Ejemplo n.º 1
0
	static window_regression_stats *get_window_regression_stats(
	 const grid<pixel_t> &red, const grid<pixel_t> &nir, size_t size,
	 bool force)
	{
		size_t output_block = 100;
		size_t row_count = (red.height() / size);
		IF_NORMAL(std::cout << row_count << " rows" << std::endl);
		size_t window_count = (red.width() / size) * row_count;
		array<numeric_t> slopes(window_count);
		array<numeric_t> intercepts(window_count);
		array<numeric_t> r2s(window_count);
		array<bool> goodness(window_count);
		numeric_t *slopes_ptr = slopes.data();
		numeric_t *intercepts_ptr = intercepts.data();
		numeric_t *r2s_ptr = r2s.data();
		bool *ptr_goodness = goodness.data();
		size_t good_count = 0;
		rect<size_t> subr = {0, 0, size, size};
		for (subr.y = 0; subr.y + size <= red.height() && subr.y +
		 size <= nir.height(); subr.y += size) {
			for (subr.x = 0; subr.x + size <= red.width() &&
			 subr.x + size <= nir.width(); subr.x += size) {
				const grid<pixel_t> red_sub(
				 const_cast<grid<pixel_t>*>(&red), subr);
				const grid<pixel_t> nir_sub(
				 const_cast<grid<pixel_t>*>(&nir), subr);
				if (force || is_good_data(red_sub, nir_sub)) {
					linear_regression *reg =
					 stats_find_linear_regression(red_sub,
					 nir_sub);
					*slopes_ptr = reg->eq.slope;
					*intercepts_ptr = reg->eq.intercept;
					*r2s_ptr = reg->r2;
					*ptr_goodness = true;
					good_count++;
					delete reg;
				} else {
					IF_VERBOSE(std::cout << "Bad sector: ");
					IF_VERBOSE(std::cout << "(" << subr.x);
					IF_VERBOSE(std::cout << ", " << subr.y);
					IF_VERBOSE(std::cout << ") ");
					*ptr_goodness = false;
				}
				slopes_ptr++;
				intercepts_ptr++;
				r2s_ptr++;
				ptr_goodness++;
			}
			if ((subr.y / size) % output_block == 0) {
				IF_NORMAL(std::cout << "\ranalyzing rows "
				 "starting at " << (subr.y / size) << "...");
				IF_NORMAL(std::cout.flush());
			}
		}
		IF_NORMAL(std::cout << std::endl);
		// okay, we have slope data, now find statistics
		window_regression_stats *stats = new window_regression_stats;
		// first, filter out the bad ones
		IF_VERBOSE(std::cout << "Found " << good_count);
		IF_VERBOSE(std::cout << " good sectors out of ");
		IF_VERBOSE(std::cout << window_count << std::endl);
		array<numeric_t> good_slope_data(good_count);
		array<numeric_t> good_intercept_data(good_count);
		array<numeric_t> good_r2_data(good_count);
		size_t good_data_cur = 0;
		for (size_t i = 0; i < window_count; i++) {
			if (goodness[i]) {
				good_slope_data[good_data_cur] = slopes[i];
				good_intercept_data[good_data_cur] =
				 intercepts[i];
				good_r2_data[good_data_cur] = r2s[i];
				good_data_cur++;
			}
		}
		stats->slope_mean = numeric_mean(good_slope_data);
		stats->slope_stddev = numeric_stddev(good_slope_data);
		stats->intercept_mean = numeric_mean(good_intercept_data);
		stats->intercept_stddev = numeric_stddev(good_intercept_data);
		stats->r2_mean = numeric_mean(good_r2_data);
		stats->r2_stddev = numeric_stddev(good_r2_data);
		stats->window_size = size;
		return stats;
	}
Ejemplo n.º 2
0
void Histogram::createGoodnessArray(){
	for(int i=0; i < 256; i++){
		goodnessArray[i]=goodness(i);
		//cout << goodnessArray[i] << endl;
	}
}
Ejemplo n.º 3
0
	static cell_regression_stats *get_cell_regression_stats(
	 grid<pixel_t> const &red, grid<pixel_t> const &nir, size_t size,
	 bool force)
	{
		size_t output_block = 100;
		rect<size_t> sub = {0, 0, size, size};
		size_t xCount = red.width() / size;
		size_t yCount = red.height() / size;
		IF_NORMAL(std::cout << yCount << " rows" << std::endl);
		size_t cell_count = xCount * yCount;
		array<numeric_t> red_avg(cell_count);
		array<numeric_t> nir_avg(cell_count);
		array<bool> goodness(cell_count);
		size_t good_count = 0;
		bool *goodness_ptr = goodness.data();
		numeric_t *red_avg_ptr = red_avg.data();
		numeric_t *nir_avg_ptr = nir_avg.data();
		for (sub.y = 0; sub.y + size <= red.height(); sub.y += size) {
			for (sub.x = 0; sub.x + size <= red.width();
			 sub.x += size) {
				const grid<pixel_t> sub_red(
				 const_cast<grid<pixel_t>*>(&red), sub);
				const grid<pixel_t> sub_nir(
				 const_cast<grid<pixel_t>*>(&nir), sub);
				if (force || is_good_data(sub_red, sub_nir)) {
					*red_avg_ptr = stats_mean(sub_red);
					*nir_avg_ptr = stats_mean(sub_nir);
					*goodness_ptr = true;
					good_count++;
				} else {
					IF_VERBOSE(std::cout << "Bad sector: ("
					 );
					IF_VERBOSE(std::cout << sub.x << ", ");
					IF_VERBOSE(std::cout << sub.y << ") ");
					*goodness_ptr = false;
				}
				red_avg_ptr++;
				nir_avg_ptr++;
				goodness_ptr++;
			}
			if ((sub.y / size) % output_block == 0) {
				IF_NORMAL(std::cout << "\ranalyzing rows ");
				IF_NORMAL(std::cout << "starting at ");
				IF_NORMAL(std::cout << (sub.y / size));
				IF_NORMAL(std::cout << "...");
				IF_NORMAL(std::cout.flush());
			}
		}
		IF_NORMAL(std::cout << std::endl);
		IF_VERBOSE(std::cout << "Found " << good_count << " good ");
		IF_VERBOSE(std::cout << "sectors out of " << cell_count);
		IF_VERBOSE(std::cout << std::endl);
		array<numeric_t> good_red_data(good_count);
		array<numeric_t> good_nir_data(good_count);
		size_t good_data_cur = 0;
		for (size_t i = 0; i < cell_count; i++) {
			if (goodness[i]) {
				good_red_data[good_data_cur] = red_avg[i];
				good_nir_data[good_data_cur] = nir_avg[i];
				good_data_cur++;
			}
		}
		linear_regression *reg = numeric_find_linear_regression(
		 good_red_data, good_nir_data);
		cell_regression_stats *stats = new cell_regression_stats;
		stats->cell_size = size;
		stats->regression = *reg;
		delete reg;
		return stats;
	}
Ejemplo n.º 4
0
void nemo_main()
{
    int    i, dir, nrad, npots=0, ltype, ndim = NDIM, nx, ny, ns, ndat, nret;
    int    cols[4], n, idx, idx_max;
    real   pmax, symsize, rr, omk_max = 0.0, omk_rmax;
    real   rad[MAXPT], *vel, *vel1, *vel2, *vel3, *vel4, *curve;
    real   *ome, *kap, *opk, *omk, r0l[MAXPT+2], omega, *f;
    real   inrad[MAXPT], invel[MAXPT], inrade[MAXPT], invele[MAXPT];
    double pos[3], acc[3], pot, time = 0.0;
/*    char   *fmt, s[20], pfmt[256];    */
    char   headline[256], fmt1[80];
    string axis, mode, infile, plotlabel;
    stream instr;
    bool   Qtab, Qplot, Qome, Qvel, Qlv, Qin, QoILR;

    mode = getparam("mode");
    n = getiparam("n");
    plotlabel = getparam("headline");
    sprintf(fmt1,"%s ",getparam("format"));
    Qome = (*mode == 'o');      /*  options are: velocity|omega|lv */
    Qlv = (*mode == 'l');
    Qvel = (*mode == 'v');
    Qtab = getbparam("tab");
    Qplot = getbparam("plot");
    infile = getparam("in");
    Qin =  (*infile != 0);
    if (Qin) {
        nret = nemoinpi(getparam("cols"),cols,4);
        if (nret<0 || nret > 4) error("cols= requires 4 numbers");
        for (i=nret; i<4; i++)
            cols[i] = 0;
        instr = stropen(infile,"r");
        ndat = read_table(instr,MAXPT,inrad,invel,inrade,invele,cols);
        strclose(instr);
    }
    
    mypot1 = get_potential(getparam("name1"),getparam("pars1"),getparam("file1"));
    omega = get_pattern();
    dprintf(0,"Pattern speed: %f\n",omega);
    mypot2 = get_potential(getparam("name2"),getparam("pars2"),getparam("file2"));
    mypot3 = get_potential(getparam("name3"),getparam("pars3"),getparam("file3"));
    mypot4 = get_potential(getparam("name4"),getparam("pars4"),getparam("file4"));
    headline[0] = '\0';         /* accumulate headline */
    if (mypot1) {
        strcat(headline,getparam("name1"));
        strcat(headline,"(");
        strcat(headline,getparam("pars1"));
        strcat(headline,")");
        npots++;
    } 
    if (mypot2) {
        strcat(headline,getparam("name2"));
        strcat(headline,"(");
        strcat(headline,getparam("pars2"));
        strcat(headline,") ");
        npots++;
    }
    if (mypot3) {
        strcat(headline,getparam("name3"));
        strcat(headline,"(");
        strcat(headline,getparam("pars3"));
        strcat(headline,") ");
        npots++;
    }
    if (mypot4) {
        strcat(headline,getparam("name4"));
        strcat(headline,"(");
        strcat(headline,getparam("pars4"));
        strcat(headline,")");
        npots++;
    }

    nrad = nemoinpr(getparam("radii"),rad,MAXPT);   /* get radii */
    if (nrad <= 0)
        warning("Using %d radii is not very productive",nrad);
    vel  = (real *) allocate(sizeof(real) * nrad);  /* allocate stuff */
    vel1 = (real *) allocate(sizeof(real) * nrad);
    vel2 = (real *) allocate(sizeof(real) * nrad);
    vel3 = (real *) allocate(sizeof(real) * nrad);
    vel4 = (real *) allocate(sizeof(real) * nrad);
    if (Qome) {
        ome = (real *) allocate(4 * sizeof(real) * nrad);  /* plus spline */
        kap = (real *) allocate(sizeof(real) * nrad);
        opk = (real *) allocate(sizeof(real) * nrad);
        omk = (real *) allocate(sizeof(real) * nrad);
    } 

    axis = getparam("axis");
    dir = 0;
    if (*axis == 'x') dir=0;
    if (*axis == 'y') dir=1;
    if (*axis == 'z') dir=2;
    if (dir>NDIM) error("Axis %s not supported in NDIM=%d",axis,NDIM);

    pmax = 0.0;

    for (i=0; i<nrad; i++) {            /* loop to compute */
        CLRV(pos);                      /* clear positions */
        pos[dir] = rad[i];              /* set the right axis */
        vel[i] = 0.0;
        if (mypot1) {
            CLRV(acc);
            (*mypot1) (&ndim,pos,acc,&pot,&time);
            vel1[i] = -rad[i] * acc[dir];
            vel[i] += vel1[i];
            vel1[i] = sqrt(vel1[i]);        
        }
        if (mypot2) {
            CLRV(acc);
            (*mypot2) (&ndim,pos,acc,&pot,&time);
            vel2[i] = -rad[i] * acc[dir];
            vel[i] += vel2[i];
	    vel2[i] = sqrt(vel2[i]);        
        }
        if (mypot3) {
            CLRV(acc);
            (*mypot3) (&ndim,pos,acc,&pot,&time);
            vel3[i] = -rad[i] * acc[dir];
            vel[i] += vel3[i];
	    vel3[i] = sqrt(vel3[i]);        
        }
        if (mypot4) {
            CLRV(acc);
            (*mypot4) (&ndim,pos,acc,&pot,&time);
            vel4[i] = -rad[i] * acc[dir];
            vel[i] += vel4[i];
            vel4[i] = sqrt(vel4[i]);        
        }
        vel[i]  = sqrt(vel[i]);        
    }
    if (Qome) {
	lindblad(nrad,rad,vel,ome,kap,opk,omk,n);
        if (omega> 0.0) {                               /* compute resonances */
            f = opk;
            idx = nrad-1;
            if (omega < f[idx]) {
                warning("Radii not far enough out for OLR: %g",f[idx]);
                f = ome;
                if (omega < f[idx]) {
                    warning("Radii not far enough out for CR: %g",f[idx]);
                    f = omk;
                }
            }
            QoILR = FALSE;
            for(; idx>0; idx--) {
                if (omk[idx] > omk_max) {
                    idx_max = idx;
                    omk_max = omk[idx];
                }
                if (f==omk) {
                    if (QoILR) {
                        if (omega < f[idx]) continue;
                    } else {
                        if (omega > f[idx]) continue;
                    }
                } else {
                    if (omega > f[idx]) continue;
                }
                
                /* found a resonance: */

                rr = rad[idx] + (rad[idx+1]-rad[idx])*
                                (omega-f[idx])/(f[idx+1]-f[idx]);
                if (f == omk) {
#if 0                    
                    if (QoILR) {
                        dprintf(0,"iILR: %g\n",rr);
                        break;
                    } else {
                        dprintf(0,"oILR: %g\n",rr);
                        QoILR = TRUE;
                    }
#endif                    
                } else if (f == ome) {
                    dprintf(0,"CR: %g\n",rr);
                    f = omk;
                } else if (f == opk) {
                    dprintf(0,"OLR: %g\n",rr);
                    f = ome;
                } else
                    error("impossble resonance");
            }
            peak(nrad,rad,omk,idx_max,1, &omk_rmax, &omk_max);
            dprintf(0,"OMK_max: %g\n",omk_max);
            dprintf(0,"OMK_rmax: %g\n",omk_rmax);

            if (omega < omk_max) {			/* search for ILR */
            	for (idx=idx_max; idx<nrad; idx++) {
                    if (omega > omk[idx]) {
                        rr = rad[idx-1] + (rad[idx]-rad[idx-1])*
                                (omega-f[idx-1])/(f[idx]-f[idx-1]);
                        dprintf(0,"oILR: %g\n",rr);
                        break;
                    }
            	}
                for (idx=idx_max; idx>0; idx--) {
                    if (omega > omk[idx]) {
                        rr = rad[idx] + (rad[idx+1]-rad[idx])*
                               (omega-f[idx])/(f[idx+1]-f[idx]);
                        dprintf(0,"iILR: %g\n",rr);
                        break;
                    }
            	}
            }
        }
    }
    for (i=0; i<nrad; i++) {                            /* loop to print */
        if (Qtab) {
	  printf(fmt1,rad[i]);
	  printf(fmt1,vel[i]);
	}
	if (Qtab && npots>1 && !Qome) {
	    if (mypot1) printf(fmt1,vel1[i]);
	    if (mypot2) printf(fmt1,vel2[i]);
	    if (mypot3) printf(fmt1,vel3[i]);
	    if (mypot4) printf(fmt1,vel4[i]);
        }
        if (Qtab && Qome) {
	  printf(fmt1,ome[i]);
	  printf(fmt1,kap[i]);
	  printf(fmt1,opk[i]);
	  printf(fmt1,omk[i]);
	}
	if (Qtab) printf("\n");
        if (Qome)
            pmax = MAX(pmax,opk[i]);
        else
            pmax = MAX(pmax,vel[i]);
    }
    if (Qin && Qvel) 
        goodness(nrad,rad,vel,ndat,inrad,invel,(cols[3]>0?invele:NULL));
    if (Qplot) {
        plinit("***",0.0,20.0,0.0,20.0);                /* open device */
        nx = nemoinpr(getparam("xrange"),xplot,2);      /* get xrange in plot */
        switch(nx) {
         case 0:
            xplot[0] = rad[0];
         case 1:
            xplot[1] = rad[nrad-1];
            break;
         case 2:
            break;
         default:
            warning("xrange= only accepts two values");
            break;
        }
        ny = nemoinpr(getparam("yrange"),yplot,2);      /* get yrange in plot */
        switch(ny) {
         case 0:
            yplot[0] = 0.0;
            yplot[1] = 1.1 * pmax;      /* extra 10% for egde */
            break;
         case 1:
            yplot[1] = 1.1 * pmax;      /* extra 10% for egde */
            break;
         case 2:
            break;
         default:
            warning("yrange= only accepts two values");
            break;
        }
        xaxis ( 2.0, 2.0, 16.0, xplot, -7, xtrans, "R");    /* plot axes */
        xaxis ( 2.0,18.0, 16.0, xplot, -7, xtrans, NULL);
        if (Qome)
            yaxis ( 2.0, 2.0, 16.0, yplot, -7, ytrans, "[V/R]");
        else
            yaxis ( 2.0, 2.0, 16.0, yplot, -7, ytrans, "V");
        yaxis (18.0, 2.0, 16.0, yplot, -7, ytrans, NULL);
        if (*plotlabel)
            pltext(plotlabel,2.0,18.5,0.5,0.0);
        else
            pltext(headline,2.0,18.5,0.35,0.0);
        if (*plotmsg)
            pltext(plotmsg,8.0,2.5,0.25,0.0);

        curve = (Qome ? ome : vel);            /* assign first curve */
        plltype(3,1);                                 /* thick solid line */
        plmove(xtrans(rad[0]),ytrans(curve[0]));
        for (i=1; i<nrad; i++)
            plline(xtrans(rad[i]),ytrans(curve[i]));
        if (Qome) {                   /* if Lindblad - plot omk, opk */
            plltype(1,1);                      /* all regular solid lines */
            plmove(xtrans(rad[0]), ytrans(omk[0]));
            for (i=1; i<nrad; i++)
                plline(xtrans(rad[i]),ytrans(omk[i]));
            plmove(xtrans(rad[0]), ytrans(opk[0]));
            for (i=1; i<nrad; i++)
                plline(xtrans(rad[i]),ytrans(opk[i]));
        } else if (npots>1) {            /* if velocity and > 1 component */
            ltype = 1;
            if (mypot1) {
                plltype(1,++ltype);
                plmove(xtrans(rad[0]),ytrans(vel1[0]));
                for (i=1; i<nrad; i++)
                    plline(xtrans(rad[i]),ytrans(vel1[i]));
            }
            if (mypot2) {
                plltype(1,++ltype);
                plmove(xtrans(rad[0]),ytrans(vel2[0]));
                for (i=1; i<nrad; i++)
                    plline(xtrans(rad[i]),ytrans(vel2[i]));
            }
            if (mypot3) {
                plltype(1,++ltype);
                plmove(xtrans(rad[0]),ytrans(vel2[0]));
                for (i=1; i<nrad; i++)
                    plline(xtrans(rad[i]),ytrans(vel3[i]));
            }
            if (mypot4) {
                plltype(1,++ltype);
                plmove(xtrans(rad[0]),ytrans(vel2[0]));
                for (i=1; i<nrad; i++)
                    plline(xtrans(rad[i]),ytrans(vel4[i]));
            }
        }
	plltype(1,1); 
        symsize = 0.1;
        if (Qin && Qvel) {           /* if input file with velocities */
            for (i=0; i<ndat; i++)
                plbox(xtrans(inrad[i]),ytrans(invel[i]),symsize);
            if (cols[3]>0) {        /* if error bars in radius */
                for (i=0; i<ndat; i++) {
                    plmove(xtrans(inrad[i]-inrade[i]),ytrans(invel[i]));
                    plline(xtrans(inrad[i]+inrade[i]),ytrans(invel[i]));
                }
            }
            if (cols[4]>0) {        /* if error bars in velocity */
                for (i=0; i<ndat; i++) {
                    plmove(xtrans(inrad[i]),ytrans(invel[i]-invele[i]));
                    plline(xtrans(inrad[i]),ytrans(invel[i]+invele[i]));
                }
            }
        } else if (Qin && Qome) {       /* if input file with omega */
            for (i=0; i<ndat; i++)
                plbox(xtrans(inrad[i]),ytrans(invel[i]/inrad[i]),symsize);
        }
        plstop();
    }  /* if plot vel/ome */
    if (Qlv) {
        ns = nemoinpr(getparam("r0l"),r0l,MAXPT+2) - 2;
        if (ns < 0)
            error("r0l= needs at least two values: r0 and l");
        else if (ns==0)
            warning("r0l= no lv-radii array supplied");
        lv(nrad,rad,vel,r0l[0],r0l[1],ns,&r0l[2]);
    }
}