bool divmod_test() { galois::GaloisFieldPolynomial gfp1(&gf,9,gfe); galois::GaloisFieldPolynomial gfp2(&gf,5,gfe2); galois::GaloisFieldPolynomial gfp3(&gf,4,gfe3); galois::GaloisFieldPolynomial gfp4(&gf,0); gfp4 = (gfp1 * gfp2) + gfp3; if( (gfp4 % gfp1 != gfp3) || (gfp4 % gfp2 != gfp3) ) { std::cout << "Div-Mod ERROR!" << std::endl; std::cout << "gfp1(x) " << gfp1 << std::endl; std::cout << "gfp2(x) " << gfp2 << std::endl; std::cout << "gfp3(x) " << gfp3 << std::endl; std::cout << "gfp4(x) " << gfp3 << std::endl; return false; } return true; }
void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits) { CRYPTOPP_ASSERT(qbits > 9); // no primes exist for pbits = 10, qbits = 9 CRYPTOPP_ASSERT(pbits > qbits); const Integer minQ = Integer::Power2(qbits - 1); const Integer maxQ = Integer::Power2(qbits) - 1; const Integer minP = Integer::Power2(pbits - 1); const Integer maxP = Integer::Power2(pbits) - 1; top: Integer r1, r2; do { (void)q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12); // Solution always exists because q === 7 mod 12. (void)SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q); // I believe k_i, r1 and r2 are being used slightly different than the // paper's algorithm. I believe it is leading to the failed asserts. // Just make the assert part of the condition. if(!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit() ? r1 : r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3 * q)) { continue; } } while (((p % 3U) != 2) || (((p.Squared() - p + 1) % q).NotZero())); // CRYPTOPP_ASSERT((p % 3U) == 2); // CRYPTOPP_ASSERT(((p.Squared() - p + 1) % q).IsZero()); GFP2_ONB<ModularArithmetic> gfp2(p); GFP2Element three = gfp2.ConvertIn(3), t; while (true) { g.c1.Randomize(rng, Integer::Zero(), p-1); g.c2.Randomize(rng, Integer::Zero(), p-1); t = XTR_Exponentiate(g, p+1, p); if (t.c1 == t.c2) continue; g = XTR_Exponentiate(g, (p.Squared()-p+1)/q, p); if (g != three) break; } if (XTR_Exponentiate(g, q, p) != three) goto top; // CRYPTOPP_ASSERT(XTR_Exponentiate(g, q, p) == three); }
bool mod_zmodetest() { galois::GaloisFieldPolynomial gfp1(&gf,9,gfe); galois::GaloisFieldPolynomial gfp2(&gf,2,gfez); // p(x) = x^2 if((gfp1 % gfp2) != (gfp1 % 2)) { std::cout << "Mod-ZMod ERROR!" << std::endl; std::cout << "gfp1(x) " << gfp1 << std::endl; std::cout << "gfp2(x) " << gfp2 << std::endl; return false; } return true; }
bool XTR_DH::Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey) const { GFP2Element w(otherPublicKey, PublicKeyLength()); if (validateOtherPublicKey) { GFP2_ONB<ModularArithmetic> gfp2(m_p); GFP2Element three = gfp2.ConvertIn(3); if (w.c1.IsNegative() || w.c2.IsNegative() || w.c1 >= m_p || w.c2 >= m_p || w == three) return false; if (XTR_Exponentiate(w, m_q, m_p) != three) return false; } Integer s(privateKey, PrivateKeyLength()); GFP2Element z = XTR_Exponentiate(w, s, m_p); z.Encode(agreedValue, AgreedValueLength()); return true; }
GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p) { unsigned int bitCount = e.BitCount(); if (bitCount == 0) return GFP2Element(-3, -3); // find the lowest bit of e that is 1 unsigned int lowest1bit; for (lowest1bit=0; e.GetBit(lowest1bit) == 0; lowest1bit++) {} GFP2_ONB<MontgomeryRepresentation> gfp2(p); GFP2Element c = gfp2.ConvertIn(b); GFP2Element cp = gfp2.PthPower(c); GFP2Element S[5] = {gfp2.ConvertIn(3), c, gfp2.SpecialOperation1(c)}; // do all exponents bits except the lowest zeros starting from the top unsigned int i; for (i = e.BitCount() - 1; i>lowest1bit; i--) { if (e.GetBit(i)) { gfp2.RaiseToPthPower(S[0]); gfp2.Accumulate(S[0], gfp2.SpecialOperation2(S[2], c, S[1])); S[1] = gfp2.SpecialOperation1(S[1]); S[2] = gfp2.SpecialOperation1(S[2]); S[0].swap(S[1]); } else { gfp2.RaiseToPthPower(S[2]); gfp2.Accumulate(S[2], gfp2.SpecialOperation2(S[0], cp, S[1])); S[1] = gfp2.SpecialOperation1(S[1]); S[0] = gfp2.SpecialOperation1(S[0]); S[2].swap(S[1]); } } // now do the lowest zeros while (i--) S[1] = gfp2.SpecialOperation1(S[1]); return gfp2.ConvertOut(S[1]); }
bool shiftleft_test() { galois::GaloisFieldPolynomial gfp1(&gf,9,gfe); galois::GaloisFieldPolynomial gfp2(&gf,0); gfp2 = gfp1 << 10; gfp2 = gfp2 >> 10; if(gfp2 != gfp1) { std::cout << "Shift Left ERROR!" << std::endl; std::cout << "gfp1(x) " << gfp1 << std::endl; std::cout << "gfp2(x) " << gfp2 << std::endl; return false; } return true; }
bool addsub_test() { galois::GaloisFieldPolynomial gfp1(&gf,9,gfe); galois::GaloisFieldPolynomial gfp2(&gf,5,gfe2); galois::GaloisFieldPolynomial gfp3(&gf,0); gfp3 = gfp1 + gfp2; gfp3 = gfp3 - gfp2; if (gfp1 != gfp3) { std::cout << "Add-Sub ERROR!" << std::endl; std::cout << "gfp1(x) " << gfp1 << std::endl; std::cout << "gfp2(x) " << gfp2 << std::endl; std::cout << "gfp3(x) " << gfp3 << std::endl; return false; } return true; }
bool muldiv_test() { galois::GaloisFieldPolynomial gfp1(&gf,9,gfe); galois::GaloisFieldPolynomial gfp2(&gf,5,gfe2); galois::GaloisFieldPolynomial gfp3(&gf,0); gfp3 = gfp1 * gfp2; gfp3 = gfp3 / gfp2; if (gfp1 != gfp3) { std::cout << "Mul-Div ERROR!" << std::endl; std::cout << "gfp1(x) " << gfp1 << std::endl; std::cout << "gfp2(x) " << gfp2 << std::endl; std::cout << "gfp3(x) " << gfp3 << std::endl; return false; } return true; }
bool exp_test() { galois::GaloisFieldPolynomial gfp1(&gf,9,gfe); galois::GaloisFieldPolynomial gfp2(&gf,0); gfp2 = gfp1 ^ 10; for (unsigned int i = 0; i < 10; i++) { gfp2 = gfp2 / gfp1; } if(gfp2 != gfp1) { std::cout << "Exponentiation ERROR!" << std::endl; std::cout << "gfp1(x) " << gfp1 << std::endl; std::cout << "gfp2(x) " << gfp2 << std::endl; return false; } return true; }
void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits) { assert(qbits > 9); // no primes exist for pbits = 10, qbits = 9 assert(pbits > qbits); const Integer minQ = Integer::Power2(qbits - 1); const Integer maxQ = Integer::Power2(qbits) - 1; const Integer minP = Integer::Power2(pbits - 1); const Integer maxP = Integer::Power2(pbits) - 1; Integer r1, r2; do { bool qFound = q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12); CRYPTOPP_UNUSED(qFound); assert(qFound); bool solutionsExist = SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q); CRYPTOPP_UNUSED(solutionsExist); assert(solutionsExist); } while (!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit()?r1:r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3*q)); assert(((p.Squared() - p + 1) % q).IsZero()); GFP2_ONB<ModularArithmetic> gfp2(p); GFP2Element three = gfp2.ConvertIn(3), t; while (true) { g.c1.Randomize(rng, Integer::Zero(), p-1); g.c2.Randomize(rng, Integer::Zero(), p-1); t = XTR_Exponentiate(g, p+1, p); if (t.c1 == t.c2) continue; g = XTR_Exponentiate(g, (p.Squared()-p+1)/q, p); if (g != three) break; } assert(XTR_Exponentiate(g, q, p) == three); }