Ejemplo n.º 1
0
bool ofxGtsSurface::prepareBoolean(ofxGtsSurface &source) {
	if(!loaded || !source.loaded) {
		ofLog(OF_LOG_NOTICE, "Gts surface not loaded, could not perform boolean operation");
		return false;
	}
	
	if(!gts_surface_is_orientable(surface)) {
		ofLog(OF_LOG_ERROR, "Gts surface is not an orientable manifold, could not perform boolean operation");
		return false;
	}
	
	if(gts_surface_is_self_intersecting(surface)) {
		ofLog(OF_LOG_ERROR, "Gts surface self-intersects, could not perform boolean operation");
		return false;
	}
	
	if(!gts_surface_is_orientable(source.surface)) {
		ofLog(OF_LOG_ERROR, "Gts surface is not an orientable manifold, could not perform boolean operation");
		return false;
	}
	
	if(gts_surface_is_self_intersecting(source.surface)) {
		ofLog(OF_LOG_ERROR, "Gts surface self-intersects, could not perform boolean operation");
		return false;
	}
	
	GSList *bboxes = NULL;
	gts_surface_foreach_face(surface, (GtsFunc) prepend_triangle_bbox, &bboxes);
	/* build bounding box tree for first surface */
	tree1 = gts_bb_tree_new(bboxes);
	/* free list of bboxes */
	g_slist_free (bboxes);
	is_open1 = gts_surface_volume(surface) < 0. ? TRUE : FALSE;
	
	/* build bounding boxes for second surface */
	bboxes = NULL;
	gts_surface_foreach_face(source.surface, (GtsFunc) prepend_triangle_bbox, &bboxes);
	/* build bounding box tree for second surface */
	tree2 = gts_bb_tree_new(bboxes);
	/* free list of bboxes */
	g_slist_free (bboxes);
	is_open2 = gts_surface_volume (source.surface) < 0. ? TRUE : FALSE;
	
	si = gts_surface_inter_new (gts_surface_inter_class (), 
								surface, source.surface, tree1, tree2, is_open1, is_open2);
	
	gboolean closed = TRUE;
	gts_surface_inter_check(si, &closed);
	boolPerformed = true;
	if(!closed) {
		ofLog(OF_LOG_NOTICE, "Gts surface is not closed, could not perform boolean operation");
		return false;
	}

	return true;
}
Ejemplo n.º 2
0
	inGtsSurface(py::object _surf, bool _noPad=false): pySurf(_surf), noPad(_noPad), noPadWarned(false) {
		if(!pygts_surface_check(_surf.ptr())) throw std::invalid_argument("Ctor must receive a gts.Surface() instance."); 
		surf=PYGTS_SURFACE_AS_GTS_SURFACE(PYGTS_SURFACE(_surf.ptr()));
	 	if(!gts_surface_is_closed(surf)) throw std::invalid_argument("Surface is not closed.");
		is_open=gts_surface_volume(surf)<0.;
		if((tree=gts_bb_tree_surface(surf))==NULL) throw std::runtime_error("Could not create GTree.");
	}
Ejemplo n.º 3
0
/* coarsen - produce a coarsened version of the input */
int main (int argc, char * argv[])
{
  GtsSurface * s;
  GtsPSurface * ps = NULL;
  gboolean verbose = FALSE;
  gboolean progressive = FALSE;
  gboolean log_cost = FALSE;
  guint number = 0;
  gdouble cmax = 0.0;
  StopOptions stop = NUMBER;
  CostOptions cost = COST_OPTIMIZED;
  MidvertexOptions mid = OPTIMIZED;
  GtsKeyFunc cost_func = NULL;
  GtsCoarsenFunc coarsen_func = NULL;
  GtsStopFunc stop_func = NULL;
  gpointer stop_data = NULL;
  int c = 0;
  GtsFile * fp;
  gdouble fold = PI/180.;
  GtsVolumeOptimizedParams params = { 0.5, 0.5, 0. };
  gpointer coarsen_data = NULL, cost_data = NULL;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"angle", no_argument, NULL, 'a'},
      {"progressive", no_argument, NULL, 'p'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'},
      {"number", required_argument, NULL, 'n'},
      {"length", no_argument, NULL, 'l'},
      {"midvertex", no_argument, NULL, 'm'},
      {"cost", required_argument, NULL, 'c'},
      {"fold", required_argument, NULL, 'f'},
      {"vweight", required_argument, NULL, 'w'},
      {"bweight", required_argument, NULL, 'b'},
      {"sweight", required_argument, NULL, 's'},
      {"log", no_argument, NULL, 'L'}
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvmc:n:lpf:w:b:s:La",
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvmc:n:lpf:w:b:s:La"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'a': /* angle */
      cost = COST_ANGLE;
      break;
    case 'L': /* log */
      log_cost = TRUE;
      break;
    case 'p': /* write progressive surface */
      progressive = TRUE;
      break;
    case 'n': /* stop by number */
      stop = NUMBER;
      number = atoi (optarg);
      break;
    case 'c': /* stop by cost */
      stop = COST;
      cmax = atof (optarg);
      break;
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'm': /* midvertex */
      mid = MIDVERTEX;
      break;
    case 'l': /* cost is length */
      cost = COST_LENGTH;
      break;
    case 'f': /* fold angle */
      fold = atof (optarg)*PI/180.;
      break;
    case 'w': /* volume optimized weight */
      params.volume_weight = atof (optarg);
      break;
    case 'b': /* boundary optimized weight */
      params.boundary_weight = atof (optarg);
      break;
    case 's': /* shape optimized weight */
      params.shape_weight = atof (optarg);
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: coarsen [OPTION] < file.gts\n"
	     "Construct a coarsened version of the input.\n"
	     "\n"
	     "  -n N, --number=N    stop the coarsening process if the number of\n"
	     "                      edges was to fall below N\n"
	     "  -c C, --cost=C      stop the coarsening process if the cost of collapsing\n"
	     "                      an edge is larger than C\n"
	     "  -m    --midvertex   use midvertex as replacement vertex\n"
	     "                      default is volume optimized point\n"
	     "  -l    --length      use length^2 as cost function\n"
	     "                      default is optimized point cost\n"
	     "  -f F, --fold=F      set maximum fold angle to F degrees\n"
	     "                      default is one degree\n"
	     "  -w W, --vweight=W   set weight used for volume optimization\n"
	     "                      default is 0.5\n"
	     "  -b W, --bweight=W   set weight used for boundary optimization\n"
	     "                      default is 0.5\n"
	     "  -s W, --sweight=W   set weight used for shape optimization\n"
	     "                      default is 0.0\n"
	     "  -p    --progressive write progressive surface file\n"
	     "  -L    --log         logs the evolution of the cost\n"
	     "  -v    --verbose     print statistics about the surface\n"
	     "  -h    --help        display this help and exit\n"
	     "\n"
	     "Reports bugs to %s\n",
	     GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `coarsen --help' for more information.\n");
      return 1; /* failure */
    }
  }
  
  /* read surface in */
  s = gts_surface_new (gts_surface_class (),
		       gts_face_class (),
		       gts_edge_class (),
		       gts_vertex_class ());
  fp = gts_file_new (stdin);
  if (gts_surface_read (s, fp)) {
    fputs ("coarsen: the file on standard input is not a valid GTS file\n", 
	   stderr);
    fprintf (stderr, "stdin:%d:%d: %s\n", fp->line, fp->pos, fp->error);
    return 1; /* failure */
  }

  /* if verbose on print stats */
  if (verbose) {
    gts_surface_print_stats (s, stderr);
    fprintf (stderr, "# volume: %g area: %g\n", 
	     gts_surface_volume (s), gts_surface_area (s));
  }

  /* select the right coarsening process */
  switch (cost) {
  case COST_OPTIMIZED: 
    cost_func = (GtsKeyFunc) gts_volume_optimized_cost; 
    cost_data = &params;
    break;
  case COST_LENGTH:
    cost_func = NULL; break;
  case COST_ANGLE:
    cost_func = (GtsKeyFunc) cost_angle; break;
  default:
    g_assert_not_reached ();
  }
  switch (mid) {
  case MIDVERTEX:
    coarsen_func = NULL; 
    break;
  case OPTIMIZED:
    coarsen_func = (GtsCoarsenFunc) gts_volume_optimized_vertex; 
    coarsen_data = &params;
    break;
  default:
    g_assert_not_reached ();
  }
  if (log_cost)
    stop_func = (GtsStopFunc) stop_log_cost;
  else {
    switch (stop) {
    case NUMBER:
      if (verbose)
	stop_func = (GtsStopFunc) stop_number_verbose;
      else
	stop_func = (GtsStopFunc) gts_coarsen_stop_number; 
      stop_data = &number;
      break;
    case COST:
      if (verbose)
	stop_func = (GtsStopFunc) stop_cost_verbose;
      else
	stop_func = (GtsStopFunc) gts_coarsen_stop_cost; 
      stop_data = &cmax;
      break;
    default:
      g_assert_not_reached ();
    }
  }
  if (progressive)
    ps = gts_psurface_new (gts_psurface_class (),
			   s, gts_split_class (),
			   cost_func, cost_data,
			   coarsen_func, coarsen_data,
			   stop_func, stop_data, 
			   fold);
  else
    gts_surface_coarsen (s, 
			 cost_func, cost_data, 
			 coarsen_func, coarsen_data, 
			 stop_func, stop_data, fold);

  /* if verbose on print stats */
  if (verbose) {
    fputc ('\n', stderr);
    gts_surface_print_stats (s, stderr);
    fprintf (stderr, "# volume: %g area: %g\n", 
	     gts_surface_volume (s), gts_surface_area (s));
  }

  /* write resulting surface to standard output */
  if (progressive)
    gts_psurface_write (ps, stdout);
  else
    gts_surface_write (s, stdout);

  return 0; /* success */
}
Ejemplo n.º 4
0
/* inside - check if points are inside a surface */
int main (int argc, char * argv[])
{
  GtsSurface * s1;
  GNode * tree1;
  GtsPoint P;
  FILE * fptr;
  GtsFile * fp;
  int c = 0, cnt = 0;
  double x,y,z;
  gboolean verbose = FALSE;
  gchar * file1, * file2;
  gboolean is_open1, is_inside;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'}
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "shv", 
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "shv"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 'v': /* verbose */
      verbose = TRUE;
      break;
    case 'h': /* help */
      fprintf (stderr,
	"Usage: gtsinside [OPTION] FILE1 FILE2\n"
	"Test whether points are inside a closed surface.\n"
	"FILE1 is a surface file. FILE2 is a text file where each line\n"
	"contains the three coordinates of a point, separated with blanks.\n"
	"\n"
	"  -v      --verbose  print statistics about the surface\n"
	"  -h      --help     display this help and exit\n"
	"\n"
	"Reports bugs to %s\n",
	"https://savannah.nongnu.org/projects/pyformex/");
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `gtsinside --help' for more information.\n");
      return 1; /* failure */
    }
  }

  if (optind >= argc) { /* missing FILE1 */
    fprintf (stderr, 
	     "gtsinside: missing FILE1\n"
	     "Try `inside --help' for more information.\n");
    return 1; /* failure */
  }
  file1 = argv[optind++];

  if (optind >= argc) { /* missing FILE2 */
    fprintf (stderr, 
	     "gtsinside: missing FILE2\n"
	     "Try `gtsinside --help' for more information.\n");
    return 1; /* failure */
  }
  file2 = argv[optind++];

  /* open first file */
  if ((fptr = fopen (file1, "rt")) == NULL) {
    fprintf (stderr, "gtsinside: can not open file `%s'\n", file1);
    return 1;
  }
  /* reads in first surface file */
  s1 = GTS_SURFACE (gts_object_new (GTS_OBJECT_CLASS (gts_surface_class ())));
  fp = gts_file_new (fptr);
  if (gts_surface_read (s1, fp)) {
    fprintf (stderr, "gtsinside: `%s' is not a valid GTS surface file\n", 
	     file1);
    fprintf (stderr, "%s:%d:%d: %s\n", file1, fp->line, fp->pos, fp->error);
    return 1;
  }
  gts_file_destroy (fp);
  fclose (fptr);

  /* open second file */
  if ((fptr = fopen (file2, "rt")) == NULL) {
    fprintf (stderr, "gtsinside: can not open file `%s'\n", file2);
    return 1;
  }

  /* display summary information about the surface */
  if (verbose) {
    gts_surface_print_stats (s1, stderr);
  }

  /* check that the surface is an orientable manifold */
  if (!gts_surface_is_orientable (s1)) {
    fprintf (stderr, "gtsinside: surface `%s' is not an orientable manifold\n",
  	     file1);
    return 1;
  }

  /* build bounding box tree for the surface */
  tree1 = gts_bb_tree_surface (s1);
  is_open1 = gts_surface_volume (s1) < 0. ? TRUE : FALSE;

  /* scan file 2 for points and determine if it they are inside surface */
  while ( fscanf(fptr, "%lg %lg %lg", &x, &y, &z) == 3 ) {
    P.x = x; P.y = y; P.z = z;
    is_inside = gts_point_is_inside_surface(&P,tree1,is_open1);
    if (is_inside) printf("%d\n",cnt);
    //printf("Point %d: %lf, %lf, %lf: %d\n",cnt,P.x,P.y,P.z,is_inside);
    cnt++;
  }
  if ( !feof(fptr) ) {
    fprintf (stderr, "gtsinside: error while reading points from file `%s'\n",
  	     file2);
    return 1;
  }
  fclose (fptr);

  /* destroy surface */
  gts_object_destroy (GTS_OBJECT (s1));

  /* destroy bounding box tree (including bounding boxes) */
  gts_bb_tree_destroy (tree1, TRUE);

  return 0;
}
Ejemplo n.º 5
0
/* set - compute set operations between surfaces */
int main (int argc, char * argv[])
{
  GtsSurface * s1, * s2, * s3;
  GtsSurfaceInter * si;
  GNode * tree1, * tree2;
  FILE * fptr;
  GtsFile * fp;
  int c = 0;
  gboolean verbose = TRUE;
  gboolean inter = FALSE;
  gboolean check_self_intersection = FALSE;
  gchar * operation, * file1, * file2;
  gboolean closed = TRUE, is_open1, is_open2;

  if (!setlocale (LC_ALL, "POSIX"))
    g_warning ("cannot set locale to POSIX");

  /* parse options using getopt */
  while (c != EOF) {
#ifdef HAVE_GETOPT_LONG
    static struct option long_options[] = {
      {"inter", no_argument, NULL, 'i'},
      {"self", no_argument, NULL, 's'},
      {"help", no_argument, NULL, 'h'},
      {"verbose", no_argument, NULL, 'v'}
    };
    int option_index = 0;
    switch ((c = getopt_long (argc, argv, "hvis", 
			      long_options, &option_index))) {
#else /* not HAVE_GETOPT_LONG */
    switch ((c = getopt (argc, argv, "hvis"))) {
#endif /* not HAVE_GETOPT_LONG */
    case 's': /* self */
      check_self_intersection = TRUE;
      break;
    case 'i': /* inter */
      inter = TRUE;
      break;
    case 'v': /* verbose */
      verbose = FALSE;
      break;
    case 'h': /* help */
      fprintf (stderr,
             "Usage: set [OPTION] OPERATION FILE1 FILE2\n"
             "Compute set operations between surfaces, where OPERATION is either.\n"
             "union, inter, diff.\n"
	     "\n"
             "  -i      --inter    output an OOGL (Geomview) representation of the curve\n"
             "                     intersection of the surfaces\n"
	     "  -s      --self     checks that the surfaces are not self-intersecting\n"
             "                     if one of them is, the set of self-intersecting faces\n"
	     "                     is written (as a GtsSurface) on standard output\n"
	     "  -v      --verbose  do not print statistics about the surface\n"
	     "  -h      --help     display this help and exit\n"
	     "\n"
	     "Reports bugs to %s\n",
	     GTS_MAINTAINER);
      return 0; /* success */
      break;
    case '?': /* wrong options */
      fprintf (stderr, "Try `set --help' for more information.\n");
      return 1; /* failure */
    }
  }

  if (optind >= argc) { /* missing OPERATION */
    fprintf (stderr, 
	     "set: missing OPERATION\n"
	     "Try `set --help' for more information.\n");
    return 1; /* failure */
  }
  operation = argv[optind++];

  if (optind >= argc) { /* missing FILE1 */
    fprintf (stderr, 
	     "set: missing FILE1\n"
	     "Try `set --help' for more information.\n");
    return 1; /* failure */
  }
  file1 = argv[optind++];

  if (optind >= argc) { /* missing FILE2 */
    fprintf (stderr, 
	     "set: missing FILE2\n"
	     "Try `set --help' for more information.\n");
    return 1; /* failure */
  }
  file2 = argv[optind++];

  /* open first file */
  if ((fptr = fopen (file1, "rt")) == NULL) {
    fprintf (stderr, "set: can not open file `%s'\n", file1);
    return 1;
  }
  /* reads in first surface file */
  s1 = GTS_SURFACE (gts_object_new (GTS_OBJECT_CLASS (gts_surface_class ())));
  fp = gts_file_new (fptr);
  if (gts_surface_read (s1, fp)) {
    fprintf (stderr, "set: `%s' is not a valid GTS surface file\n", 
	     file1);
    fprintf (stderr, "%s:%d:%d: %s\n", file1, fp->line, fp->pos, fp->error);
    return 1;
  }
  gts_file_destroy (fp);
  fclose (fptr);

  /* open second file */
  if ((fptr = fopen (file2, "rt")) == NULL) {
    fprintf (stderr, "set: can not open file `%s'\n", file2);
    return 1;
  }
  /* reads in second surface file */
  s2 = GTS_SURFACE (gts_object_new (GTS_OBJECT_CLASS (gts_surface_class ())));
  fp = gts_file_new (fptr);
  if (gts_surface_read (s2, fp)) {
    fprintf (stderr, "set: `%s' is not a valid GTS surface file\n", 
	     file2);
    fprintf (stderr, "%s:%d:%d: %s\n", file2, fp->line, fp->pos, fp->error);
    return 1;
  }
  gts_file_destroy (fp);
  fclose (fptr);

  /* display summary information about both surfaces */
  if (verbose) {
    gts_surface_print_stats (s1, stderr);
    gts_surface_print_stats (s2, stderr);
  }

  /* check that the surfaces are orientable manifolds */
  if (!gts_surface_is_orientable (s1)) {
    fprintf (stderr, "set: surface `%s' is not an orientable manifold\n",
	     file1);
    return 1;
  }
  if (!gts_surface_is_orientable (s2)) {
    fprintf (stderr, "set: surface `%s' is not an orientable manifold\n",
	     file2);
    return 1;
  }

  /* check that the surfaces are not self-intersecting */
  if (check_self_intersection) {
    GtsSurface * self_intersects;

    self_intersects = gts_surface_is_self_intersecting (s1);
    if (self_intersects != NULL) {
      fprintf (stderr, "set: surface `%s' is self-intersecting\n", file1);
      if (verbose)
	gts_surface_print_stats (self_intersects, stderr);
      gts_surface_write (self_intersects, stdout);
      gts_object_destroy (GTS_OBJECT (self_intersects));
      return 1;
    }
    self_intersects = gts_surface_is_self_intersecting (s2);
    if (self_intersects != NULL) {
      fprintf (stderr, "set: surface `%s' is self-intersecting\n", file2);
      if (verbose)
	gts_surface_print_stats (self_intersects, stderr);
      gts_surface_write (self_intersects, stdout);
      gts_object_destroy (GTS_OBJECT (self_intersects));
      return 1;
    }
  }

  /* build bounding box tree for first surface */
  tree1 = gts_bb_tree_surface (s1);
  is_open1 = gts_surface_volume (s1) < 0. ? TRUE : FALSE;

  /* build bounding box tree for second surface */
  tree2 = gts_bb_tree_surface (s2);
  is_open2 = gts_surface_volume (s2) < 0. ? TRUE : FALSE;

  si = gts_surface_inter_new (gts_surface_inter_class (),
			      s1, s2, tree1, tree2, is_open1, is_open2);
  g_assert (gts_surface_inter_check (si, &closed));
  if (!closed) {
    fprintf (stderr,
	     "set: the intersection of `%s' and `%s' is not a closed curve\n",
	     file1, file2);
    return 1;
  }

  s3 = gts_surface_new (gts_surface_class (),
			gts_face_class (),
			gts_edge_class (),
			gts_vertex_class ());  
  if (!strcmp (operation, "union")) {
    gts_surface_inter_boolean (si, s3, GTS_1_OUT_2);
    gts_surface_inter_boolean (si, s3, GTS_2_OUT_1);
  }
  else if (!strcmp (operation, "inter")) {
    gts_surface_inter_boolean (si, s3, GTS_1_IN_2);
    gts_surface_inter_boolean (si, s3, GTS_2_IN_1);
  }
  else if (!strcmp (operation, "diff")) {
    gts_surface_inter_boolean (si, s3, GTS_1_OUT_2);
    gts_surface_inter_boolean (si, s3, GTS_2_IN_1);
    gts_surface_foreach_face (si->s2, (GtsFunc) gts_triangle_revert, NULL);
    gts_surface_foreach_face (s2, (GtsFunc) gts_triangle_revert, NULL);
  }
  else {
    fprintf (stderr, 
	     "set: operation `%s' unknown\n"
	     "Try `set --help' for more information.\n", 
	     operation);
    return 1;
  }
  
  /* check that the resulting surface is not self-intersecting */
  if (check_self_intersection) {
    GtsSurface * self_intersects;

    self_intersects = gts_surface_is_self_intersecting (s3);
    if (self_intersects != NULL) {
      fprintf (stderr, "set: the resulting surface is self-intersecting\n");
      if (verbose)
	gts_surface_print_stats (self_intersects, stderr);
      gts_surface_write (self_intersects, stdout);
      gts_object_destroy (GTS_OBJECT (self_intersects));
      return 1;
    }
  }
  /* display summary information about the resulting surface */
  if (verbose)
    gts_surface_print_stats (s3, stderr);
  /* write resulting surface to standard output */
  if (inter) {
    printf ("LIST {\n");
    g_slist_foreach (si->edges, (GFunc) write_edge, stdout);
    printf ("}\n");
  }
  else {
    GTS_POINT_CLASS (gts_vertex_class ())->binary = TRUE;
    gts_surface_write (s3, stdout);
  }

  /* destroy surfaces */
  gts_object_destroy (GTS_OBJECT (s1));
  gts_object_destroy (GTS_OBJECT (s2));
  gts_object_destroy (GTS_OBJECT (s3));
  gts_object_destroy (GTS_OBJECT (si));

  /* destroy bounding box trees (including bounding boxes) */
  gts_bb_tree_destroy (tree1, TRUE);
  gts_bb_tree_destroy (tree2, TRUE);  

  return 0;
}