Ejemplo n.º 1
0
double fzero( function<double(double)> fun, double x_lo, double x_hi,
		int max_iter, double epsabs, double epsrel )
{
	// Allocate
	gsl_function F = { gsl::sfunction_proxy, &fun };
	const gsl_root_fsolver_type *T = gsl_root_fsolver_brent;
	gsl_root_fsolver *s = gsl_root_fsolver_alloc (T);
	gsl_root_fsolver_set( s, &F, x_lo, x_hi );

	// Main loop
	int status;
	double rv;
	int iter  = 0;
	do {
		iter++;
		status = gsl_root_fsolver_iterate(s);
		rv     = gsl_root_fsolver_root(s);
		x_lo   = gsl_root_fsolver_x_lower(s);
		x_hi   = gsl_root_fsolver_x_upper(s);
		status = gsl_root_test_interval( x_lo, x_hi, epsabs, epsrel );
	} while (status == GSL_CONTINUE && iter < max_iter);

	if( iter == max_iter )
		warning("bealab::fzero - maximum number of iterations reached");

	// Free
	gsl_root_fsolver_free (s);

	return rv;
}
Ejemplo n.º 2
0
double root(double begin) {
  int status;
  int iter = 0, max_iter = 100000;
  const gsl_root_fsolver_type *T;
  gsl_root_fsolver *s;
  double x_lo = begin / 2, x_hi = begin - e, r;
  gsl_function F;

  F.function = &f;
  F.params = &begin;

  T = gsl_root_fsolver_brent;
  s = gsl_root_fsolver_alloc (T);
  gsl_root_fsolver_set (s, &F, x_lo, x_hi);
  do
    {
      iter++;
      status = gsl_root_fsolver_iterate (s);
      r = gsl_root_fsolver_root (s);
      x_lo = gsl_root_fsolver_x_lower (s);
      x_hi = gsl_root_fsolver_x_upper (s);
      status = gsl_root_test_interval (x_lo, x_hi,
                                       0, e);
    }
  while (status == GSL_CONTINUE && iter < max_iter);

  gsl_root_fsolver_free (s);
  return r;
}
Ejemplo n.º 3
0
//----------------------------------------------------------------------------
int f_root4p(REAL p1,REAL p2,REAL p3,REAL a,REAL b,REAL (*fp)(REAL, void*),
REAL * result){
	struct f_params_3 alpha = {p1,p2,p3};               
	int status;
	int iter = 0, max_iter = 1000;
	REAL r = 0.0;
	const gsl_root_fsolver_type *T;
	gsl_root_fsolver *s;
	
	gsl_function F;
	F.function = fp;
	F.params = &alpha;
	
	T = gsl_root_fsolver_brent;
	s = gsl_root_fsolver_alloc(T);
	gsl_root_fsolver_set(s,&F,a,b);
	
	do{
		iter++;
		status = gsl_root_fsolver_iterate(s);
		r = gsl_root_fsolver_root(s);
		a = gsl_root_fsolver_x_lower(s);
		b = gsl_root_fsolver_x_upper(s);
		status = gsl_root_test_interval(a,b,0,0.001);
	}while (status == GSL_CONTINUE && iter < max_iter);
	*result=r;
	
	gsl_root_fsolver_free (s);
	
	return 0;
}
Ejemplo n.º 4
0
/* this function returns the solution to f (x) = 0 */
int f_root (double x_min, double x_max, double *root, struct f_root_params *par) {
  size_t iter;
  int status;
  double x_lo, x_hi;
  gsl_root_fsolver *s;

  /* defines the function to pass to the solver */
  gsl_function func;
  func.function = par->f;
  func.params = par->p;

  /* allocates and initializes the minimizer */
  s = gsl_root_fsolver_alloc (par->type);
  gsl_root_fsolver_set (s, &func, x_min, x_max);

  /* start the iteration to find the root */
  iter = 0;
  do {
    iter++;
    status = gsl_root_fsolver_iterate (s);
    *root = gsl_root_fsolver_root (s);
    x_lo = gsl_root_fsolver_x_lower (s);
    x_hi = gsl_root_fsolver_x_upper (s);
    status = gsl_root_test_interval (x_lo, x_hi, par->eps_abs, par->eps_rel);

    if (par->verbose) 
      fprintf (stderr, "%lu: x = %f\n", iter, *root);
  }
  while (status==GSL_CONTINUE && iter<par->max_iter);

  /* free the memory and return the found root */
  gsl_root_fsolver_free (s);
  return status;
}
Ejemplo n.º 5
0
    RatesEM(int ntrees, int nspecies, int nrates, 
            int *gene_sizes,
            float **lengths, float *times,
            float *sp_alpha, float *sp_beta, 
            float gene_alpha, float gene_beta) : 
        ntrees(ntrees),
        nspecies(nspecies), 
        gene_sizes(gene_sizes),
        lengths(lengths),
        times(times),
        sp_alpha(sp_alpha),
        sp_beta(sp_beta),
        gene_alpha(gene_alpha),
        gene_beta(gene_beta),
        nrates(nrates),
        gtab(ntrees, nrates),
        pgtab(ntrees, nrates)
    {
        // allocate gene rate optimizer
	sol_gene_rate = gsl_root_fsolver_alloc(gsl_root_fsolver_brent);

        // setup optimizer for gene rates
	opt_gene_rate.function = &gene_rate_f;
        opt_gene_rate.params = this; 

        // setup optimizer for species rates
        const int ndim = 2;
        sol_sp_rate = gsl_multimin_fdfminimizer_alloc(
            gsl_multimin_fdfminimizer_vector_bfgs2, ndim);
        opt_sp_rate.f = &sp_rate_f;
        opt_sp_rate.df = &sp_rate_df;
        opt_sp_rate.fdf = &sp_rate_fdf;
        opt_sp_rate.n = ndim;
        opt_sp_rate.params = this;
    }
Ejemplo n.º 6
0
//_______________________________________________________________________________________________________________________
///
/// \brief Calculate chemical potential 'mu' such that FermiDirac distribution gives exactly 'nelec' electrons
///
static double CalculateChemicalPotential(const en_levels_t *levels, const int nelec, const bool spinpol, const double kBT)
{
	int m, n, i;

	const int maxiter = 128;

	gsl_FD_params_t params;
	params.nelec = nelec;
	params.nlevels = (levels->m_max+1)*levels->num;
	params.en  = malloc(params.nlevels * sizeof(double));
	params.occ = malloc(params.nlevels * sizeof(int));
	params.kBT = kBT;
	// fill energy levels and occupancies
	for (m = 0; m <= levels->m_max; m++)
	{
		for (n = 0; n < levels->num; n++)
		{
			params.en [n + m*levels->num] = levels->en[n + m*levels->num];
			params.occ[n + m*levels->num] = GetMaxOccupancy(m, spinpol);
		}
	}

	// first interval used in interval bisection method
	double mu_lo = 0.0;
	double mu_hi = levels->en[(levels->m_max+1)*levels->num-1];		// use "last" energy level as upper bound

	gsl_function F;
	F.function = &NumParticleDifference;
	F.params = &params;

	const gsl_root_fsolver_type *T = gsl_root_fsolver_brent;
	gsl_root_fsolver *s = gsl_root_fsolver_alloc(T);
	gsl_root_fsolver_set(s, &F, mu_lo, mu_hi);

	double mu = 0;
	int status = GSL_CONTINUE;
	for (i = 0; i < maxiter && status == GSL_CONTINUE; i++)
	{
		status = gsl_root_fsolver_iterate(s);
		if (status != GSL_SUCCESS) {
			fprintf(stderr, "CalculateOccupancy() warning: gsl_root_fsolver_iterate() returned with status code %i\n", status);
		}

		mu = gsl_root_fsolver_root(s);
		mu_lo  = gsl_root_fsolver_x_lower(s);
		mu_hi  = gsl_root_fsolver_x_upper(s);
		status = gsl_root_test_interval(mu_lo, mu_hi, 0, 1e-8);
	}

	if (status != GSL_SUCCESS) {
		fprintf(stderr, "CalculateOccupancy() warning: not converged after %i iterations, status: %i\n", maxiter, status);
	}

	// clean up
	free(params.occ);
	free(params.en);
	gsl_root_fsolver_free(s);

	return mu;
}
Ejemplo n.º 7
0
double root_finder( double (*f)(double), double a, double b, double epsrel, double epsabs ) {
	int status,i;
	double root;
	const gsl_root_fsolver_type *T;
	gsl_root_fsolver *s;
	gsl_function F;

	F.function = gsl_function_wrapper;
	F.params = (void *)f;

	T = gsl_root_fsolver_brent;
	s = gsl_root_fsolver_alloc (T);
	gsl_root_fsolver_set (s, &F, a, b);

	for ( i = 0; i < MAX_ITER; i++ ) {
		status = gsl_root_fsolver_iterate (s);
		status = gsl_root_test_interval (gsl_root_fsolver_x_lower(s),
				gsl_root_fsolver_x_upper(s),
				epsrel, epsabs);

		if (status == GSL_SUCCESS) {
			root = gsl_root_fsolver_root(s);
			gsl_root_fsolver_free(s);
			return root;
		}
	}

	cart_error("Did not reach root after %u iterations!", MAX_ITER);
	return 0.0;
}
Ejemplo n.º 8
0
const Real GreensFunction2DAbs::drawTheta(const Real rnd,
                                          const Real r,
                                          const Real t) const
{
    THROW_UNLESS(std::invalid_argument, 0.0<=rnd && rnd <= 1.0);

    if(rnd == 1e0)
        return 2e0 * M_PI;

    if(fabs(r) < CUTOFF)// r == 0e0 ?
    {
        throw std::invalid_argument(
                (boost::format("2DAbs::drawTheta r is too small: r=%f10") % r).str());
    }

    if(fabs(r-a) < CUTOFF)// r == a ?
    {
        //when R equal a, p_int_theta is zero at any theta
        throw std::invalid_argument(
                (boost::format("2DAbs::drawTheta r is nealy a: r=%f10, a=%f10") % r % a).str());
    }

    if(t == 0e0 || D == 0e0)
        return 0e0;

    Real int_2pi = p_int_2pi(r, t);

    /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
     * When t is too large, int_2pi become zero and drawR returns 2pi    *
     * at any value of rnd. To avoid this,  return rnd * theta / 2pi     *
     * because when t -> \infty the probability density function of theta*
     * become uniform distribution                                       *
     * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
    if(int_2pi == 0e0)
    {
        std::cout << dump();
        std::cout << "Warning: t is too large. t = " << t << std::endl;
    }

    p_theta_params params = {this, t, r, rnd * int_2pi};

    gsl_function F =
    {
        reinterpret_cast<double (*)(double, void*)>(&p_theta_F), &params
    };

    const Real low(0e0);
    const Real high(2e0 * M_PI);

    const gsl_root_fsolver_type* solverType(gsl_root_fsolver_brent);
    gsl_root_fsolver* solver(gsl_root_fsolver_alloc(solverType));

    const Real theta(findRoot(F, solver, low, high, 1e-18, 1e-12,
                              "GreensFunction2DAbsSym::drawTheta"));

    gsl_root_fsolver_free(solver);

    return theta;
}
Ejemplo n.º 9
0
const Real GreensFunction2DAbs::drawTime(const Real rnd) const
{
    THROW_UNLESS(std::invalid_argument, 0.0<=rnd && rnd <= 1.0);
    if(D == 0e0 || a == std::numeric_limits<Real>::infinity() || rnd == 1e0)
        return std::numeric_limits<Real>::infinity();
    if(a == r0 || rnd == 0e0)
        return 0e0;

    p_survival_params params = {this, rnd};

    gsl_function F = 
    {
        reinterpret_cast<double (*)(double, void*)>(&p_survival_F), &params
    };

    // this is not so accurate because
    // initial position is not the center of this system.
    const Real t_guess(a * a * 0.25 / D);
    Real value(GSL_FN_EVAL(&F, t_guess));
    Real low(t_guess);
    Real high(t_guess);

    // to determine high and low border
    if(value < 0.0)
    {
        do
        {
            high *= 1e1;
            value = GSL_FN_EVAL(&F, high);
            if(fabs(high) > t_guess * 1e6)
                throw std::invalid_argument("could not adjust higher border");
        }
        while(value <= 0e0);
    }
    else
    {
        Real value_prev = value;
        do
        {
            low *= 1e-1;
            value = GSL_FN_EVAL(&F, low);
            if(fabs(low) <= t_guess * 1e-6 || fabs(value - value_prev) < CUTOFF)
                throw std::invalid_argument("could not adjust lower border");
            value_prev = value;
        }
        while(value >= 0e0);
    }

    //find the root
    const gsl_root_fsolver_type* solverType(gsl_root_fsolver_brent);
    gsl_root_fsolver* solver(gsl_root_fsolver_alloc(solverType));

    const Real t(findRoot(F, solver, low, high, 1e-18, 1e-12,
                          "GreensFunction2DAbs::drawTime"));

    gsl_root_fsolver_free(solver);

    return t;
}
Ejemplo n.º 10
0
void
test_f (const gsl_root_fsolver_type * T, const char * description, gsl_function *f,
        double lower_bound, double upper_bound, double correct_root)
{
  int status;
  size_t iterations = 0;
  double r, a, b;
  double x_lower, x_upper;
  gsl_root_fsolver * s;

  x_lower = lower_bound;
  x_upper = upper_bound;

  s = gsl_root_fsolver_alloc(T);
  gsl_root_fsolver_set(s, f, x_lower, x_upper) ;
  
  do 
    {
      iterations++ ;

      gsl_root_fsolver_iterate (s);

      r = gsl_root_fsolver_root(s);

      a = gsl_root_fsolver_x_lower(s);
      b = gsl_root_fsolver_x_upper(s);
      
      if (a > b)
        gsl_test (GSL_FAILURE, "interval is invalid (%g,%g)", a, b);

      if (r < a || r > b)
        gsl_test (GSL_FAILURE, "r lies outside interval %g (%g,%g)", r, a, b);

      status = gsl_root_test_interval (a,b, EPSABS, EPSREL);
    }
  while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS);


  gsl_test (status, "%s, %s (%g obs vs %g expected) ", 
            gsl_root_fsolver_name(s), description, 
            gsl_root_fsolver_root(s), correct_root);

  if (iterations == MAX_ITERATIONS)
    {
      gsl_test (GSL_FAILURE, "exceeded maximum number of iterations");
    }

  /* check the validity of the returned result */

  if (!WITHIN_TOL (r, correct_root, EPSREL, EPSABS))
    {
      gsl_test (GSL_FAILURE, "incorrect precision (%g obs vs %g expected)", 
                r, correct_root);

    }

  gsl_root_fsolver_free(s);  
}
Ejemplo n.º 11
0
void Spectrometer::calibrate(){
    if(calibration.size()!=2)
        return;

    double a=1e3; // grating step in nm
    double l1 = calibration[0].wavelength;
    double x1 = calibration[0].pixelNum-imageWidth/2.;
    double l2 = calibration[1].wavelength;
    double x2 = calibration[1].pixelNum-imageWidth/2.;

    struct calcFParams params = {l1,l2,x1,x2,a};

    double f_lo= 200;
    double f_hi= 3000;

    gsl_function F;
    F.function = &Spectrometer::calcFFunc;
    F.params = &params;

    const gsl_root_fsolver_type *T;
    gsl_root_fsolver *s;
    //T = gsl_root_fsolver_brent;
    T = gsl_root_fsolver_bisection;
    s = gsl_root_fsolver_alloc(T);
    gsl_root_fsolver_set (s, &F, f_lo, f_hi); //f in pixels guessed to be between 300 and 5000

    double r=500;
    int iter=0;
    int max_iter=100;
    int status;
    do{
          iter++;
          status = gsl_root_fsolver_iterate(s);
          r = gsl_root_fsolver_root(s);
          f_lo = gsl_root_fsolver_x_lower(s);
          f_hi = gsl_root_fsolver_x_upper(s);
          status = gsl_root_test_interval (f_lo, f_hi,
                                           0, 0.001);

    } while (status == GSL_CONTINUE && iter < max_iter);

    if(status==GSL_SUCCESS) {
        focal = r;
        pas = a;
        sin_angle_i = l1/pas + x1/sqrt(r*r+x1*x1);
        isXCalibrated = true;
        qDebug()<<"Calibration finished !";
        qDebug()<<"focal : "<< focal;
        qDebug()<<"angle i : "<< 180/3.1415*asin(sin_angle_i);
        qDebug()<<"angle i2 : "<< 180/3.1415*asin( l2/pas + x2/sqrt(r*r+x2*x2));
    }

    gsl_root_fsolver_free (s);

}
Ejemplo n.º 12
0
int
main (void)
{
  int status;
  int iter = 0, max_iter = 100;
  const gsl_root_fsolver_type *T;
  gsl_root_fsolver *s;
  double r = 0, r_expected = sqrt (5.0);
  double x_lo = 0.0, x_hi = 5.0;
  gsl_function F;
  struct quadratic_params params = {1.0, 0.0, -5.0};

  F.function = &quadratic;
  F.params = &params;

  T = gsl_root_fsolver_brent;
  s = gsl_root_fsolver_alloc (T);
  gsl_root_fsolver_set (s, &F, x_lo, x_hi);

  printf ("using %s method\n", 
          gsl_root_fsolver_name (s));

  printf ("%5s [%9s, %9s] %9s %10s %9s\n",
          "iter", "lower", "upper", "root", 
          "err", "err(est)");

  do
    {
      iter++;
      status = gsl_root_fsolver_iterate (s);
      r = gsl_root_fsolver_root (s);
      x_lo = gsl_root_fsolver_x_lower (s);
      x_hi = gsl_root_fsolver_x_upper (s);
      status = gsl_root_test_interval (x_lo, x_hi,
                                       0, 0.001);

      if (status == GSL_SUCCESS)
        printf ("Converged:\n");

      printf ("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n",
              iter, x_lo, x_hi,
              r, r - r_expected, 
              x_hi - x_lo);
    }
  while (status == GSL_CONTINUE && iter < max_iter);

  gsl_root_fsolver_free (s);

  return status;
}
Ejemplo n.º 13
0
/// Get the cDel for a given cvir
double cosmology::getcDel(double cvir, double z, double Delta)
{
    int status;
    int iter = 0, max_iter = 100;
    double res;

    const gsl_root_fsolver_type *T;
    gsl_root_fsolver *s;

    double c_lo = 0.01*cvir, c_hi = 10.0*cvir;

    gsl_function F;
    cDel_params p;
    p.cptr = this;
    p.cvir = &cvir;
    double omz=Omega(z);
    double dcz=Delta_crit(z);
    p.omegaz=&omz; 
    p.dcz=&dcz;
    p.Delta=&Delta;

    F.function = &findcDel;
    F.params = &p;
   
    T = gsl_root_fsolver_brent;
    s = gsl_root_fsolver_alloc (T);
    gsl_root_fsolver_set (s, &F, c_lo, c_hi);

    do
    {
        iter++;
        status = gsl_root_fsolver_iterate (s);
        res = gsl_root_fsolver_root (s);
        c_lo = gsl_root_fsolver_x_lower (s);
        c_hi = gsl_root_fsolver_x_upper (s);
        status = gsl_root_test_interval (c_lo, c_hi,0, 1e-6);

        if (status == GSL_SUCCESS)
        {
            //std::cout<<"# "<<"zcollapse:Brent converged after "<< iter<<" iterations"<<std::endl;
        }


    }while (status == GSL_CONTINUE && iter < max_iter);

    gsl_root_fsolver_free (s);

    return res;

}
Ejemplo n.º 14
0
/* compute the first N roots alpha_k of the equation
     ((A-1)/(A+1)) cos((H - Z B) alpha) = cos((H + Z B) alpha)
where H and B are heights and A, Z are defined in terms of material 
constants */
int print_alpha_k(const int N) {
  int status, iter, k, max_iter = 200;
  double Z, A;
  double alpha, alpha_lo, alpha_hi, temp_lo;
  const gsl_root_fsolver_type *solvT;
  gsl_root_fsolver *solv;
  gsl_function F;
  struct coscross_params params;
  
  Z = sqrt((rho_BR * c_p_BR * k_ICE) / (rho_ICE * c_p_ICE * k_BR));
  A = (k_BR / k_ICE) * Z;
  params.Afrac   = (A - 1.0) / (A + 1.0);     
  params.HZBsum  = H0 + Z * B0;
  params.HZBdiff = H0 - Z * B0;
     
  F.function = &coscross;
  F.params = &params;
  solvT = gsl_root_fsolver_brent;  /* faster than bisection but still bracketing */
  solv = gsl_root_fsolver_alloc(solvT);

  for (k = 0; k < N; k++) {
    /* these numbers bracket exactly one solution */
    alpha_lo = (double(k) * pi) / params.HZBsum;
    alpha_hi = (double(k + 1) * pi) / params.HZBsum;
    gsl_root_fsolver_set(solv, &F, alpha_lo, alpha_hi);
     
    iter = 0;
    do {
      iter++;
      status = gsl_root_fsolver_iterate(solv);
      alpha = gsl_root_fsolver_root(solv);
      alpha_lo = gsl_root_fsolver_x_lower(solv);
      alpha_hi = gsl_root_fsolver_x_upper(solv);
      temp_lo = (alpha_lo > 0) ? alpha_lo : (alpha_hi/2.0);
      status = gsl_root_test_interval(temp_lo, alpha_hi, 0, ALPHA_RELTOL);
    } while ((status == GSL_CONTINUE) && (iter < max_iter));
    if (iter >= max_iter) {
      printf("!!!ERROR: root finding iteration reached maximum iterations; QUITING!\n");
      return ITER_MAXED_OUT;
    }
    printf("%19.15e,\n",alpha);
    /* DEBUG: printf("%19.15e  (in orig bracket [%19.15e,%19.15e])\n",alpha,
              (double(k) * pi) / params.HZBsum, (double(k+1) * pi) / params.HZBsum); */
  }
  
  gsl_root_fsolver_free(solv);
  return status;
}
Ejemplo n.º 15
0
int UnidimensionalRootFinder(gsl_function	*F,
                             double          lower_bound,
                             double          upper_bound,
                             double          abs_error,
                             double          rel_error,
                             int             max_iterations,
                             double         *return_result)
{

    const gsl_root_fsolver_type * T	= gsl_root_fsolver_bisection;
    gsl_root_fsolver * s = gsl_root_fsolver_alloc(T);

    // Test if the limits straddle the root,
    // if they don't, we will return -1.
    if (GSL_SIGN(GSL_FN_EVAL(F, lower_bound)) == GSL_SIGN(GSL_FN_EVAL(F, upper_bound)))
        return -1;

    gsl_root_fsolver_set(s, F, lower_bound, upper_bound);

    int i = 0;
    double x_lower;
    double x_upper;
    do{
        i++;

        int status = gsl_root_fsolver_iterate(s);

        if (status != GSL_SUCCESS){
            printf("ERROR: No solution to the gap equation was found!\n");
            exit(EXIT_FAILURE);
        }

        x_lower = gsl_root_fsolver_x_lower(s);
        x_upper = gsl_root_fsolver_x_upper(s);
    } while(GSL_CONTINUE == gsl_root_test_interval(x_lower,
                                                   x_upper,
                                                   abs_error,
                                                   rel_error)
            && i <= max_iterations);

    double result = gsl_root_fsolver_root(s);

    void gsl_root_fsolver_free(gsl_root_fsolver * S);

    *return_result = result;

    return 0;
}
Ejemplo n.º 16
0
int Solver1d::Main ()
{
	fsolver_type=gsl_root_fsolver_brent;
	s = gsl_root_fsolver_alloc (fsolver_type);
	gsl_root_fsolver_set (s, &F, x_lo, x_hi);
	do
	{
		iter++;
		status = gsl_root_fsolver_iterate (s);
		x_lo = gsl_root_fsolver_x_lower (s);
		x_hi = gsl_root_fsolver_x_upper (s);
		status = gsl_root_test_interval (x_lo, x_hi, epsabs, epsrel);
	}
	while (status == GSL_CONTINUE && iter < max_iter);	
	return status;
}
Ejemplo n.º 17
0
/// Get the Mvir for a given MDel
double cosmology::getMvir(double M, double z,double Delta)
{
    int status;
    int iter = 0, max_iter = 100;
    double res;

    const gsl_root_fsolver_type *T;
    gsl_root_fsolver *s;

    double m_lo = 0.1*M, m_hi = 5.0*M;

    gsl_function F;
    mvir_params p;
    p.cptr = this;
    p.mDel = &M;
    p.z=&z;
    p.Delta=&Delta;

    F.function = &findmvir;
    F.params = &p;

    T = gsl_root_fsolver_brent;
    s = gsl_root_fsolver_alloc (T);
    gsl_root_fsolver_set (s, &F, m_lo, m_hi);

    do
    {
        iter++;
        status = gsl_root_fsolver_iterate (s);
        res = gsl_root_fsolver_root (s);
        m_lo = gsl_root_fsolver_x_lower (s);
        m_hi = gsl_root_fsolver_x_upper (s);
        status = gsl_root_test_interval (m_lo, m_hi,0, 1.e-6);

        if (status == GSL_SUCCESS)
        {
            //std::cout<<"# "<<"zcollapse:Brent converged after "<< iter<<" iterations"<<std::endl;
        }


    }while (status == GSL_CONTINUE && iter < max_iter);

    gsl_root_fsolver_free (s);

    return res;

}
Ejemplo n.º 18
0
Archivo: root.c Proyecto: Fudge/rb-gsl
static VALUE rb_gsl_function_rootfinder(int argc, VALUE *argv, VALUE obj)
{
  int status, iter = 0, max_iter = 1000;
  const gsl_root_fsolver_type *T;
  gsl_root_fsolver *s = NULL;
  gsl_function *F = NULL;
  double r, a, b, epsabs = 0.0, epsrel = 1e-6;
  Data_Get_Struct(obj, gsl_function, F);
  switch (argc) {
  case 2:
    a = NUM2DBL(argv[0]);
    b = NUM2DBL(argv[1]);
    break;
  case 1:
    switch (TYPE(argv[0])) {
    case T_ARRAY:
      a = NUM2DBL(rb_ary_entry(argv[0], 0));
      b = NUM2DBL(rb_ary_entry(argv[0], 1));
      break;
    default:
      rb_raise(rb_eTypeError, "interval must be given by an array [a, b]");
    }
    break;
  default:
    rb_raise(rb_eArgError, "interval must be given");
    break;
  }
  T = gsl_root_fsolver_brent;
  s = gsl_root_fsolver_alloc (T);
  gsl_root_fsolver_set (s, F, a, b);
  do {
    iter++;
    status = gsl_root_fsolver_iterate (s);
    r = gsl_root_fsolver_root (s);
    a = gsl_root_fsolver_x_lower (s);
    b = gsl_root_fsolver_x_upper (s);
    status = gsl_root_test_interval (a, b, epsabs, epsrel);
    if (status == GSL_SUCCESS) break;
  } while (status == GSL_CONTINUE && iter < max_iter);
  gsl_root_fsolver_free(s);
  if (status == GSL_SUCCESS) {
    return rb_ary_new3(3, rb_float_new(r), INT2FIX(iter), INT2FIX(status));
  } else {
    printf("not converged\n");
    return Qfalse;
  }
}
Ejemplo n.º 19
0
/// Get the M which has N_{+} number of haloes above mass M.
double cosmology::getM(double Np,double z)
{
    int status;
    int iter = 0, max_iter = 100;
    double res;

    const gsl_root_fsolver_type *T;
    gsl_root_fsolver *s;
    // m is in log_{10}(m)
    double xm_lo = 9.0, xm_hi = 15.5;

    gsl_function F;
    np_params p;
    p.cptr = this;
    p.z = &z;
    p.Np = &Np;

    F.function = &findM;
    F.params = &p;
   
    T = gsl_root_fsolver_brent;
    s = gsl_root_fsolver_alloc (T);
    gsl_root_fsolver_set (s, &F, xm_lo, xm_hi);

    do
    {
        iter++;
        status = gsl_root_fsolver_iterate (s);
        res = gsl_root_fsolver_root (s);
        xm_lo = gsl_root_fsolver_x_lower (s);
        xm_hi = gsl_root_fsolver_x_upper (s);
        status = gsl_root_test_interval (xm_lo, xm_hi,0, 1e-6);

        if (status == GSL_SUCCESS)
        {
            std::cout<<"# "<<"getM:Brent converged after "<< iter<<" iterations"<<std::endl;
        }


    }while (status == GSL_CONTINUE && iter < max_iter);

    gsl_root_fsolver_free (s);

    return pow(10.,res);

}
Ejemplo n.º 20
0
/// Get the c200 for a given cvir
double cosmology::getcDeltap_from_cDelta(double cDelta, double Delta, double Deltap)
{
    int status;
    int iter = 0, max_iter = 100;
    double res;

    const gsl_root_fsolver_type *T;
    gsl_root_fsolver *s;

    double c_lo = 0.01*cDelta, c_hi = 10.0*cDelta;

    gsl_function F;
    cDelta_params p;
    double frac=Delta/Deltap;
    p.cDelta = &cDelta;
    p.frac = &frac;

    F.function = &findcDelp;
    F.params = &p;
   
    T = gsl_root_fsolver_brent;
    s = gsl_root_fsolver_alloc (T);
    gsl_root_fsolver_set (s, &F, c_lo, c_hi);

    do
    {
        iter++;
        status = gsl_root_fsolver_iterate (s);
        res = gsl_root_fsolver_root (s);
        c_lo = gsl_root_fsolver_x_lower (s);
        c_hi = gsl_root_fsolver_x_upper (s);
        status = gsl_root_test_interval (c_lo, c_hi,0, 1e-6);

        if (status == GSL_SUCCESS)
        {
            //std::cout<<"# "<<"zcollapse:Brent converged after "<< iter<<" iterations"<<std::endl;
        }


    }while (status == GSL_CONTINUE && iter < max_iter);

    gsl_root_fsolver_free (s);

    return res;

}
Ejemplo n.º 21
0
/// Get the collapse redshift for a given variance
double cosmology::getzcoll(double sigma)
{
    int status;
    int iter = 0, max_iter = 100;
    double res;

    const gsl_root_fsolver_type *T;
    gsl_root_fsolver *s;

    double z_lo = 0.0, z_hi = 10.0;

    gsl_function F;
    coll_params p;
    p.cptr = this;
    p.sig = &sigma;

    F.function = &findzcoll;
    F.params = &p;
   
    T = gsl_root_fsolver_brent;
    s = gsl_root_fsolver_alloc (T);
    gsl_root_fsolver_set (s, &F, z_lo, z_hi);

    do
    {
        iter++;
        status = gsl_root_fsolver_iterate (s);
        res = gsl_root_fsolver_root (s);
        z_lo = gsl_root_fsolver_x_lower (s);
        z_hi = gsl_root_fsolver_x_upper (s);
        status = gsl_root_test_interval (z_lo, z_hi,0, 1e-6);

        if (status == GSL_SUCCESS)
        {
            //std::cout<<"# "<<"zcollapse:Brent converged after "<< iter<<" iterations"<<std::endl;
        }


    }while (status == GSL_CONTINUE && iter < max_iter);

    gsl_root_fsolver_free (s);

    return res;

}
Ejemplo n.º 22
0
// Calculates the roots of tan(x*a)=-x/h
Real
GreensFunction1DRadAbs::root_n(int n) const
{
    const Real L( this->geta()-this->getsigma() );
    const Real h( (this->getk()+this->getv()/2.0) / this->getD() );
    // the drift v also comes into this constant, h=(k+v/2)/D
    Real upper, lower;

    if ( h*L < 1 )
    {
	// 1E-10 to make sure that he doesn't include the transition 
	lower = (n-1)*M_PI + 1E-10;
	// (asymptotic) from infinity to -infinity
	upper =  n   *M_PI - 1E-10;
    }
    else
    {
	lower = (n-1)*M_PI + M_PI_2 + 1E-10;
	upper = n    *M_PI + M_PI_2 - 1E-10;
    }

    gsl_function F;
    struct tan_f_params params = { L, h };
     
    F.function = &GreensFunction1DRadAbs::tan_f;
    F.params = &params;

    // define a new solver type brent
    const gsl_root_fsolver_type* solverType( gsl_root_fsolver_brent );

    // make a new solver instance
    // TODO: incl typecast?
    gsl_root_fsolver* solver( gsl_root_fsolver_alloc( solverType ) );
    // get the root = run the rootsolver
    const Real root( findRoot( F, solver, lower, upper, 1.0*EPSILON, EPSILON,
                            "GreensFunction1DRadAbs::root_tan" ) );
    gsl_root_fsolver_free( solver );
    
    return root/L;
    // This rescaling is important, because the function tan_f is used to solve for
    // tan(x)+x/h/L=0, whereas we actually need tan(x*L)+x/h=0, So if x solves the 
    // subsidiary equation, x/L solves the original one.
}
Ejemplo n.º 23
0
Archivo: root.c Proyecto: Fudge/rb-gsl
static VALUE rb_gsl_fsolver_new(VALUE klass, VALUE t)
{
  gsl_root_fsolver *s = NULL;
  const gsl_root_fsolver_type *T;
  char name[32];
  switch (TYPE(t)) {
  case T_STRING:
    strcpy(name, STR2CSTR(t));
    if (!str_tail_grep(name, "bisection")) {
      T = gsl_root_fsolver_bisection;
    } else if (!str_tail_grep(name, "falsepos")) {
      T = gsl_root_fsolver_falsepos;
    } else if (!str_tail_grep(name, "brent")) {
      T = gsl_root_fsolver_brent;
    } else {
      rb_raise(rb_eTypeError, 
	       "type must be \"bisection\" or \"falsepos\", or \"brent\".");
    }
    break;
  case T_FIXNUM:
    switch (FIX2INT(t)) {
    case GSL_ROOT_FSOLVER_BISECTION:
      T = gsl_root_fsolver_bisection;
      break;
    case GSL_ROOT_FSOLVER_FALSEPOS:
      T = gsl_root_fsolver_falsepos;
      break;
    case GSL_ROOT_FSOLVER_BRENT:
      T = gsl_root_fsolver_brent;
      break;
    default:
      rb_raise(rb_eTypeError, "type must be BISECTION or FALSEPOS, or BRENT.");
      break;
    }
    break;
  default:
    rb_raise(rb_eTypeError, "wrong argument type %s (String or Fixnum expected)",
	     rb_class2name(CLASS_OF(t)));
    break;
  }
  s = gsl_root_fsolver_alloc(T);
  return Data_Wrap_Struct(klass, 0, gsl_root_fsolver_free, s);
}
Ejemplo n.º 24
0
double raytrace_free_distance(scope_ray ray, raytrace_geom geom, int surf){
  
  /* Variable declarations */

  /* Variables needed for GSL's root-finder algorithms */
  int status;
  int iter = 0, max_iter = 100;
  const gsl_root_fsolver_type *T;
  gsl_root_fsolver *s;
  double r = 0;
  double x_lo = 0.0, x_hi = 5.0;
  gsl_function F;
  
  scope_root_params params = {ray, geom, surf}; 
  
  /* If w/in Rowland Circle, reduce x_hi to 2.1 */
  if(surf == OPTIC_SF) x_hi = 2.1;


  F.function = &raytrace_distroot; 
  F.params = &params;
  
  /* Solve using GSL's Brent's Method Solver */
  //  T = gsl_root_fsolver_brent;
  T = gsl_root_fsolver_brent;
  s = gsl_root_fsolver_alloc(T);
  gsl_root_fsolver_set(s, &F, x_lo, x_hi);
  
  
  do{
    iter++;
    status = gsl_root_fsolver_iterate(s);
    r = gsl_root_fsolver_root(s);
    x_lo = gsl_root_fsolver_x_lower(s);
    x_hi = gsl_root_fsolver_x_upper(s);
    status = gsl_root_test_interval(x_lo, x_hi, 0, 1.e-14);
  } while (status == GSL_CONTINUE && iter < max_iter);
  
  gsl_root_fsolver_free (s);
  
  return r;
}
Ejemplo n.º 25
0
int
main ()
{
  int status;
  int iterations = 0, max_iterations = 100;
  gsl_root_fsolver *s;
  double r = 0, r_expected = sqrt (5.0);
  double x_lower x = 0.0, x_upper = 5.0;
  gsl_function F;
  struct quadratic_params params =
  {1.0, 0.0, -5.0};

  F.function = &quadratic;
  F.params = &params;

  s = gsl_root_fsolver_alloc (gsl_root_fsolver_bisection);
  gsl_root_fsolver_set (s, &F, x);

  printf ("using %s method\n", gsl_root_fsolver_name (s));

  printf ("%5s [%9s, %9s] %9s %9s %10s %9s\n",
          "iter", "lower", "upper", "root", "actual", "err", "err(est)");

  do
    {
      iterations++;
      status = gsl_root_fsolver_iterate (s);
      r = gsl_root_fsolver_root (s);
      x_lower = gsl_root_fsolver_x_lower (s);
      x_upper = gsl_root_fsolver_x_upper (s);
      status = gsl_root_test_interval (x, 0, 0.001);

      if (status == GSL_SUCCESS)
        printf ("Converged:\n");

      printf ("%5d [%.7f, %.7f] %.7f %.7f %+.7f %.7f\n",
              iterations, x_lower, x_upper,
              r, r_expected, r - r_expected, x_upper - x_lower);
    }
  while (status == GSL_CONTINUE && iterations < max_iterations);

}
Ejemplo n.º 26
0
void
test_f_e (const gsl_root_fsolver_type * T, 
          const char * description, gsl_function *f,
          double lower_bound, double upper_bound, double correct_root)
{
  int status;
  size_t iterations = 0;
  double x_lower, x_upper;
  gsl_root_fsolver * s;

  x_lower = lower_bound;
  x_upper = upper_bound;

  s = gsl_root_fsolver_alloc(T);
  status = gsl_root_fsolver_set(s, f, x_lower, x_upper) ;

  gsl_test (status != GSL_EINVAL, "%s (set), %s", T->name, description);

  if (status == GSL_EINVAL) 
    {
      gsl_root_fsolver_free(s);
      return ;
    }

  do 
    {
      iterations++ ;
      gsl_root_fsolver_iterate (s);
      x_lower = gsl_root_fsolver_x_lower(s);
      x_upper = gsl_root_fsolver_x_lower(s);
      status = gsl_root_test_interval (x_lower, x_upper, 
                                      EPSABS, EPSREL);
    }
  while (status == GSL_CONTINUE && iterations < MAX_ITERATIONS);

  gsl_test (!status, "%s, %s", gsl_root_fsolver_name(s), description, 
            gsl_root_fsolver_root(s) - correct_root);

  gsl_root_fsolver_free(s);
}
Ejemplo n.º 27
0
Chevalier::Chevalier(void)
{

	//constant
	parsec_in_cm = 3.085678e+18; //parsec in cm
	parsec_in_km = 3.085678e+13; //parsec in km
	msun_in_g    = 1.988920e+33;	//msun in g
	year_in_sec  = 3.155760e+07;	//year in s

	//define the GSL root solver to use
	grsolve_T = gsl_root_fsolver_brent;
	grsolve   = gsl_root_fsolver_alloc(grsolve_T);

	//set a default model
	double M_dot_in		=  1.0;		//Mass input in Msun/yr
	double E_dot_in		= 43.0;		//log E in erg / s
	double gamma_in 	= 5./3.;	//gamma = 5/3
	double R_in 		= 200.;		//parsec

	//set the mode parameters
	SetChevalier(M_dot_in, E_dot_in, gamma_in, R_in);
}
Ejemplo n.º 28
0
// Calculates the roots of tan(aL)=-ak/h
const Real FirstPassageGreensFunction1DRad::a_n(const int n) const
{
    // L=length of domain=2*a
    const Real L(this->getL());
    // h=k/D
    const Real h(this->getk()/this->getD());
    Real upper, lower;

    if ( h*L < 1 )
    {
        // 1E-10 to make sure that he doesn't include the transition
        lower = (n-1)*M_PI + 1E-10;
        // (asymptotic) from infinity to -infinity
        upper =  n   *M_PI - 1E-10;
    }
    else
    {
        lower = (n-1)*M_PI + M_PI_2 + 1E-10;
        upper = n    *M_PI + M_PI_2 - 1E-10;
    }

    gsl_function F;
    struct tan_f_params params = { L, h};

    F.function = &FirstPassageGreensFunction1DRad::tan_f;
    F.params = &params;

    // define a new solver type brent
    const gsl_root_fsolver_type* solverType( gsl_root_fsolver_brent );

    // make a new solver instance
    // incl typecast?
    gsl_root_fsolver* solver( gsl_root_fsolver_alloc( solverType ) );
    const Real a( findRoot( F, solver, lower, upper, 1.0*EPSILON, EPSILON,
                            "FirstPassageGreensFunction1DRad::root_tan" ) );
    gsl_root_fsolver_free( solver );
    return a;
}
Ejemplo n.º 29
0
CAMLprim value ml_gsl_root_fsolver_alloc(value t)
{
    struct callback_params *params;
    gsl_root_fsolver *s;

    s = gsl_root_fsolver_alloc(Fsolvertype_val(t));
    params=stat_alloc(sizeof(*params));

    {
        CAMLparam0();
        CAMLlocal1(res);
        res=alloc_small(2, Abstract_tag);
        Field(res, 0) = (value)s;
        Field(res, 1) = (value)params;
        params->gslfun.gf.function = &gslfun_callback;
        params->gslfun.gf.params   = params;
        params->closure = Val_unit;
        params->dbl     = Val_unit;

        register_global_root(&(params->closure));
        CAMLreturn(res);
    }
}
Ejemplo n.º 30
0
  /**
   * GSL's the Brent-Dekker method (referred to here as Brent's method) combines an
   * interpolation strategy with the bisection algorithm. This produces a fast algorithm
   * which is still robust.On each iteration Brent's method approximates the function
   * using an interpolating curve. On the first iteration this is a linear interpolation
   * of the two endpoints. For subsequent iterations the algorithm uses an inverse quadratic
   * fit to the last three points, for higher accuracy. The intercept of the interpolating
   * curve with the x-axis is taken as a guess for the root. If it lies within the bounds
   * of the current interval then the interpolating point is accepted, and used to generate
   * a smaller interval. If the interpolating point is not accepted then the algorithm falls
   * back to an ordinary bisection step.
   *
   * The best estimate of the root is taken from the most recent interpolation or bisection.
   *
   * @author Sharmila Prasad (9/15/2011)
   *
   * @param x_lo      - Initial lower search interval
   * @param x_hi      - Initial higher search interval
   * @param Func      - Continuous function of one variable for the root finders to operate on
   * @param tolerance - Root Error Tolerance
   * @param root      - Output calculated root
   *
   * @return int      - Algorithm status
   */
  int Photometry::brentsolver(double x_lo, double x_hi, gsl_function *Func, double tolerance, double &root){
    int status;
    int iter=0, max_iter=100;
    const gsl_root_fsolver_type *T;
    gsl_root_fsolver *s;

    T = gsl_root_fsolver_brent;
    s = gsl_root_fsolver_alloc (T);
    gsl_root_fsolver_set(s, Func, x_lo, x_hi);

    do {
      iter++;
      status = gsl_root_fsolver_iterate(s);
      root   = gsl_root_fsolver_x_lower(s);
      x_lo   = gsl_root_fsolver_x_lower(s);
      x_hi   = gsl_root_fsolver_x_upper(s);
      status = gsl_root_test_interval(x_lo, x_hi, 0, tolerance);

    } while (status != GSL_SUCCESS && iter < max_iter);

    gsl_root_fsolver_free(s);
    return status;
  }