Ejemplo n.º 1
0
/* Address taken on struct. */
int
foo10 ()
{
  struct BB bb;
  int i;
  bb.one = global2 (&bb);
  for (i = 0; i < 10; ++i)
    {
      bb.two = bb.one + bb.two;
      bb.three = bb.one + bb.two + bb.three;
    }
  return bb.three;
}
Ejemplo n.º 2
0
// 有BUG得到的 bitmap大小为0
Gdiplus::Bitmap* PictureManager::LoadBitmapFromResource( 
    HMODULE module, UINT resID, LPCTSTR resType )
{
    Gdiplus::Bitmap* bitmap = nullptr;
    do 
    {
        HRSRC hRsc = FindResourceW(module, MAKEINTRESOURCE(resID), resType);
        if (!hRsc)
        {
            DWORD err = GetLastError();
            break;
        }
        int sizeRsc = SizeofResource(module, hRsc);
        auto FreeResouceFun = [](HGLOBAL h)
        {
            FreeResource(h);
        };
        std::unique_ptr < std::remove_pointer<HGLOBAL>::type,
            std::function<void(HGLOBAL p) >>
            hGlobalRes(LoadResource(module, hRsc), FreeResouceFun);
        if (!hGlobalRes)
        {
            break;
        }

        auto GlobalFreeFun = [](HGLOBAL global)
        {
            //GlobalFree(global);
        };
        std::unique_ptr < std::remove_pointer<HGLOBAL>::type,
            std::function<void(HGLOBAL) >>
            global2(GlobalAlloc(GMEM_MOVEABLE, sizeRsc), GlobalFreeFun);
        if (!global2)
        {
            break;
        }

        if (!CopyToDestGlobal(hGlobalRes.get(), global2.get(), sizeRsc))
            break; 

        LPSTREAM stream;
        HRESULT hr = CreateStreamOnHGlobal(global2.get(), TRUE, &stream);
        if (!SUCCEEDED(hr))
        {
            break;
        }
        bitmap = Gdiplus::Bitmap::FromStream(stream);
    } while (0);
    return bitmap;
}
Ejemplo n.º 3
0
clsparseStatus
reduce_by_key(
    int keys_first,
    int keys_last,
    int values_first,
    cl_mem keys_input,
    cl_mem values_input,
    cl_mem keys_output,
    cl_mem values_output,
    int *count,
    clsparseControl control
)
{

    cl_int l_Error;

    /**********************************************************************************
     * Compile Options
     *********************************************************************************/
    const int kernel0_WgSize = WAVESIZE*KERNEL02WAVES;
    const int kernel1_WgSize = WAVESIZE*KERNEL1WAVES;
    const int kernel2_WgSize = WAVESIZE*KERNEL02WAVES;

    //const std::string params = std::string() +
    //          " -DKERNEL0WORKGROUPSIZE=" + std::to_string(kernel0_WgSize)
    //        + " -DKERNEL1WORKGROUPSIZE=" + std::to_string(kernel1_WgSize)
    //        + " -DKERNEL2WORKGROUPSIZE=" + std::to_string(kernel2_WgSize);
    const std::string params;

    cl::Context context = control->getContext();
    std::vector<cl::Device> dev = context.getInfo<CL_CONTEXT_DEVICES>();
    int computeUnits  = dev[0].getInfo< CL_DEVICE_MAX_COMPUTE_UNITS >( );
    int wgPerComputeUnit = dev[0].getInfo< CL_DEVICE_MAX_WORK_GROUP_SIZE >( );


    int resultCnt = computeUnits * wgPerComputeUnit;
    cl_uint numElements = keys_last - keys_first + 1;

    size_t sizeInputBuff = numElements;
    int modWgSize = (sizeInputBuff & (kernel0_WgSize-1));
    if( modWgSize )
    {
        sizeInputBuff &= ~modWgSize;
        sizeInputBuff += kernel0_WgSize;
    }
    cl_uint numWorkGroupsK0 = static_cast< cl_uint >( sizeInputBuff / kernel0_WgSize );

    size_t sizeScanBuff = numWorkGroupsK0;
    modWgSize = (sizeScanBuff & (kernel0_WgSize-1));
    if( modWgSize )
    {
        sizeScanBuff &= ~modWgSize;
        sizeScanBuff += kernel0_WgSize;
    }

    cl_mem tempArrayVec = clCreateBuffer(context(),CL_MEM_READ_WRITE, (numElements)*sizeof(int), NULL, NULL );

    /**********************************************************************************
     *  Kernel 0
     *********************************************************************************/

    cl::Kernel kernel0 = KernelCache::get(control->queue,"reduce_by_key", "OffsetCalculation", params);

    KernelWrap kWrapper0(kernel0);

    kWrapper0 << keys_input << tempArrayVec
              << numElements;

    cl::NDRange local0(kernel0_WgSize);
    cl::NDRange global0(sizeInputBuff);

    cl_int status = kWrapper0.run(control, global0, local0);

    if (status != CL_SUCCESS)
    {
        return clsparseInvalidKernelExecution;
    }

    int init = 0;

    scan(0,
	 numElements - 1,
         tempArrayVec,
         tempArrayVec,
         0,
         0,
         control
         );

    int pattern = 0;
    cl_mem keySumArray = clCreateBuffer(context(),CL_MEM_READ_WRITE, (sizeScanBuff)*sizeof(int), NULL, NULL );
    cl_mem preSumArray = clCreateBuffer(context(),CL_MEM_READ_WRITE, (sizeScanBuff)*sizeof(int), NULL, NULL );
    cl_mem postSumArray = clCreateBuffer(context(),CL_MEM_READ_WRITE,(sizeScanBuff)*sizeof(int), NULL, NULL );
    clEnqueueFillBuffer(control->queue(), keySumArray, &pattern, sizeof(int), 0,
                        (sizeScanBuff)*sizeof(int), 0, NULL, NULL);
    clEnqueueFillBuffer(control->queue(), preSumArray, &pattern, sizeof(int), 0,
                        (sizeScanBuff)*sizeof(int), 0, NULL, NULL);
    clEnqueueFillBuffer(control->queue(), postSumArray, &pattern, sizeof(int), 0,
                        (sizeScanBuff)*sizeof(int), 0, NULL, NULL);


    /**********************************************************************************
     *  Kernel 1
     *********************************************************************************/

    cl::Kernel kernel1 = KernelCache::get(control->queue,"reduce_by_key", "perBlockScanByKey", params);

    KernelWrap kWrapper1(kernel1);

    kWrapper1 << tempArrayVec
	      << values_input
              << numElements
	      << keySumArray
	      << preSumArray;

    cl::NDRange local1(kernel0_WgSize);
    cl::NDRange global1(sizeInputBuff);

    status = kWrapper1.run(control, global1, local1);

    if (status != CL_SUCCESS)
    {
        return clsparseInvalidKernelExecution;
    }

    /**********************************************************************************
     *  Kernel 2
     *********************************************************************************/
    cl_uint workPerThread = static_cast< cl_uint >( sizeScanBuff / kernel1_WgSize );

    cl::Kernel kernel2 = KernelCache::get(control->queue,"reduce_by_key", "intraBlockInclusiveScanByKey", params);

    KernelWrap kWrapper2(kernel2);

    kWrapper2 << keySumArray << preSumArray
              << postSumArray << numWorkGroupsK0 << workPerThread;

    cl::NDRange local2(kernel1_WgSize);
    cl::NDRange global2(kernel1_WgSize);

    status = kWrapper2.run(control, global2, local2);

    if (status != CL_SUCCESS)
    {
        return clsparseInvalidKernelExecution;
    }

    /**********************************************************************************
     *  Kernel 3
     *********************************************************************************/

    cl::Kernel kernel3 = KernelCache::get(control->queue,"reduce_by_key", "keyValueMapping", params);

    KernelWrap kWrapper3(kernel3);

    kWrapper3 << keys_input << keys_output
              << values_input << values_output << tempArrayVec
              << keySumArray << postSumArray << numElements;

    cl::NDRange local3(kernel0_WgSize);
    cl::NDRange global3(sizeInputBuff);

    status = kWrapper3.run(control, global3, local3);

    if (status != CL_SUCCESS)
    {
        return clsparseInvalidKernelExecution;
    }

    int *h_result = (int *) malloc (sizeof(int));

    clEnqueueReadBuffer(control->queue(),
                        tempArrayVec,
                        1,
                       (numElements-1)*sizeof(int),
                        sizeof(int),
                        h_result,
                        0,
                        0,
                        0);

    *count = *(h_result);
    //printf("h_result = %d\n", *count );

    //release buffers
    clReleaseMemObject(tempArrayVec);
    clReleaseMemObject(preSumArray);
    clReleaseMemObject(postSumArray);
    clReleaseMemObject(keySumArray);

    return clsparseSuccess;
}   //end of reduce_by_key