Ejemplo n.º 1
0
double
test_tdist2_pdf (double x)
{
  return gsl_ran_tdist_pdf (x, 12.75);
}
Ejemplo n.º 2
0
double
tdist (double x, void *p)
{
  double * c = (double *)p;
  return gsl_ran_tdist_pdf (x, c[0]);
}
Ejemplo n.º 3
0
double
gsl_cdf_tdist_Pinv (const double P, const double nu)
{
  double x, ptail;

  if (P == 1.0)
    {
      return GSL_POSINF;
    }
  else if (P == 0.0)
    {
      return GSL_NEGINF;
    }

  if (nu == 1.0)
    {
      x = tan (M_PI * (P - 0.5));
      return x;
    }
  else if (nu == 2.0)
    {
      x = (2 * P - 1) / sqrt (2 * P * (1 - P));
      return x;
    }

  ptail = (P < 0.5) ? P : 1 - P;

  if (sqrt (M_PI * nu / 2) * ptail > pow (0.05, nu / 2))
    {
      double xg = gsl_cdf_ugaussian_Pinv (P);
      x = inv_cornish_fisher (xg, nu);
    }
  else
    {
      /* Use an asymptotic expansion of the tail of integral */

      double beta = gsl_sf_beta (0.5, nu / 2);

      if (P < 0.5)
        {
          x = -sqrt (nu) * pow (beta * nu * P, -1.0 / nu);
        }
      else
        {
          x = sqrt (nu) * pow (beta * nu * (1 - P), -1.0 / nu);
        }

      /* Correct nu -> nu/(1+nu/x^2) in the leading term to account
         for higher order terms. This avoids overestimating x, which
         makes the iteration unstable due to the rapidly decreasing
         tails of the distribution. */

      x /= sqrt (1 + nu / (x * x));
    }

  {
    double dP, phi;
    unsigned int n = 0;

  start:
    dP = P - gsl_cdf_tdist_P (x, nu);
    phi = gsl_ran_tdist_pdf (x, nu);

    if (dP == 0.0 || n++ > 32)
      goto end;

    {
      double lambda = dP / phi;
      double step0 = lambda;
      double step1 = ((nu + 1) * x / (x * x + nu)) * (lambda * lambda / 4.0);

      double step = step0;

      if (fabs (step1) < fabs (step0))
        {
          step += step1;
        }

      if (P > 0.5 && x + step < 0)
        x /= 2;
      else if (P < 0.5 && x + step > 0)
        x /= 2;
      else
        x += step;

      if (fabs (step) > 1e-10 * fabs (x))
        goto start;
    }
    
  end:
    if (fabs(dP) > GSL_SQRT_DBL_EPSILON * P)
      {
        GSL_ERROR_VAL("inverse failed to converge", GSL_EFAILED, GSL_NAN);
      }
    
    return x;
  }
}
Ejemplo n.º 4
0
double
gsl_cdf_tdist_Qinv (const double Q, const double nu)
{
  double x, qtail;

  if (Q == 0.0)
    {
      return GSL_POSINF;
    }
  else if (Q == 1.0)
    {
      return GSL_NEGINF;
    }

  if (nu == 1.0)
    {
      x = tan (M_PI * (0.5 - Q));
      return x;
    }
  else if (nu == 2.0)
    {
      x = (1 - 2 * Q) / sqrt (2 * Q * (1 - Q));
      return x;
    }

  qtail = (Q < 0.5) ? Q : 1 - Q;

  if (sqrt (M_PI * nu / 2) * qtail > pow (0.05, nu / 2))
    {
      double xg = gsl_cdf_ugaussian_Qinv (Q);
      x = inv_cornish_fisher (xg, nu);
    }
  else
    {
      /* Use an asymptotic expansion of the tail of integral */

      double beta = gsl_sf_beta (0.5, nu / 2);

      if (Q < 0.5)
        {
          x = sqrt (nu) * pow (beta * nu * Q, -1.0 / nu);
        }
      else
        {
          x = -sqrt (nu) * pow (beta * nu * (1 - Q), -1.0 / nu);
        }

      /* Correct nu -> nu/(1+nu/x^2) in the leading term to account
         for higher order terms. This avoids overestimating x, which
         makes the iteration unstable due to the rapidly decreasing
         tails of the distribution. */

      x /= sqrt (1 + nu / (x * x));
    }

  {
    double dQ, phi;
    unsigned int n = 0;

  start:
    dQ = Q - gsl_cdf_tdist_Q (x, nu);
    phi = gsl_ran_tdist_pdf (x, nu);

    if (dQ == 0.0 || n++ > 32)
      goto end;

    {
      double lambda = - dQ / phi;
      double step0 = lambda;
      double step1 = ((nu + 1) * x / (x * x + nu)) * (lambda * lambda / 4.0);

      double step = step0;

      if (fabs (step1) < fabs (step0))
        {
          step += step1;
        }

      if (Q < 0.5 && x + step < 0)
        x /= 2;
      else if (Q > 0.5 && x + step > 0)
        x /= 2;
      else
        x += step;

      if (fabs (step) > 1e-10 * fabs (x))
        goto start;
    }
  }

end:

  return x;
}
Ejemplo n.º 5
0
static double one_t(double in, void *params){ 
    double mu = ((double*)params)[0];
    double sigma = ((double*)params)[1];
    double df = ((double*)params)[2];
    return log(gsl_ran_tdist_pdf((in-mu)/(sigma/sqrt(df)), df)); 
}
Ejemplo n.º 6
0
int main(int argc, char **argv){
    distlist distribution = Normal;
    char	 msg[10000], c;
    int      pval = 0, qval = 0;
    double   param1 = GSL_NAN, param2 =GSL_NAN, findme = GSL_NAN;
    char     number[1000];
	sprintf(msg, "%s [opts] number_to_lookup\n\n"
    "Look up a probability or p-value for a given standard distribution.\n"
    "[This is still loosely written and counts as beta. Notably, negative numbers are hard to parse.]\n"
    "E.g.:\n"
    "%s -dbin 100 .5 34\n"
    "sets the distribution to a Binomial(100, .5), and find the odds of 34 appearing.\n"
    "%s -p 2     \n"
    "find the area of the Normal(0,1) between -infty and 2.  \n"
    "\n"
    "-pval Find the p-value: integral from -infinity to your value\n"
    "-qval Find the q-value: integral from your value to infinity\n"
    "\n"
    "After giving an optional -p or -q, specify the distribution. \n"
    "Default is Normal(0, 1). Other options:\n"
    "\t\t-binom Binomial(n, p)\n"
    "\t\t-beta Beta(a, b)\n"
    "\t\t-f F distribution(df1, df2)\n"
    "\t\t-norm Normal(mu, sigma)\n"
    "\t\t-negative bin Negative binomial(n, p)\n"
    "\t\t-poisson Poisson(L)\n"
    "\t\t-t t distribution(df)\n"
    "I just need enough letters to distinctly identify a distribution.\n"
, argv[0], argv[0], argv[0]); 

    opterr=0;
	if(argc==1){
		printf("%s", msg);
		return 0;
	}
	while ((c = getopt (argc, argv, "B:b:F:f:N:n:pqT:t:")) != -1){
		switch (c){
		  case 'B':
		  case 'b':
              if (optarg[0]=='i')
                  distribution = Binomial;
              else if (optarg[0]=='e')
                  distribution = Beta;
            else {
                printf("I can't parse the option -b%s\n", optarg);
                exit(0);
            }
              param1 = atof(argv[optind]);
              param2 = atof(argv[optind+1]);
              findme =  atof(argv[optind+2]);
			  break;
          case 'F':
          case 'f':
            distribution = F;
            param1 = atof(argv[optind]);
            findme =  atof(argv[optind+1]);
            break;
          case 'H':
		  case 'h':
			printf("%s", msg);
			return 0;
          case 'n':
          case 'N':
            if (optarg[0]=='o'){ //normal
                  param1 = atof(argv[optind]);
                  param2 = atof(argv[optind+1]);
                  findme =  atof(argv[optind+2]);
            } else if (optarg[0]=='e'){
                  distribution = Negbinom;
                  param1 = atof(argv[optind]);
                  param2 = atof(argv[optind+1]);
                  findme =  atof(argv[optind+2]);
            } else {
                printf("I can't parse the option -n%s\n", optarg);
                exit(0);
            }
			  break;
          case 'p':
            if (!optarg || optarg[0] == 'v')
                pval++;
            else if (optarg[0] == 'o'){
                distribution = Poisson;
                param1 = atof(argv[optind]);
                findme =  atof(argv[optind+1]);
            } else {
                printf("I can't parse the option -p%s\n", optarg);
                exit(0);
            }
            break;
          case 'q':
            qval++;
            break;
          case 'T':
          case 't':
            distribution = T;
            param1 = atof(argv[optind]);
            findme =  atof(argv[optind+1]);
            break;
          case '?'://probably a negative number
            if (optarg)
                 snprintf(number, 1000, "%c%s", optopt, optarg);
            else snprintf(number, 1000, "%c", optopt);
            if (gsl_isnan(param1)) param1 = -atof(number);
            else if (gsl_isnan(param2)) param2 = -atof(number);
            else if (gsl_isnan(findme)) findme = -atof(number);
		}
	}
    if (gsl_isnan(findme)) findme =  atof(argv[optind]);
    //defaults, as promised
    if (gsl_isnan(param1)) param1 = 0;
    if (gsl_isnan(param2)) param2 = 1;
    if (!pval && !qval){
        double val =
        distribution == Beta ? gsl_ran_beta_pdf(findme, param1, param2)
        : distribution == Binomial ? gsl_ran_binomial_pdf(findme, param2, param1)
        : distribution == F ? gsl_ran_fdist_pdf(findme, param1, param2) 
        : distribution == Negbinom ? gsl_ran_negative_binomial_pdf(findme, param2, param1)
        : distribution == Normal ? gsl_ran_gaussian_pdf(findme, param2)+param1
        : distribution == Poisson ? gsl_ran_poisson_pdf(findme, param1) 
        : distribution == T ? gsl_ran_tdist_pdf(findme, param1) : GSL_NAN;
        printf("%g\n", val); 
        return 0;
    }
    if (distribution == Binomial){
        printf("Sorry, the GSL doesn't have a Binomial CDF.\n");
        return 0; }
    if (distribution == Negbinom){
        printf("Sorry, the GSL doesn't have a Negative Binomial CDF.\n");
        return 0; }
    if (distribution == Poisson){
        printf("Sorry, the GSL doesn't have a Poisson CDF.\n");
        return 0; }
    if (pval){
        double val =
        distribution == Beta ? gsl_cdf_beta_P(findme, param1, param2)
        : distribution == F ? gsl_cdf_fdist_P(findme, param1, param2) 
        : distribution == Normal ? gsl_cdf_gaussian_P(findme-param1, param2)
        : distribution == T ? gsl_cdf_tdist_P(findme, param1) : GSL_NAN;
        printf("%g\n", val); 
        return 0;
    }
    if (qval){
        double val =
        distribution == Beta ? gsl_cdf_beta_Q(findme, param1, param2)
        : distribution == F ? gsl_cdf_fdist_Q(findme, param1, param2) 
        : distribution == Normal ? gsl_cdf_gaussian_Q(findme-param1, param2)
        : distribution == T ? gsl_cdf_tdist_Q(findme, param1) : GSL_NAN;
        printf("%g\n", val); 
    }
}
Ejemplo n.º 7
0
double skew_student(double x, double mu, double sig,  double skew, double  nu){
    return 2.*gsl_ran_tdist_pdf((x-mu)/sig, nu)* \
    gsl_cdf_tdist_P(skew*((x-mu)/sig)*sqrt((nu+1.)/(nu+(x-mu)*(x-mu)/sig/sig)),(nu+1.))/sig;}