Ejemplo n.º 1
0
/*
 * Add an approximation of an arc to the current path.
 * The current point of the path is the initial point of the arc;
 * parameters are the final point of the arc
 * and the point at which the extended tangents meet.
 * We require that the arc be less than a semicircle.
 * The arc may go either clockwise or counterclockwise.
 * The approximation is a very simple one: a single curve
 * whose other two control points are a fraction F of the way
 * to the intersection of the tangents, where
 *      F = (4/3)(1 / (1 + sqrt(1+(d/r)^2)))
 * where r is the radius and d is the distance from either tangent
 * point to the intersection of the tangents.  This produces
 * a curve whose center point, as well as its ends, lies on
 * the desired arc.
 *
 * Because F has to be computed in user space, we let the client
 * compute it and pass it in as an argument.
 */
int
gx_path_add_partial_arc_notes(gx_path * ppath,
fixed x3, fixed y3, fixed xt, fixed yt, floatp fraction, segment_notes notes)
{
    fixed x0 = ppath->position.x, y0 = ppath->position.y;

    vd_curveto(x0 + (fixed) ((xt - x0) * fraction),
                                   y0 + (fixed) ((yt - y0) * fraction),
                                   x3 + (fixed) ((xt - x3) * fraction),
                                   y3 + (fixed) ((yt - y3) * fraction),
                                   x3, y3);
    return gx_path_add_curve_notes(ppath,
                                   x0 + (fixed) ((xt - x0) * fraction),
                                   y0 + (fixed) ((yt - y0) * fraction),
                                   x3 + (fixed) ((xt - x3) * fraction),
                                   y3 + (fixed) ((yt - y3) * fraction),
                                   x3, y3, notes | sn_from_arc);
}
Ejemplo n.º 2
0
static void gx_ttfExport__CurveTo(ttfExport *self, FloatPoint *p0, FloatPoint *p1, FloatPoint *p2)
{
    gx_ttfExport *e = (gx_ttfExport *)self;

    if (!e->error) {
        if (e->monotonize) {
            curve_segment s;

            s.notes = sn_none;
            s.p1.x = float2fixed(p0->x), s.p1.y = float2fixed(p0->y),
            s.p2.x = float2fixed(p1->x), s.p2.y = float2fixed(p1->y),
            s.pt.x = float2fixed(p2->x), s.pt.y = float2fixed(p2->y);
            e->error = gx_curve_monotonize(e->path, &s);
        } else
            e->error = gx_path_add_curve_notes(e->path, float2fixed(p0->x), float2fixed(p0->y),
                                     float2fixed(p1->x), float2fixed(p1->y),
                                     float2fixed(p2->x), float2fixed(p2->y), sn_none);
    }
}
Ejemplo n.º 3
0
/*
 * Reverse a path.  We know ppath != ppath_old.
 * NOTE: in releases 5.01 and earlier, the implicit line added by closepath
 * became the first segment of the reversed path.  Starting in release
 * 5.02, the code follows the Adobe implementation (and LanguageLevel 3
 * specification), in which this line becomes the *last* segment of the
 * reversed path.  This can produce some quite unintuitive results.
 *
 * The order of the subpaths is unspecified in the PLRM, but the CPSI
 * reverses the subpaths, and the CET (11-05 p6, test 3) tests for it.
 */
int
gx_path_copy_reversed(const gx_path * ppath_old, gx_path * ppath)
{
    const subpath *psub = ppath_old->current_subpath;

#ifdef DEBUG
    if (gs_debug_c('P'))
	gx_dump_path(ppath_old, "before reversepath");
#endif
 nsp:
    if (psub) {
	const segment *prev = psub->last;
	const segment *pseg;
	segment_notes notes =
	    (prev == (const segment *)psub ? sn_none :
	     psub->next->notes);
	segment_notes prev_notes;
	int code;

	if (!psub->is_closed) {
	    code = gx_path_add_point(ppath, prev->pt.x, prev->pt.y);
	    if (code < 0)
		return code;
	}
	/*
	 * The do ... while structure of this loop is artificial,
	 * designed solely to keep compilers from complaining about
	 * 'statement not reached' or 'end-of-loop code not reached'.
	 * The normal exit from this loop is the goto statement in
	 * the s_start arm of the switch.
	 */
	do {
	    pseg = prev;
	    prev_notes = notes;
	    prev = pseg->prev;
	    notes = pseg->notes;
	    prev_notes = (prev_notes & sn_not_first) |
		(notes & ~sn_not_first);
	    switch (pseg->type) {
		case s_start:
		    /* Finished subpath */
		    if (psub->is_closed) {
			code =
			    gx_path_close_subpath_notes(ppath, prev_notes);
			if (code < 0)
			    return code;
		    }
		    do {
			psub = (const subpath *)psub->prev;
		    } while (psub && psub->type != s_start);
		    goto nsp;
		case s_curve:
		    {
			const curve_segment *pc =
			(const curve_segment *)pseg;

			code = gx_path_add_curve_notes(ppath,
						       pc->p2.x, pc->p2.y,
						       pc->p1.x, pc->p1.y,
					prev->pt.x, prev->pt.y, prev_notes);
			break;
		    }
		case s_line:
		    code = gx_path_add_line_notes(ppath,
					prev->pt.x, prev->pt.y, prev_notes);
		    break;
		case s_line_close:
		    /* Skip the closing line. */
		    code = gx_path_add_point(ppath, prev->pt.x,
					     prev->pt.y);
		    break;
		default:	/* not possible */
		    return_error(gs_error_Fatal);
	    }
	} while (code >= 0);
	return code;		/* only reached if code < 0 */
    }
#undef sn_not_end
    /*
     * In the Adobe implementations, reversepath discards a trailing
     * moveto unless the path consists only of a moveto.  We reproduce
     * this behavior here, even though we consider it a bug.
     */
    if (ppath_old->first_subpath == 0 &&
	path_last_is_moveto(ppath_old)
	) {
	int code = gx_path_add_point(ppath, ppath_old->position.x,
				     ppath_old->position.y);

	if (code < 0)
	    return code;
    }
#ifdef DEBUG
    if (gs_debug_c('P'))
	gx_dump_path(ppath, "after reversepath");
#endif
    return 0;
}
Ejemplo n.º 4
0
/* Internal routine for adding an arc to the path. */
static int
arc_add(const arc_curve_params_t * arc, bool is_quadrant)
{
    gx_path *path = arc->ppath;
    gs_imager_state *pis = arc->pis;
    double x0 = arc->p0.x, y0 = arc->p0.y;
    double xt = arc->pt.x, yt = arc->pt.y;
    floatp fraction;
    gs_fixed_point p0, p2, p3, pt;
    int code;

    if ((arc->action != arc_nothing &&
#if !PRECISE_CURRENTPOINT
	 (code = gs_point_transform2fixed(&pis->ctm, x0, y0, &p0)) < 0) ||
	(code = gs_point_transform2fixed(&pis->ctm, xt, yt, &pt)) < 0 ||
	(code = gs_point_transform2fixed(&pis->ctm, arc->p3.x, arc->p3.y, &p3)) < 0
#else
	 (code = gs_point_transform2fixed_rounding(&pis->ctm, x0, y0, &p0)) < 0) ||
	(code = gs_point_transform2fixed_rounding(&pis->ctm, xt, yt, &pt)) < 0 ||
	(code = gs_point_transform2fixed_rounding(&pis->ctm, arc->p3.x, arc->p3.y, &p3)) < 0
#endif
	)
	return code;
#if PRECISE_CURRENTPOINT
    if (!path_position_valid(path))
	gs_point_transform(arc->p0.x, arc->p0.y, &ctm_only(arc->pis), &pis->subpath_start);
#endif
    code = (arc->action == arc_nothing ?
	  (p0.x = path->position.x, p0.y = path->position.y, 0) :
	  arc->action == arc_lineto && path_position_valid(path) ?
	  gx_path_add_line(path, p0.x, p0.y) :
	  /* action == arc_moveto, or lineto with no current point */
	  gx_path_add_point(path, p0.x, p0.y));
    if (code < 0)
	return code;
    /* Compute the fraction coefficient for the curve. */
    /* See gx_path_add_partial_arc for details. */
    if (is_quadrant) {
	/* one of |dx| and |dy| is r, the other is zero */
	fraction = quarter_arc_fraction;
	if (arc->fast_quadrant > 0) {
	    /*
	     * The CTM is well-behaved, and we have pre-calculated the delta
	     * from the circumference points to the control points.
	     */
	    fixed delta = arc->quadrant_delta;

	    if (pt.x != p0.x)
		p0.x = (pt.x > p0.x ? p0.x + delta : p0.x - delta);
	    if (pt.y != p0.y)
		p0.y = (pt.y > p0.y ? p0.y + delta : p0.y - delta);
	    p2.x = (pt.x == p3.x ? p3.x :
		    pt.x > p3.x ? p3.x + delta : p3.x - delta);
	    p2.y = (pt.y == p3.y ? p3.y :
		    pt.y > p3.y ? p3.y + delta : p3.y - delta);
	    goto add;
	}
    } else {
	double r = arc->radius;
	floatp dx = xt - x0, dy = yt - y0;
	double dist = dx * dx + dy * dy;
	double r2 = r * r;

	if (dist >= r2 * 1.0e8)	/* almost zero radius; */
	    /* the >= catches dist == r == 0 */
	    fraction = 0.0;
	else
	    fraction = (4.0 / 3.0) / (1 + sqrt(1 + dist / r2));
    }
    p0.x += (fixed)((pt.x - p0.x) * fraction);
    p0.y += (fixed)((pt.y - p0.y) * fraction);
    p2.x = p3.x + (fixed)((pt.x - p3.x) * fraction);
    p2.y = p3.y + (fixed)((pt.y - p3.y) * fraction);
add:
    if_debug8('r',
	      "[r]Arc f=%f p0=(%f,%f) pt=(%f,%f) p3=(%f,%f) action=%d\n",
	      fraction, x0, y0, xt, yt, arc->p3.x, arc->p3.y,
	      (int)arc->action);

    /* Open-code gx_path_add_partial_arc_notes */
    return gx_path_add_curve_notes(path, p0.x, p0.y, p2.x, p2.y, p3.x, p3.y,
				   arc->notes | sn_from_arc);
}