Ejemplo n.º 1
0
/* Logarithm of normalization factor, Log[N(ell,lambda)].
 * N(ell,lambda) = Product[ lambda^2 + n^2, {n,0,ell} ]
 *               = |Gamma(ell + 1 + I lambda)|^2  lambda sinh(Pi lambda) / Pi
 * Assumes ell >= 0.
 */
static
int
legendre_H3d_lnnorm(const int ell, const double lambda, double * result)
{
  double abs_lam = fabs(lambda);

  if(abs_lam == 0.0) {
    *result = 0.0;
    GSL_ERROR ("error", GSL_EDOM);
  }
  else if(lambda > (ell + 1.0)/GSL_ROOT3_DBL_EPSILON) {
    /* There is a cancellation between the sinh(Pi lambda)
     * term and the log(gamma(ell + 1 + i lambda) in the
     * result below, so we show some care and save some digits.
     * Note that the above guarantees that lambda is large,
     * since ell >= 0. We use Stirling and a simple expansion
     * of sinh.
     */
    double rat = (ell+1.0)/lambda;
    double ln_lam2ell2  = 2.0*log(lambda) + log(1.0 + rat*rat);
    double lg_corrected = -2.0*(ell+1.0) + M_LNPI + (ell+0.5)*ln_lam2ell2 + 1.0/(288.0*lambda*lambda);
    double angle_terms  = lambda * 2.0 * rat * (1.0 - rat*rat/3.0);
    *result = log(abs_lam) + lg_corrected + angle_terms - M_LNPI;
    return GSL_SUCCESS;
  }
  else {
    gsl_sf_result lg_r;
    gsl_sf_result lg_theta;
    gsl_sf_result ln_sinh;
    gsl_sf_lngamma_complex_e(ell+1.0, lambda, &lg_r, &lg_theta);
    gsl_sf_lnsinh_e(M_PI * abs_lam, &ln_sinh);
    *result = log(abs_lam) + ln_sinh.val + 2.0*lg_r.val - M_LNPI;
    return GSL_SUCCESS;
  }
}
Ejemplo n.º 2
0
/* Calculate series for small eta*lambda.
 * Assumes eta > 0, lambda != 0.
 *
 * This is just the defining hypergeometric for the Legendre function.
 *
 * P^{mu}_{-1/2 + I lam}(z) = 1/Gamma(l+3/2) ((z+1)/(z-1)^(mu/2)
 *                            2F1(1/2 - I lam, 1/2 + I lam; l+3/2; (1-z)/2)
 * We use
 *       z = cosh(eta)
 * (z-1)/2 = sinh^2(eta/2)
 *
 * And recall
 * H3d = sqrt(Pi Norm /(2 lam^2 sinh(eta))) P^{-l-1/2}_{-1/2 + I lam}(cosh(eta))
 */
static
int
legendre_H3d_series(const int ell, const double lambda, const double eta,
                    gsl_sf_result * result)
{
  const int nmax = 5000;
  const double shheta = sinh(0.5*eta);
  const double ln_zp1 = M_LN2 + log(1.0 + shheta*shheta);
  const double ln_zm1 = M_LN2 + 2.0*log(shheta);
  const double zeta = -shheta*shheta;
  gsl_sf_result lg_lp32;
  double term = 1.0;
  double sum  = 1.0;
  double sum_err = 0.0;
  gsl_sf_result lnsheta;
  double lnN;
  double lnpre_val, lnpre_err, lnprepow;
  int stat_e;
  int n;

  gsl_sf_lngamma_e(ell + 3.0/2.0, &lg_lp32);
  gsl_sf_lnsinh_e(eta, &lnsheta);
  legendre_H3d_lnnorm(ell, lambda, &lnN);
  lnprepow = 0.5*(ell + 0.5) * (ln_zm1 - ln_zp1);
  lnpre_val  = lnprepow + 0.5*(lnN + M_LNPI - M_LN2 - lnsheta.val) - lg_lp32.val - log(fabs(lambda));
  lnpre_err  = lnsheta.err + lg_lp32.err + GSL_DBL_EPSILON * fabs(lnpre_val);
  lnpre_err += 2.0*GSL_DBL_EPSILON * (fabs(lnN) + M_LNPI + M_LN2);
  lnpre_err += 2.0*GSL_DBL_EPSILON * (0.5*(ell + 0.5) * (fabs(ln_zm1) + fabs(ln_zp1)));
  for(n=1; n<nmax; n++) {
    double aR = n - 0.5;
    term *= (aR*aR + lambda*lambda)*zeta/(ell + n + 0.5)/n;
    sum  += term;
    sum_err += 2.0*GSL_DBL_EPSILON*fabs(term);
    if(fabs(term/sum) < 2.0 * GSL_DBL_EPSILON) break;
  }

  stat_e = gsl_sf_exp_mult_err_e(lnpre_val, lnpre_err, sum, fabs(term)+sum_err, result);
  return GSL_ERROR_SELECT_2(stat_e, (n==nmax ? GSL_EMAXITER : GSL_SUCCESS));
}
Ejemplo n.º 3
0
double gsl_sf_lnsinh(const double x)
{
  EVAL_RESULT(gsl_sf_lnsinh_e(x, &result));
}
Ejemplo n.º 4
0
int
gsl_sf_legendre_H3d_e(const int ell, const double lambda, const double eta,
                         gsl_sf_result * result)
{
  const double abs_lam = fabs(lambda);
  const double lsq     = abs_lam*abs_lam;
  const double xi      = abs_lam * eta;
  const double cosh_eta = cosh(eta);

  /* CHECK_POINTER(result) */

  if(eta < 0.0) {
    DOMAIN_ERROR(result);
  }
  else if(eta > GSL_LOG_DBL_MAX) {
    /* cosh(eta) is too big. */
    OVERFLOW_ERROR(result);
  }
  else if(ell == 0) {
    return gsl_sf_legendre_H3d_0_e(lambda, eta, result);
  }
  else if(ell == 1) {
    return gsl_sf_legendre_H3d_1_e(lambda, eta, result);
  }
  else if(eta == 0.0) {
    result->val = 0.0;
    result->err = 0.0;
    return GSL_SUCCESS;
  }
  else if(xi < 1.0) {
    return legendre_H3d_series(ell, lambda, eta, result);
  }
  else if((ell*ell+lsq)/sqrt(1.0+lsq)/(cosh_eta*cosh_eta) < 5.0*GSL_ROOT3_DBL_EPSILON) {
    /* Large argument.
     */
    gsl_sf_result P;
    double lm;
    int stat_P = gsl_sf_conicalP_large_x_e(-ell-0.5, lambda, cosh_eta, &P, &lm);
    if(P.val == 0.0) {
      result->val = 0.0;
      result->err = 0.0;
      return stat_P;
    }
    else {
      double lnN;
      gsl_sf_result lnsh;
      double ln_abslam;
      double lnpre_val, lnpre_err;
      int stat_e;
      gsl_sf_lnsinh_e(eta, &lnsh);
      legendre_H3d_lnnorm(ell, lambda, &lnN);
      ln_abslam = log(abs_lam);
      lnpre_val  = 0.5*(M_LNPI + lnN - M_LN2 - lnsh.val) - ln_abslam;
      lnpre_err  = lnsh.err;
      lnpre_err += 2.0 * GSL_DBL_EPSILON * (0.5*(M_LNPI + M_LN2 + fabs(lnN)) + fabs(ln_abslam));
      lnpre_err += 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val);
      stat_e = gsl_sf_exp_mult_err_e(lnpre_val + lm, lnpre_err, P.val, P.err, result);
      return GSL_ERROR_SELECT_2(stat_e, stat_P);
    }
  }
  else if(abs_lam > 1000.0*ell*ell) {
    /* Large degree.
     */
    gsl_sf_result P;
    double lm;
    int stat_P = gsl_sf_conicalP_xgt1_neg_mu_largetau_e(ell+0.5,
                                                           lambda,
                                                           cosh_eta, eta,
                                                           &P, &lm);
    if(P.val == 0.0) {
      result->val = 0.0;
      result->err = 0.0;
      return stat_P;
    }
    else {
      double lnN;
      gsl_sf_result lnsh;
      double ln_abslam;
      double lnpre_val, lnpre_err;
      int stat_e;
      gsl_sf_lnsinh_e(eta, &lnsh);
      legendre_H3d_lnnorm(ell, lambda, &lnN);
      ln_abslam = log(abs_lam);
      lnpre_val  = 0.5*(M_LNPI + lnN - M_LN2 - lnsh.val) - ln_abslam;
      lnpre_err  = lnsh.err;
      lnpre_err += GSL_DBL_EPSILON * (0.5*(M_LNPI + M_LN2 + fabs(lnN)) + fabs(ln_abslam));
      lnpre_err += 2.0 * GSL_DBL_EPSILON * fabs(lnpre_val);
      stat_e = gsl_sf_exp_mult_err_e(lnpre_val + lm, lnpre_err, P.val, P.err, result);
      return GSL_ERROR_SELECT_2(stat_e, stat_P);
    }
  }
  else {
    /* Backward recurrence.
     */
    const double coth_eta = 1.0/tanh(eta);
    const double coth_err_mult = fabs(eta) + 1.0;
    gsl_sf_result rH;
    int stat_CF1 = legendre_H3d_CF1_ser(ell, lambda, coth_eta, &rH);
    double Hlm1;
    double Hl    = GSL_SQRT_DBL_MIN;
    double Hlp1  = rH.val * Hl;
    int lp;
    for(lp=ell; lp>0; lp--) {
      double root_term_0 = sqrt(lambda*lambda + (double)lp*lp);
      double root_term_1 = sqrt(lambda*lambda + (lp+1.0)*(lp+1.0));
      Hlm1 = ((2.0*lp + 1.0)*coth_eta*Hl - root_term_1 * Hlp1)/root_term_0;
      Hlp1 = Hl;
      Hl   = Hlm1;
    }

    if(fabs(Hl) > fabs(Hlp1)) {
      gsl_sf_result H0;
      int stat_H0 = gsl_sf_legendre_H3d_0_e(lambda, eta, &H0);
      result->val  = GSL_SQRT_DBL_MIN/Hl * H0.val;
      result->err  = GSL_SQRT_DBL_MIN/fabs(Hl) * H0.err;
      result->err += fabs(rH.err/rH.val) * (ell+1.0) * coth_err_mult * fabs(result->val);
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      return GSL_ERROR_SELECT_2(stat_H0, stat_CF1);
    }
    else {
      gsl_sf_result H1;
      int stat_H1 = gsl_sf_legendre_H3d_1_e(lambda, eta, &H1);
      result->val  = GSL_SQRT_DBL_MIN/Hlp1 * H1.val;
      result->err  = GSL_SQRT_DBL_MIN/fabs(Hlp1) * H1.err;
      result->err += fabs(rH.err/rH.val) * (ell+1.0) * coth_err_mult * fabs(result->val);
      result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
      return GSL_ERROR_SELECT_2(stat_H1, stat_CF1);
    }
  }
}