; break;
          case 5: if (!gf_general_is_one(a, w)) a->w128[1] = 0; if (!gf_general_is_one(b, w)) b->w128[1] = 0; break;
          case 6: if (!gf_general_is_one(b, w)) b->w128[0] = 0; break;
          case 7: if (!gf_general_is_one(b, w)) b->w128[1] = 0; break;
        }
      }

      tested = 0;
      gf_general_multiply(&gf, a, b, c);
      
      /* If w is 4, 8 or 16, then there are inline multiplication/division methods.  
         Test them here. */

      if (w == 4 && mult4 != NULL) {
        a8 = a->w32;
        b8 = b->w32;
        c8 = GF_W4_INLINE_MULTDIV(mult4, a8, b8);
        if (c8 != c->w32) {
          printf("Error in inline multiplication. %d * %d.  Inline = %d.  Default = %d.\n",
             a8, b8, c8, c->w32);
          exit(1);
        }
      }

      if (w == 8 && mult8 != NULL) {
        a8 = a->w32;
        b8 = b->w32;
        c8 = GF_W8_INLINE_MULTDIV(mult8, a8, b8);
        if (c8 != c->w32) {
          printf("Error in inline multiplication. %d * %d.  Inline = %d.  Default = %d.\n",
             a8, b8, c8, c->w32);
          exit(1);
        }
      }

      if (w == 16 && log16 != NULL) {
        a16 = a->w32;
        b16 = b->w32;
        c16 = GF_W16_INLINE_MULT(log16, alog16, a16, b16);
        if (c16 != c->w32) {
          printf("Error in inline multiplication. %d * %d.  Inline = %d.  Default = %d.\n",
             a16, b16, c16, c->w32);
          printf("%d %d\n", log16[a16], log16[b16]);
          top = log16[a16] + log16[b16];
          printf("%d %d\n", top, alog16[top]);
          exit(1);
        }
      }

      /* If this is not composite, then first test against the default: */

      if (h->mult_type != GF_MULT_COMPOSITE) {
        tested = 1;
        gf_general_multiply(&gf_def, a, b, d);

        if (!gf_general_are_equal(c, d, w)) {
          gf_general_val_to_s(a, w, as, 1);
          gf_general_val_to_s(b, w, bs, 1);
          gf_general_val_to_s(c, w, cs, 1);
          gf_general_val_to_s(d, w, ds, 1);
          printf("Error in single multiplication (all numbers in hex):\n\n");
          printf("  gf.multiply(gf, %s, %s) = %s\n", as, bs, cs);
          printf("  The default gf multiplier returned %s\n", ds);
          exit(1);
        }
      }

      /* Now, we also need to double-check by other means, in case the default is wanky, 
         and when we're performing composite operations. Start with 0 and 1, where we know
         what the result should be. */

      if (gf_general_is_zero(a, w) || gf_general_is_zero(b, w) || 
          gf_general_is_one(a, w)  || gf_general_is_one(b, w)) {
        tested = 1;
        if (((gf_general_is_zero(a, w) || gf_general_is_zero(b, w)) && !gf_general_is_zero(c, w)) ||
            (gf_general_is_one(a, w) && !gf_general_are_equal(b, c, w)) ||
            (gf_general_is_one(b, w) && !gf_general_are_equal(a, c, w))) {
          gf_general_val_to_s(a, w, as, 1);
          gf_general_val_to_s(b, w, bs, 1);
          gf_general_val_to_s(c, w, cs, 1);
          printf("Error in single multiplication (all numbers in hex):\n\n");
          printf("  gf.multiply(gf, %s, %s) = %s, which is clearly wrong.\n", as, bs, cs);
;
          exit(1);
        }
      }

      /* Dumb check to make sure that it's not returning numbers that are too big: */

      if (w < 32 && (c->w32 & mask) != c->w32) {
        gf_general_val_to_s(a, w, as, 1);
        gf_general_val_to_s(b, w, bs, 1);
        gf_general_val_to_s(c, w, cs, 1);
        printf("Error in single multiplication (all numbers in hex):\n\n");
        printf("  gf.multiply.w32(gf, %s, %s) = %s, which is too big.\n", as, bs, cs);
        exit(1);
      }

      /* Finally, let's check to see that multiplication and division work together */

      if (!gf_general_is_zero(a, w)) {
        gf_general_divide(&gf, c, a, d);
        if (!gf_general_are_equal(b, d, w)) {
          gf_general_val_to_s(a, w, as, 1);
          gf_general_val_to_s(b, w, bs, 1);
          gf_general_val_to_s(c, w, cs, 1);
          gf_general_val_to_s(d, w, ds, 1);
          printf("Error in single multiplication/division (all numbers in hex):\n\n");
          printf("  gf.multiply(gf, %s, %s) = %s, but gf.divide(gf, %s, %s) = %s\n", as, bs, cs, cs, as, ds);
          exit(1);
        }
      }

    }