Ejemplo n.º 1
0
int main() {
  
  igraph_t g;
  int ret;

  /* empty directed graph, zero vertices */
  igraph_empty(&g, 0, 1);
  if (igraph_vcount(&g) != 0) {
    return 1;
  }
  if (igraph_ecount(&g) != 0) {
    return 2;
  }
  igraph_destroy(&g);
  
  /* empty undirected graph, zero vertices */
  igraph_empty(&g, 0, 0);
  if (igraph_vcount(&g) != 0) {
    return 3;
  }
  if (igraph_ecount(&g) != 0) {
    return 4;
  }
  igraph_destroy(&g);

  /* empty directed graph, 20 vertices */
  igraph_empty(&g, 20, 1);
  if (igraph_vcount(&g) != 20) {
    return 5;
  }
  if (igraph_ecount(&g) != 0) {
    return 6;
  }
  igraph_destroy(&g);
  
  /* empty undirected graph, 30 vertices */
  igraph_empty(&g, 30, 0);
  if (igraph_vcount(&g) != 30) {
    return 7;
  }
  if (igraph_ecount(&g) != 0) {
    return 8;
  }
  igraph_destroy(&g);

  /* error: negative number of vertices */
  igraph_set_error_handler(igraph_error_handler_ignore);
  ret=igraph_empty(&g, -1, 0);
  if (ret != IGRAPH_EINVAL) {
    return 9;
  }

  return 0;
}
Ejemplo n.º 2
0
	static void barabasi_game(igraph_t *graph, int population, int param, bool isDirected) {
		vector<double> p (2*param+1, isDirected);
		vector<int> id;
		int i, j, from, to;
		igraph_empty(graph, population, isDirected);
		for (i = 0; i < 2*param+1; i++) {
			for (j = i+1; j < 2*param+1; j++) {
				from = j;
				to = i;
				igraph_add_edge (graph, from, to);
				p[to]++;
				if (!isDirected) p[from]++;
			}
		}
		int k = 0;
		for (i = 0; i < 2*param+1; i++)	k += p[i];
		fprintf (stderr, " awawa %lf\n", k/(double)(2*param+1));
		for (; i < population; i++) {
			Statistic::sample(p, param, id);
			p.push_back(isDirected);
			for (j = 0; j < param; j++) {
				from = i;
				to = id[j];
				igraph_add_edge (graph, from, to);
				p[to]++;
				if (!isDirected)	p[from]++;
			}
		}
		k = 0;
		for (i = 0; i < population; i++)	k += p[i];
	}
Ejemplo n.º 3
0
int main() {
  
  igraph_t g;
  igraph_vector_t v, weights;
  long int i;
  igraph_real_t value;
  igraph_arpack_options_t options;
  
  igraph_star(&g, 100, IGRAPH_STAR_UNDIRECTED, 0);

  igraph_arpack_options_init(&options);
  igraph_vector_init(&v, 0);
  igraph_eigenvector_centrality(&g, &v, &value, /*directed=*/ 0, 
				/*scale=*/0, /*weights=*/0, 
				&options);

  if (options.info != 0) {
    return 1;
  }

  for (i=0; i<igraph_vector_size(&v); i++) {
    printf(" %.3f", fabs(VECTOR(v)[i]));
  }
  printf("\n");
  
  igraph_destroy(&g);

  /* Special cases: check for empty graph */
  igraph_empty(&g, 10, 0);
  igraph_eigenvector_centrality(&g, &v, &value, 0, 0, 0, &options);
  if (value != 0.0) {
    return 1;
  }
  for (i=0; i<igraph_vector_size(&v); i++) {
    printf(" %.2f", fabs(VECTOR(v)[i]));
  }
  printf("\n");
  igraph_destroy(&g);

  /* Special cases: check for full graph, zero weights */
  igraph_full(&g, 10, 0, 0);
  igraph_vector_init(&weights, 45);
  igraph_vector_fill(&weights, 0);
  igraph_eigenvector_centrality(&g, &v, &value, 0, 0, &weights, &options);
  igraph_vector_destroy(&weights);
  if (value != 0.0) {
    return 2;
  }
  for (i=0; i<igraph_vector_size(&v); i++) {
    printf(" %.2f", fabs(VECTOR(v)[i]));
  }
  printf("\n");
  igraph_destroy(&g);

  igraph_vector_destroy(&v);

  return 0;
}
Ejemplo n.º 4
0
/* Erdos-Renyi : G(n,M)
*/
igraph_t *ggen_generate_erdos_gnm(gsl_rng *r, unsigned long n, unsigned long m)
{
    igraph_matrix_t adj;
    igraph_t *g = NULL;
    int err;
    unsigned long i,j;
    unsigned long added_edges = 0;

    ggen_error_start_stack();
    if(r == NULL)
        GGEN_SET_ERRNO(GGEN_EINVAL);

    if(m > (n*(n-1)/2))
        GGEN_SET_ERRNO(GGEN_EINVAL);

    g = malloc(sizeof(igraph_t));
    GGEN_CHECK_ALLOC(g);
    GGEN_FINALLY3(free,g,1);

    if(m == 0 || n <= 1)
    {
        GGEN_CHECK_IGRAPH(igraph_empty(g,n,1));
        goto end;
    }
    if(m == (n*(n-1))/2)
    {
        GGEN_CHECK_IGRAPH(igraph_full_citation(g,n,1));
        goto end;
    }

    GGEN_CHECK_IGRAPH(igraph_matrix_init(&adj,n,n));
    GGEN_FINALLY(igraph_matrix_destroy,&adj);

    igraph_matrix_null(&adj);

    while(added_edges < m) {
        GGEN_CHECK_GSL_DO(i = gsl_rng_uniform_int(r,n));
        GGEN_CHECK_GSL_DO(j = gsl_rng_uniform_int(r,n));

        if(i < j && igraph_matrix_e(&adj,i,j) == 0)
        {
            igraph_matrix_set(&adj,i,j,1);
            added_edges++;
        }

    }

    GGEN_CHECK_IGRAPH(igraph_adjacency(g,&adj,IGRAPH_ADJ_DIRECTED));
end:
    ggen_error_clean(1);
    return g;
ggen_error_label:
    return NULL;
}
Ejemplo n.º 5
0
VALUE cIGraph_alloc(VALUE klass){

  igraph_t *graph = malloc(sizeof(igraph_t));
  VALUE obj;

  igraph_empty(graph, 0, 1);

  obj = Data_Wrap_Struct(klass, cIGraph_mark, cIGraph_free, graph);

  return obj;
  
}
int main() {

  igraph_t g;
  igraph_vector_t v;
  int ret;

  /* without edges */
  igraph_empty(&g, 5, IGRAPH_DIRECTED);
  igraph_add_vertices(&g, 2, 0);
  igraph_add_vertices(&g, 3, 0);
  igraph_add_vertices(&g, 1, 0);
  igraph_add_vertices(&g, 4, 0);
  if (igraph_vcount(&g) != 15)  {
    return 1;
  }
  igraph_delete_vertices(&g, igraph_vss_1(2));
  if (igraph_vcount(&g) != 14)  {
    return 2;
  }
  igraph_destroy(&g);
   
  igraph_vector_init(&v, 8);
  VECTOR(v)[0]=0; VECTOR(v)[1]=1;
  VECTOR(v)[2]=1; VECTOR(v)[3]=2;
  VECTOR(v)[4]=2; VECTOR(v)[5]=3;
  VECTOR(v)[6]=2; VECTOR(v)[7]=2;
  igraph_create(&g, &v, 0, 0);
  igraph_vector_destroy(&v);

  /* resize vector */
  igraph_delete_vertices(&g, igraph_vss_1(2));
  if (igraph_vcount(&g) != 3) {
    return 3;
  }
  if (igraph_ecount(&g) != 1) {
    return 4;
  }

  /* error test */
  igraph_set_error_handler(igraph_error_handler_ignore);
  ret=igraph_delete_vertices(&g, igraph_vss_1(3));
  if (ret != IGRAPH_EINVVID) {
    return 5;
  }
  
  igraph_destroy(&g);

  return 0;
}
Ejemplo n.º 7
0
int igraph_create_bipartite(igraph_t *graph, const igraph_vector_bool_t *types,
			    const igraph_vector_t *edges, 
			    igraph_bool_t directed) {

  igraph_integer_t no_of_nodes=
    (igraph_integer_t) igraph_vector_bool_size(types);
  long int no_of_edges=igraph_vector_size(edges);
  igraph_real_t min_edge=0, max_edge=0;
  igraph_bool_t min_type=0, max_type=0;
  long int i;

  if (no_of_edges % 2 != 0) {
    IGRAPH_ERROR("Invalid (odd) edges vector", IGRAPH_EINVEVECTOR);
  }
  no_of_edges /= 2;
  
  if (no_of_edges != 0) {
    igraph_vector_minmax(edges, &min_edge, &max_edge);
  }
  if (min_edge < 0 || max_edge >= no_of_nodes) {
    IGRAPH_ERROR("Invalid (negative) vertex id", IGRAPH_EINVVID);
  }

  /* Check types vector */
  if (no_of_nodes != 0) {
    igraph_vector_bool_minmax(types, &min_type, &max_type);
    if (min_type < 0 || max_type > 1) {
      IGRAPH_WARNING("Non-binary type vector when creating a bipartite graph");
    }
  }

  /* Check bipartiteness */
  for (i=0; i<no_of_edges*2; i+=2) {
    long int from=(long int) VECTOR(*edges)[i];
    long int to=(long int) VECTOR(*edges)[i+1];
    long int t1=VECTOR(*types)[from];
    long int t2=VECTOR(*types)[to];
    if ( (t1 && t2) || (!t1 && !t2) ) {
      IGRAPH_ERROR("Invalid edges, not a bipartite graph", IGRAPH_EINVAL);
    }
  }
  
  IGRAPH_CHECK(igraph_empty(graph, no_of_nodes, directed));
  IGRAPH_FINALLY(igraph_destroy, graph);
  IGRAPH_CHECK(igraph_add_edges(graph, edges, 0));
  
  IGRAPH_FINALLY_CLEAN(1);
  return 0;
}
Ejemplo n.º 8
0
int main() {
    igraph_t graph;
    igraph_vector_t walk, weights;
    igraph_integer_t ec, i;

    igraph_rng_seed(igraph_rng_default(), 137);

    igraph_vector_init(&walk, 0);
    igraph_vector_init(&weights, 0);

    /* This directed graph has loop edges.
       It also has multi-edges when considered as undirected. */
    igraph_de_bruijn(&graph, 3, 2);
    ec = igraph_ecount(&graph);

    /* unweighted, directed */
    igraph_random_edge_walk(&graph, NULL, &walk, 0, IGRAPH_OUT, 1000, IGRAPH_RANDOM_WALK_STUCK_RETURN);
    assert(igraph_vector_size(&walk) == 1000);

    /* unweighted, undirected */
    igraph_random_edge_walk(&graph, NULL, &walk, 0, IGRAPH_ALL, 1000, IGRAPH_RANDOM_WALK_STUCK_RETURN);
    assert(igraph_vector_size(&walk) == 1000);

    igraph_vector_resize(&weights, ec);
    for (i=0; i < ec; ++i)
        VECTOR(weights)[i] = igraph_rng_get_unif01(igraph_rng_default());

    /* weighted, directed */
    igraph_random_edge_walk(&graph, &weights, &walk, 0, IGRAPH_OUT, 1000, IGRAPH_RANDOM_WALK_STUCK_RETURN);
    assert(igraph_vector_size(&walk) == 1000);

    /* weighted, undirecetd */
    igraph_random_edge_walk(&graph, &weights, &walk, 0, IGRAPH_ALL, 1000, IGRAPH_RANDOM_WALK_STUCK_RETURN);
    assert(igraph_vector_size(&walk) == 1000);

    igraph_destroy(&graph);

    /* 1-vertex graph, should get stuck */
    igraph_empty(&graph, 1, /* directed = */ 0);
    igraph_random_edge_walk(&graph, NULL, &walk, 0, IGRAPH_OUT, 1000, IGRAPH_RANDOM_WALK_STUCK_RETURN);
    assert(igraph_vector_size(&walk) == 0);
    igraph_destroy(&graph);

    igraph_vector_destroy(&weights);
    igraph_vector_destroy(&walk);

    return 0;
}
Ejemplo n.º 9
0
int GraphRepresentation::buildIGraphTopology() {
    int source_vertex_id, destination_vertex_id;
    igraph_i_set_attribute_table(&igraph_cattribute_table);
    igraph_empty(&igraph, 0, true);
    //cout << "iGraph: number of nodes: " << dm->number_of_nodes << endl;
    //cout << "iGraph: number number_of_connections nodes: " << dm->number_of_connections << endl;
    for (int i = 0; i < dm->network_nodes.size(); i++) {
        NetworkNode *nn = dm->network_nodes[i];
        for (int j = 0; j < nn->connections.size(); j++) {
            NetworkConnection *nc = nn->connections[j];
            map <string, int>::iterator index_it;
            /*find that node - if exists*/
            index_it = reverse_node_index.find(nc->src_label);
            /*check if the source node exists in the reverse index*/
            if (index_it == reverse_node_index.end()) {
                /*it does not exist...add it*/
                source_vertex_id = igraph_vcount(&igraph);
                igraph_add_vertices(&igraph, 1, 0);
                reverse_node_index.insert(pair<string, int>(nc->src_label, source_vertex_id));
                igraph_cattribute_VAS_set(&igraph, "NODEID", source_vertex_id, nc->src_label.c_str());
                //cout << "added node " << nc->src_label << " in the igraph" << endl;
            } else {
                source_vertex_id = (*index_it).second;
            }
            index_it = reverse_node_index.find(nc->dst_label);
            /*check if the destination node exists in the reverse index*/
            if (index_it == reverse_node_index.end()) {
                /*it does not exist...add it*/
                destination_vertex_id = igraph_vcount(&igraph);
                igraph_add_vertices(&igraph, 1, 0);
                reverse_node_index.insert(pair<string, int>(nc->dst_label, destination_vertex_id));
                igraph_cattribute_VAS_set(&igraph, "NODEID", destination_vertex_id, nc->dst_label.c_str());
                //cout << "added node " << nc->dst_label << " in the igraph" << endl;
            } else {
                destination_vertex_id = (*index_it).second;
            }
            /*add an edge in the graph*/
            igraph_add_edge(&igraph, source_vertex_id, destination_vertex_id);
            igraph_cattribute_EAS_set(&igraph, "LID", igraph_ecount(&igraph) - 1, nc->LID.to_string().c_str());
            reverse_edge_index.insert(pair<string, int>(nc->LID.to_string(), igraph_ecount(&igraph) - 1));
        }
    }
    for (int i = 0; i < dm->network_nodes.size(); i++) {
        NetworkNode *nn = dm->network_nodes[i];
        igraph_cattribute_VAS_set(&igraph, "iLID", i, nn->iLid.to_string().c_str());
    }
}
Ejemplo n.º 10
0
/* Erdos-Renyi : G(n,p)
*/
igraph_t *ggen_generate_erdos_gnp(gsl_rng *r, unsigned long n, double p)
{
    igraph_matrix_t m;
    igraph_t *g = NULL;
    int err;
    unsigned long i,j;

    ggen_error_start_stack();
    if(r == NULL)
        GGEN_SET_ERRNO(GGEN_EINVAL);

    if(p < 0.0 || p > 1.0)
        GGEN_SET_ERRNO(GGEN_EINVAL);

    g = malloc(sizeof(igraph_t));
    GGEN_CHECK_ALLOC(g);
    GGEN_FINALLY3(free,g,1);

    if(p == 0.0)
    {
        GGEN_CHECK_IGRAPH(igraph_empty(g,n,1));
        goto end;
    }
    if(p == 1.0)
    {
        GGEN_CHECK_IGRAPH(igraph_full_citation(g,n,1));
        goto end;
    }

    GGEN_CHECK_IGRAPH(igraph_matrix_init(&m,n,n));
    GGEN_FINALLY(igraph_matrix_destroy,&m);

    for(i = 0; i < n; i++)
        for(j = 0; j < n; j++)
            if(i < j)
                // coin flipping to determine if we add an edge or not
                igraph_matrix_set(&m,i,j,gsl_ran_bernoulli(r,p));
            else
                igraph_matrix_set(&m,i,j,0);

    GGEN_CHECK_IGRAPH(igraph_adjacency(g,&m,IGRAPH_ADJ_DIRECTED));
end:
    ggen_error_clean(1);
    return g;
ggen_error_label:
    return NULL;
}
Ejemplo n.º 11
0
int main(int argc, char **argv) {
	unsigned int i;

	for (i=0; i<1000; ++i) {
		igraph_t graph;
		igraph_vector_t edges;

		igraph_empty(&graph, 1001, 0);
		igraph_vector_init(&edges, 2000);
		igraph_add_edges(&graph, &edges, NULL);

		igraph_destroy(&graph);
		igraph_vector_destroy(&edges);
	}

	return 0;
}
Ejemplo n.º 12
0
	static void SF2ER (igraph_t *graph, int N, int param, double alpha, bool isDirected) {

		int i, j, k, m;
		igraph_bool_t areconn;
		vector<int> p (N, 0); //quantidade de arestas PA
		int etot = 0, acc;
		igraph_empty(graph, N, isDirected);
		for (i = 0; i < 2*param+1; i++)
			for (j = i+1; j < 2*param+1; j++) {
				igraph_add_edge (graph, i, j);
				p[j]++;
				if (!isDirected)	p[i]++;
				etot += 1+(!isDirected);
			}
		for (; i < N; i++) {			
			for (m = param; m > 0; m--) {
				if (Statistic::unif() < alpha) { //ER
					do {
						j = rand()%(N-1);
						if (j >= i)	j++;
						igraph_are_connected(graph, i, j, &areconn);
						//printf ("er %d\n", (int)areconn);
					} while (areconn == 1);
					igraph_add_edge (graph, i, j);
				} else { //SF
					do {
						k = rand()%(etot-p[i]);
						//printf ("%d %d %d\n", k, etot, p[i]);
						acc = 0;
						for (j = 0; j < N; j++) {
							if (i == j)	continue;
							if (acc+p[j] >= k)	break;
							acc+=p[j];
						}
						igraph_are_connected(graph, i, j, &areconn);
						//printf ("sf %d %d %d\n",k, (int)areconn, etot);
					} while (areconn == 1);
					igraph_add_edge (graph, i, j);
					p[j]++;
					if (!isDirected)	p[i]++;
					etot += 1+(!isDirected);
				}
			}
		}
	}
Ejemplo n.º 13
0
int main(int argc,char** argv)
{
	igraph_vector_t *lp;
	igraph_t g;

	// all ggen methods should fail on incorrect arguments
	assert(ggen_analyze_longest_path(NULL) == NULL);

	// an empty graph as a longest path of zero
	igraph_empty(&g,10,1);
	lp = ggen_analyze_longest_path(&g);
	assert(lp != NULL);
	assert(igraph_vector_size(lp) == 0);
	igraph_destroy(&g);
	igraph_vector_destroy(lp);
	free((void *)lp);

	// a full dag as a longest path of containing all vertices
	igraph_full_citation(&g,10,1);
	lp = ggen_analyze_longest_path(&g);
	assert(lp != NULL);
	assert(igraph_vector_size(lp) == 10);
	igraph_destroy(&g);
	igraph_vector_destroy(lp);
	free((void *)lp);

	// a wrong graph (not dag) should fail
	// graph is 0 -> 1 -> 2 and 2 -> 0
	igraph_small(&g,10,1,0,1,1,2,2,0,-1);
	assert(ggen_analyze_longest_path(&g) == NULL);
	igraph_destroy(&g);

	// a simple graph should work too
	// graph is 0 -> 1 -> 2 and 0 -> 2
	igraph_small(&g,10,1,0,1,1,2,0,2,-1);
	lp = ggen_analyze_longest_path(&g);
	assert(lp != NULL);
	assert(igraph_vector_size(lp) == 3);
	igraph_destroy(&g);
	igraph_vector_destroy(lp);
	free((void *)lp);

	return 0;
}
Ejemplo n.º 14
0
igraph_t *ggen_generate_erdos_lbl(gsl_rng *r, unsigned long n, double p, unsigned long nbl)
{
    igraph_t *g = NULL;
    igraph_matrix_t m;
    igraph_vector_t layers;
    unsigned long i,j;
    int err;

    ggen_error_start_stack();
    if(r == NULL)
        GGEN_SET_ERRNO(GGEN_EINVAL);

    if(p < 0.0 || p > 1.0)
        GGEN_SET_ERRNO(GGEN_EINVAL);

    if(nbl > n || nbl == 0)
        GGEN_SET_ERRNO(GGEN_EINVAL);

    g = malloc(sizeof(igraph_t));
    GGEN_CHECK_ALLOC(g);
    GGEN_FINALLY3(free,g,1);

    if(p == 0.0)
    {
        GGEN_CHECK_IGRAPH(igraph_empty(g,n,1));
        goto end;
    }
    if(p == 1.0 && nbl == n)
    {
        GGEN_CHECK_IGRAPH(igraph_full_citation(g,n,1));
        goto end;
    }

    GGEN_CHECK_IGRAPH(igraph_matrix_init(&m,n,n));
    GGEN_FINALLY(igraph_matrix_destroy,&m);

    GGEN_CHECK_IGRAPH(igraph_vector_init(&layers,n));
    GGEN_FINALLY(igraph_vector_destroy,&layers);

    // asign to each vertex a layer
    for(i = 0; i < n; i++)
    {
        GGEN_CHECK_GSL_DO(j = gsl_rng_uniform_int(r,nbl));
        VECTOR(layers)[i] = j;
    }

    // create edges
    for(i = 0; i < n; i++)
        for(j = 0; j < n; j++)
            // if the layer allocation allows the edge, we test for it
            if(VECTOR(layers)[i]<VECTOR(layers)[j])
                igraph_matrix_set(&m,i,j,gsl_ran_bernoulli(r,p));
            else
                igraph_matrix_set(&m,i,j,0);

    //translate the matrix to a graph
    GGEN_CHECK_IGRAPH(igraph_adjacency(g,&m,IGRAPH_ADJ_DIRECTED));
end:
    ggen_error_clean(1);
    return g;
ggen_error_label:
    return NULL;
}
Ejemplo n.º 15
0
igraph_vector_t *ggen_analyze_lowest_single_ancestor(igraph_t *g)
{
	unsigned long i,v,l,vid,r;
	int err = 0;
	igraph_vector_t toposort,itopo;
	igraph_vector_t *lsa;
	igraph_t tree;
	igraph_vs_t vs;
	igraph_vit_t vit;
	lca_metadata md;

	if(g == NULL)
		return NULL;

	err = igraph_vector_init(&toposort,igraph_vcount(g));
	if(err) return NULL;

	err = igraph_topological_sorting(g,&toposort,IGRAPH_OUT);
	if(err) goto d_tp;

	/* build a reverse index of the toposort */
	err = igraph_vector_init(&itopo,igraph_vcount(g));
	if(err) goto d_tp;

	for(i = 0; i < igraph_vcount(g); i++)
	{
		v = VECTOR(toposort)[i];
		VECTOR(itopo)[v] = i;
	}

	err = igraph_empty(&tree,1,IGRAPH_DIRECTED);
	if(err) goto d_i;

	lsa = calloc(1,sizeof(igraph_vector_t*));
	if(lsa == NULL) goto cleanup;

	err = igraph_vector_init(lsa,igraph_vcount(g));
	if(err) goto f_l;

	for(v = 1; v < igraph_vcount(g); v++)
	{
		vid = VECTOR(toposort)[v];

		tree_lca_metadata_init(&tree,&md);
		tree_lca_preprocessing(&tree,0,&md);

		/* iterate over parents of v in g
		 * The lsa of a node is the LCA of all its parents in our
		 * special tree.
		 */
		igraph_vs_adj(&vs, vid, IGRAPH_IN);
		igraph_vit_create(g,vs,&vit);
		l = VECTOR(itopo)[IGRAPH_VIT_GET(vit)];
		IGRAPH_VIT_NEXT(vit);

		for(vit;!IGRAPH_VIT_END(vit); IGRAPH_VIT_NEXT(vit))
		{
			tree_lca_query(&tree,l,VECTOR(itopo)[IGRAPH_VIT_GET(vit)],&r,&md);
			l = r;
		}

		igraph_vit_destroy(&vit);
		igraph_vs_destroy(&vs);
		tree_lca_metadata_free(&tree,&md);

		// update tree
		err = igraph_add_vertices(&tree,1,NULL);
		if(err) goto d_l;

		err = igraph_add_edge(&tree,l,v);
		if(err) goto d_l;

		VECTOR(*lsa)[vid] = VECTOR(toposort)[l];
	}
	goto cleanup;
d_l:
	igraph_vector_destroy(lsa);
f_l:
	free(lsa);
	lsa = NULL;
cleanup:
	igraph_destroy(&tree);
d_i:
	igraph_vector_destroy(&itopo);
d_tp:
	igraph_vector_destroy(&toposort);
	return lsa;
}
Ejemplo n.º 16
0
igraph_vector_t * ggen_analyze_longest_antichain(igraph_t *g)
{
	/* The following steps are implemented :
	 *  - Convert our DAG to a specific bipartite graph B
	 *  - solve maximum matching on B
	 *  - conver maximum matching to min vectex cover
	 *  - convert min vertex cover to antichain on G
	 */
	int err;
	unsigned long i,vg,found,added;
	igraph_t b,gstar;
	igraph_vector_t edges,*res = NULL;
	igraph_vector_t c,s,t,todo,n,next,l,r;
	igraph_eit_t eit;
	igraph_es_t es;
	igraph_integer_t from,to;
	igraph_vit_t vit;
	igraph_vs_t vs;
	igraph_real_t value;

	if(g == NULL)
		return NULL;

	/* before creating the bipartite graph, we need all relations
	 * between any two vertices : the transitive closure of g */
	err = igraph_copy(&gstar,g);
	if(err) return NULL;

	err = ggen_transform_transitive_closure(&gstar);
	if(err) goto error;

	/* Bipartite convertion : let G = (S,C),
	 * we build B = (U,V,E) with
	 *	- U = V = S (each vertex is present twice)
	 *	- (u,v) \in E iff :
	 *		- u \in U
	 *		- v \in V
	 *		- u < v in C (warning, this means that we take
	 *		transitive closure into account, not just the
	 *		original edges)
	 * We will also need two additional nodes further in the code.
	 */
	vg = igraph_vcount(g);
	err = igraph_empty(&b,vg*2,1);
	if(err) goto error;

	/* id and id+vg will be a vertex in U and its copy in V,
	 * iterate over gstar edges to create edges in b
	 */
	err = igraph_vector_init(&edges,igraph_ecount(&gstar));
	if(err) goto d_b;
	igraph_vector_clear(&edges);

	err = igraph_eit_create(&gstar,igraph_ess_all(IGRAPH_EDGEORDER_ID),&eit);
	if(err) goto d_edges;

	for(IGRAPH_EIT_RESET(eit); !IGRAPH_EIT_END(eit); IGRAPH_EIT_NEXT(eit))
	{
		err = igraph_edge(&gstar,IGRAPH_EIT_GET(eit),&from,&to);
		if(err)
		{
			igraph_eit_destroy(&eit);
			goto d_edges;
		}
		to += vg;
		igraph_vector_push_back(&edges,(igraph_real_t)from);
		igraph_vector_push_back(&edges,(igraph_real_t)to);
	}
	igraph_eit_destroy(&eit);
	err = igraph_add_edges(&b,&edges,NULL);
	if(err) goto d_edges;

	/* maximum matching on b */
	igraph_vector_clear(&edges);
	err = bipartite_maximum_matching(&b,&edges);
	if(err) goto d_edges;

	/* Let M be the max matching, and N be E - M
	 * Define T as all unmatched vectices from U as well as all vertices
	 * reachable from those by going left-to-right along N and right-to-left along
	 * M.
	 * Define L = U - T, R = V \inter T
	 * C:= L + R
	 * C is a minimum vertex cover
	 */
	err = igraph_vector_init_seq(&n,0,igraph_ecount(&b)-1);
	if(err) goto d_edges;

	err = vector_diff(&n,&edges);
	if(err) goto d_n;

	err = igraph_vector_init(&c,vg);
	if(err) goto d_n;
	igraph_vector_clear(&c);

	/* matched vertices : S */
	err = igraph_vector_init(&s,vg);
	if(err) goto d_c;
	igraph_vector_clear(&s);

	for(i = 0; i < igraph_vector_size(&edges); i++)
	{
		err = igraph_edge(&b,VECTOR(edges)[i],&from,&to);
		if(err) goto d_s;

		igraph_vector_push_back(&s,from);
	}
	/* we may have inserted the same vertex multiple times */
	err = vector_uniq(&s);
	if(err) goto d_s;

	/* unmatched */
	err = igraph_vector_init_seq(&t,0,vg-1);
	if(err) goto d_s;

	err = vector_diff(&t,&s);
	if(err) goto d_t;

	/* alternating paths
	 */
	err = igraph_vector_copy(&todo,&t);
	if(err) goto d_t;

	err = igraph_vector_init(&next,vg);
	if(err) goto d_todo;
	igraph_vector_clear(&next);
	do {
		vector_uniq(&todo);
		added = 0;
		for(i = 0; i < igraph_vector_size(&todo); i++)
		{
			if(VECTOR(todo)[i] < vg)
			{
				/* scan edges */
				err = igraph_es_adj(&es,VECTOR(todo)[i],IGRAPH_OUT);
				if(err) goto d_next;
				err = igraph_eit_create(&b,es,&eit);
				if(err)
				{
					igraph_es_destroy(&es);
					goto d_next;
				}
				for(IGRAPH_EIT_RESET(eit); !IGRAPH_EIT_END(eit); IGRAPH_EIT_NEXT(eit))
				{
					if(igraph_vector_binsearch(&n,IGRAPH_EIT_GET(eit),NULL))
					{
						err = igraph_edge(&b,IGRAPH_EIT_GET(eit),&from,&to);
						if(err)
						{
							igraph_eit_destroy(&eit);
							igraph_es_destroy(&es);
							goto d_next;
						}
						if(!igraph_vector_binsearch(&t,to,NULL))
						{
							igraph_vector_push_back(&next,to);
							added = 1;
						}
					}
				}
			}
			else
			{
				/* scan edges */
				err = igraph_es_adj(&es,VECTOR(todo)[i],IGRAPH_IN);
				if(err) goto d_next;
				err = igraph_eit_create(&b,es,&eit);
				if(err)
				{
					igraph_es_destroy(&es);
					goto d_next;
				}
				for(IGRAPH_EIT_RESET(eit); !IGRAPH_EIT_END(eit); IGRAPH_EIT_NEXT(eit))
				{
					if(igraph_vector_binsearch(&edges,IGRAPH_EIT_GET(eit),NULL))
					{
						err = igraph_edge(&b,IGRAPH_EIT_GET(eit),&from,&to);
						if(err)
						{
							igraph_eit_destroy(&eit);
							igraph_es_destroy(&es);
							goto d_next;
						}
						if(!igraph_vector_binsearch(&t,to,NULL))
						{
							igraph_vector_push_back(&next,from);
							added = 1;
						}
					}
				}
			}
			igraph_es_destroy(&es);
			igraph_eit_destroy(&eit);
		}
		igraph_vector_append(&t,&todo);
		igraph_vector_clear(&todo);
		igraph_vector_append(&todo,&next);
		igraph_vector_clear(&next);
	} while(added);

	err = igraph_vector_init_seq(&l,0,vg-1);
	if(err) goto d_t;

	err = vector_diff(&l,&t);
	if(err) goto d_l;

	err = igraph_vector_update(&c,&l);
	if(err) goto d_l;

	err = igraph_vector_init(&r,vg);
	if(err) goto d_l;
	igraph_vector_clear(&r);

	/* compute V \inter T */
	for(i = 0; i < igraph_vector_size(&t); i++)
	{
		if(VECTOR(t)[i] >= vg)
			igraph_vector_push_back(&r,VECTOR(t)[i]);
	}

	igraph_vector_add_constant(&r,(igraph_real_t)-vg);
	err = vector_union(&c,&r);
	if(err) goto d_r;

	/* our antichain is U - C */
	res = malloc(sizeof(igraph_vector_t));
	if(res == NULL) goto d_r;

	err = igraph_vector_init_seq(res,0,vg-1);
	if(err) goto f_res;

	err = vector_diff(res,&c);
	if(err) goto d_res;

	goto ret;
d_res:
	igraph_vector_destroy(res);
f_res:
	free(res);
	res = NULL;
ret:
d_r:
	igraph_vector_destroy(&r);
d_l:
	igraph_vector_destroy(&l);
d_next:
	igraph_vector_destroy(&next);
d_todo:
	igraph_vector_destroy(&todo);
d_t:
	igraph_vector_destroy(&t);
d_s:
	igraph_vector_destroy(&s);
d_c:
	igraph_vector_destroy(&c);
d_n:
	igraph_vector_destroy(&n);
d_edges:
	igraph_vector_destroy(&edges);
d_b:
	igraph_destroy(&b);
error:
	igraph_destroy(&gstar);
	return res;
}
Ejemplo n.º 17
0
void LayoutBuilder::produce(AbstractPetriNetBuilder *builder){
	if(!attrTableAttached){
		igraph_i_set_attribute_table(&igraph_cattribute_table);
		attrTableAttached = true;
	}
	size_t V = places.size() + transitions.size();
	size_t E = inArcs.size() + outArcs.size();
	igraph_t graph;
	// Create a directed graph
	igraph_empty(&graph, V, true);

	// Create vector with all edges
	igraph_vector_t edges;
	igraph_vector_init(&edges, E * 2);

	// Add edges to vector
	int i = 0;
	for(ArcIter it = inArcs.begin(); it != inArcs.end(); it++){
		VECTOR(edges)[i++] = numberFromName(it->start);
		VECTOR(edges)[i++] = numberFromName(it->end);
	}
	for(ArcIter it = outArcs.begin(); it != outArcs.end(); it++){
		VECTOR(edges)[i++] = numberFromName(it->start);
		VECTOR(edges)[i++] = numberFromName(it->end);
	}

	// Add the edges to graph
	igraph_add_edges(&graph, &edges, 0);

	// Delete the vector with edges
	igraph_vector_destroy(&edges);

	// Arrays to store result in
	double posx[V];
	double posy[V];

	// Provide current positions, if they're used at all
	if(startFromCurrentPositions){
		int i = 0;
		for(PlaceIter it = places.begin(); it != places.end(); it++){
			posx[i] = it->x;
			posy[i] = it->y;
			igraph_cattribute_VAN_set(&graph, "id", i, i);
			i++;
		}
		for(TransitionIter it = transitions.begin(); it != transitions.end(); it++){
			posx[i] = it->x;
			posy[i] = it->y;
			igraph_cattribute_VAN_set(&graph, "id", i, i);
			i++;
		}
	}

	// Decompose the graph, and layout subgraphs induvidually
	igraph_vector_ptr_t subgraphs;
	igraph_vector_ptr_init(&subgraphs, 0);
	igraph_decompose(&graph, &subgraphs, IGRAPH_WEAK, -1, 0);

	// Offset for places subgraphs
	double offsetx = 0;
	double offsety = 0;

	// Layout, translate and extract results for each subgraph
	for(int i = 0; i < igraph_vector_ptr_size(&subgraphs); i++){
		//Get the subgraph
		igraph_t* subgraph = (igraph_t*)VECTOR(subgraphs)[i];

		// Allocate result matrix
		igraph_matrix_t sublayout;
		igraph_matrix_init(&sublayout, 0, 0);

		// Vertex selector and iterator
		igraph_vs_t vs;
		igraph_vit_t vit;
		// Select all and create iterator
		igraph_vs_all(&vs);
		igraph_vit_create(subgraph, vs, &vit);

		// Initialize sublayout, using original positions
		if(startFromCurrentPositions){
			// Count vertices
			int vertices = 0;
			// Iterator over vertices to count them, hacked but it works
			while(!IGRAPH_VIT_END(vit)){
				vertices++;
				IGRAPH_VIT_NEXT(vit);
			}
			//Reset vertex iterator
			IGRAPH_VIT_RESET(vit);
			// Resize sublayout
			igraph_matrix_resize(&sublayout, vertices, 2);
			// Iterator over vertices
			while(!IGRAPH_VIT_END(vit)){
				int subindex = (int)IGRAPH_VIT_GET(vit);
				int index = (int)igraph_cattribute_VAN(subgraph, "id", subindex);
				MATRIX(sublayout, subindex, 0) = posx[index];
				MATRIX(sublayout, subindex, 1) = posy[index];
				IGRAPH_VIT_NEXT(vit);
			}
			//Reset vertex iterator
			IGRAPH_VIT_RESET(vit);
		}

		igraph_layout_kamada_kawai(subgraph, &sublayout, 1000, ((double)V)/4.0, 10, 0.99, V*V, startFromCurrentPositions);
		// Other layout algorithms with reasonable parameters
		//igraph_layout_kamada_kawai(subgraph, &sublayout, 1000, ((double)V)/4.0, 10, 0.99, V*V, startFromCurrentPositions);
		//igraph_layout_grid_fruchterman_reingold(subgraph, &sublayout, 500, V, V*V, 1.5, V*V*V, V*V/4, startFromCurrentPositions);
		//igraph_layout_fruchterman_reingold(subgraph, &sublayout, 500, V, V*V, 1.5, V*V*V, startFromCurrentPositions, NULL);
		//igraph_layout_lgl(subgraph, &sublayout, 150, V, V*V, 1.5, V*V*V, sqrt(V), -1);

		//Find min and max values:
		double minx = DBL_MAX,
			   miny = DBL_MAX,
			   maxx = -DBL_MAX,
			   maxy = -DBL_MAX;
		//Iterator over all vertices
		while(!IGRAPH_VIT_END(vit)){
			int subindex = (int)IGRAPH_VIT_GET(vit);
			double x = MATRIX(sublayout, subindex, 0) * factor;
			double y = MATRIX(sublayout, subindex, 1) * factor;
			minx = minx < x ? minx : x;
			miny = miny < y ? miny : y;
			maxx = maxx > x ? maxx : x;
			maxy = maxy > y ? maxy : y;
			IGRAPH_VIT_NEXT(vit);
		}
		//Reset vertex iterator
		IGRAPH_VIT_RESET(vit);

		// Compute translation
		double tx = margin - minx;
		double ty = margin - miny;
		// Decide whether to put it below or left of current content
		if(maxx - minx + offsetx < maxy - miny + offsety){
			tx += offsetx;
			offsetx += maxx - minx + margin;
			if(offsety < maxy - miny + margin)
				offsety = maxy - miny + margin;
		}else{
			ty += offsety;
			offsety += maxy - miny + margin;
			if(offsetx < maxx - minx + margin)
				offsetx = maxx - minx + margin;
		}
		// Translate and extract results
		while(!IGRAPH_VIT_END(vit)){
			int subindex = (int)IGRAPH_VIT_GET(vit);
			int index = (int)igraph_cattribute_VAN(subgraph, "id", subindex);
			double x = MATRIX(sublayout, subindex, 0) * factor;
			double y = MATRIX(sublayout, subindex, 1) * factor;
			posx[index] = x + tx;
			posy[index] = y + ty;
			IGRAPH_VIT_NEXT(vit);
		}
		// Destroy iterator and selector
		igraph_vit_destroy(&vit);
		igraph_vs_destroy(&vs);

		// Destroy the sublayout
		igraph_matrix_destroy(&sublayout);

		// Destroy subgraph
		igraph_destroy(subgraph);
		free(VECTOR(subgraphs)[i]);
	}

	// Remove the attributes
	igraph_cattribute_remove_v(&graph, "id");

	// Destroy the graph
	igraph_destroy(&graph);

	// Insert results
	i = 0;
	for(PlaceIter it = places.begin(); it != places.end(); it++){
		it->x = posx[i];
		it->y = posy[i];
		i++;
	}
	for(TransitionIter it = transitions.begin(); it != transitions.end(); it++){
		it->x = posx[i];
		it->y = posy[i];
		i++;
	}

	// Produce variables
	for(VarIter it = vars.begin(); it != vars.end(); it++)
		builder->addVariable(it->name, it->initialValue, it->range);

	for(BoolVarIter it = boolVars.begin(); it != boolVars.end(); it++)
		builder->addBoolVariable(it->name, it->initialValue);

	for(PlaceIter it = places.begin(); it != places.end(); it++)
		builder->addPlace(it->name, it->tokens, it->x, it->y);

	for(TransitionIter it = transitions.begin(); it != transitions.end(); it++)
		builder->addTransition(it->name, it->conditions, it->assignments, it->x, it->y);

	for(ArcIter it = inArcs.begin(); it != inArcs.end(); it++)
		builder->addInputArc(it->start, it->end, it->weight);

	for(ArcIter it = outArcs.begin(); it != outArcs.end(); it++)
		builder->addInputArc(it->start, it->end, it->weight);

	//Reset builder state (just in case some idoit decides to reuse it!
	vars.clear();
	boolVars.clear();
	places.clear();
	transitions.clear();
	inArcs.clear();
	outArcs.clear();
}
Ejemplo n.º 18
0
TMIgraph::TMIgraph() {
    igraph_i_set_attribute_table(&igraph_cattribute_table);
    igraph_empty(&graph, 0, true);
}
Ejemplo n.º 19
0
int igraph_forest_fire_game(igraph_t *graph, igraph_integer_t nodes,
			    igraph_real_t fw_prob, igraph_real_t bw_factor,
			    igraph_integer_t pambs, igraph_bool_t directed) {
  
  igraph_vector_long_t visited;
  long int no_of_nodes=nodes, actnode, i;
  igraph_vector_t edges;
  igraph_vector_t *inneis, *outneis;
  igraph_i_forest_fire_data_t data;
  igraph_dqueue_t neiq;
  long int ambs=pambs;
  igraph_real_t param_geom_out=1-fw_prob;
  igraph_real_t param_geom_in=1-fw_prob*bw_factor;
  
  if (fw_prob < 0) {
    IGRAPH_ERROR("Forest fire model: 'fw_prob' should be between non-negative", 
		 IGRAPH_EINVAL);
  }
  if (bw_factor < 0) {
    IGRAPH_ERROR("Forest fire model: 'bw_factor' should be non-negative",
		 IGRAPH_EINVAL);
  }
  if (ambs < 0) {
    IGRAPH_ERROR("Number of ambassadors ('ambs') should be non-negative",
		 IGRAPH_EINVAL);
  }
  
  if (fw_prob == 0 || ambs == 0) {
    IGRAPH_WARNING("'fw_prob or ambs is zero, creating empty graph");
    IGRAPH_CHECK(igraph_empty(graph, nodes, directed));
    return 0;
  }
  
  IGRAPH_VECTOR_INIT_FINALLY(&edges, 0);

  inneis=igraph_Calloc(no_of_nodes, igraph_vector_t);
  if (!inneis) {
    IGRAPH_ERROR("Cannot run forest fire model", IGRAPH_ENOMEM);
  }
  IGRAPH_FINALLY(igraph_free, inneis);
  outneis=igraph_Calloc(no_of_nodes, igraph_vector_t);
  if (!outneis) {
    IGRAPH_ERROR("Cannot run forest fire model", IGRAPH_ENOMEM);
  }
  IGRAPH_FINALLY(igraph_free, outneis);  
  data.inneis=inneis; 
  data.outneis=outneis;
  data.no_of_nodes=no_of_nodes;
  IGRAPH_FINALLY(igraph_i_forest_fire_free, &data);
  for (i=0; i<no_of_nodes; i++) {
    IGRAPH_CHECK(igraph_vector_init(inneis+i, 0));
    IGRAPH_CHECK(igraph_vector_init(outneis+i, 0));
  }  

  IGRAPH_CHECK(igraph_vector_long_init(&visited, no_of_nodes));
  IGRAPH_FINALLY(igraph_vector_long_destroy, &visited);
  IGRAPH_DQUEUE_INIT_FINALLY(&neiq, 10);

  RNG_BEGIN();

#define ADD_EDGE_TO(nei) \
      if (VECTOR(visited)[(nei)] != actnode+1) {                     \
	VECTOR(visited)[(nei)] = actnode+1;                          \
	IGRAPH_CHECK(igraph_dqueue_push(&neiq, nei));                \
	IGRAPH_CHECK(igraph_vector_push_back(&edges, actnode));      \
	IGRAPH_CHECK(igraph_vector_push_back(&edges, nei));          \
	IGRAPH_CHECK(igraph_vector_push_back(outneis+actnode, nei)); \
	IGRAPH_CHECK(igraph_vector_push_back(inneis+nei, actnode));  \
      }
  
  IGRAPH_PROGRESS("Forest fire: ", 0.0, NULL);
  
  for (actnode=1; actnode < no_of_nodes; actnode++) {

    IGRAPH_PROGRESS("Forest fire: ", 100.0*actnode/no_of_nodes, NULL);

    IGRAPH_ALLOW_INTERRUPTION();    
    
    /* We don't want to visit the current vertex */
    VECTOR(visited)[actnode] = actnode+1;

    /* Choose ambassador(s) */
    for (i=0; i<ambs; i++) {
      long int a=RNG_INTEGER(0, actnode-1);
      ADD_EDGE_TO(a);
    }
    
    while (!igraph_dqueue_empty(&neiq)) {
      long int actamb=(long int) igraph_dqueue_pop(&neiq);
      igraph_vector_t *outv=outneis+actamb;
      igraph_vector_t *inv=inneis+actamb;
      long int no_in=igraph_vector_size(inv);
      long int no_out=igraph_vector_size(outv);
      long int neis_out=(long int) RNG_GEOM(param_geom_out);
      long int neis_in=(long int) RNG_GEOM(param_geom_in);
      /* outgoing neighbors */
      if (neis_out >= no_out) {
	for (i=0; i<no_out; i++) {
	  long int nei=(long int) VECTOR(*outv)[i];
	  ADD_EDGE_TO(nei);
	}
      } else {
	long int oleft=no_out;
	for (i=0; i<neis_out && oleft > 0; ) {
	  long int which=RNG_INTEGER(0, oleft-1);
	  long int nei=(long int) VECTOR(*outv)[which];
	  VECTOR(*outv)[which] = VECTOR(*outv)[oleft-1];
	  VECTOR(*outv)[oleft-1] = nei;
	  if (VECTOR(visited)[nei] != actnode+1) {
	    ADD_EDGE_TO(nei);
	    i++;
	  }
	  oleft--;
	}
      }
      /* incoming neighbors */
      if (neis_in >= no_in) {
	for (i=0; i<no_in; i++) {
	  long int nei=(long int) VECTOR(*inv)[i];
	  ADD_EDGE_TO(nei);
	}
      } else {
	long int ileft=no_in;
	for (i=0; i<neis_in && ileft > 0; ) {
	  long int which=RNG_INTEGER(0, ileft-1);
	  long int nei=(long int) VECTOR(*inv)[which];
	  VECTOR(*inv)[which] = VECTOR(*inv)[ileft-1];
	  VECTOR(*inv)[ileft-1] = nei;
	  if (VECTOR(visited)[nei] != actnode+1) {
	    ADD_EDGE_TO(nei);
	    i++;
	  }
	  ileft--;
	}
      }
      
    } /* while neiq not empty */

  } /* actnode < no_of_nodes */

#undef ADD_EDGE_TO  

  RNG_END();

  IGRAPH_PROGRESS("Forest fire: ", 100.0, NULL);
  
  igraph_dqueue_destroy(&neiq);
  igraph_vector_long_destroy(&visited);
  igraph_i_forest_fire_free(&data);
  igraph_free(outneis);
  igraph_free(inneis);  
  IGRAPH_FINALLY_CLEAN(5);

  IGRAPH_CHECK(igraph_create(graph, &edges, nodes, directed));
  igraph_vector_destroy(&edges);
  IGRAPH_FINALLY_CLEAN(1);

  return 0;
}
Ejemplo n.º 20
0
Archivo: utils.c Proyecto: lccanon/ggen
int ggen_read_graph(igraph_t *g,FILE *input)
{
	Agraph_t *cg;
	Agnode_t *v;
	Agedge_t *e;
	igraph_vector_t edges;
	igraph_vector_t vertices;
	int err;
	unsigned long esize;
	unsigned long vsize;
	unsigned long from, to;
	igraph_integer_t eid;
	Agsym_t *att;

	/* read the graph */
	cg = agread((void *)input,NULL);
	if(!cg) return 1;

	if(!agisdirected(cg))
	{
		error("Input graph is undirected\n");
		err = 1;
		goto error_d;
	}

	/* init edge array */
	err = igraph_vector_init(&edges,2*agnedges(cg));
	if(err) goto error_d;

	err = igraph_vector_init(&vertices,agnnodes(cg));
	if(err) goto error_de;

	/* init igraph */
	igraph_empty(g,agnnodes(cg),1);

	/* asign id to each vertex */
	vsize = 0;
	for(v = agfstnode(cg); v; v = agnxtnode(cg,v))
		VECTOR(vertices)[vsize++] = AGID(v);

	/* loop through each edge */
	esize = 0;
	for(v = agfstnode(cg); v; v = agnxtnode(cg,v))
	{
		from = find_id(AGID(v),vertices,vsize);
		for(e = agfstout(cg,v); e; e = agnxtout(cg,e))
		{
			to = find_id(AGID(aghead(e)),vertices,vsize);
			VECTOR(edges)[esize++] = from;
			VECTOR(edges)[esize++] = to;
		}
	}

	/* finish the igraph */
	err = igraph_add_edges(g,&edges,NULL);
	if(err) goto error;

	/* read graph properties */
	att = agnxtattr(cg,AGRAPH,NULL);
	while(att != NULL)
	{
		/* copy this attribute to igraph */
		SETGAS(g,att->name,agxget(cg,att));
		att = agnxtattr(cg,AGRAPH,att);
	}
	/* we keep the graph name using a special attribute */
	SETGAS(g,GGEN_GRAPH_NAME_ATTR,agnameof(cg));

	/* read vertex properties */
	att = agnxtattr(cg,AGNODE,NULL);
	while(att != NULL)
	{
		/* iterate over all vertices for this attribute */
		for(v = agfstnode(cg); v; v = agnxtnode(cg,v))
		{
			from = find_id(AGID(v),vertices,vsize);
			SETVAS(g,att->name,from,agxget(v,att));
		}
		att = agnxtattr(cg,AGNODE,att);
	}
	/* we keep each vertex name in a special attribute */
	for(v = agfstnode(cg); v; v = agnxtnode(cg,v))
	{
			from = find_id(AGID(v),vertices,vsize);
			SETVAS(g,GGEN_VERTEX_NAME_ATTR,from,agnameof(v));
	}


	/* read edges properties */
	att = agnxtattr(cg,AGEDGE,NULL);
	while(att != NULL)
	{
		/* the only way to iterate over all edges is to iterate
		 * over the vertices */
		for(v = agfstnode(cg); v; v = agnxtnode(cg,v))
		{
			from = find_id(AGID(v),vertices,vsize);
			for(e = agfstout(cg,v); e; e = agnxtout(cg,e))
			{
				to = find_id(AGID(aghead(e)),vertices,vsize);
				igraph_get_eid(g,&eid,from,to,1,0);
				SETEAS(g,att->name,eid,agxget(e,att));
			}
		}
		att = agnxtattr(cg,AGEDGE,att);
	}

	goto cleanup;
error:
	igraph_destroy(g);
cleanup:
	igraph_vector_destroy(&vertices);
error_de:
	igraph_vector_destroy(&edges);
error_d:
	agclose(cg);
	return err;
}
Ejemplo n.º 21
0
static void
rvine_trees_to_vine(dml_vine_t *vine, igraph_t **trees)
{
    size_t n = vine->dim;
    size_t *order_inv;
    gsl_vector_short *B;
    igraph_integer_t Cea, Ceb;
    size_t x = 0, x_hat = 0, x_hat_hat = 0; // Initialized to avoid GCC warnings.
    dml_copula_t *copula = NULL; // Initialized to avoid GCC warnings.
    igraph_integer_t e; // Edge id.
    igraph_integer_t a, b, aa, ab, ba, bb; // Vertex id.
    igraph_t **last_trees = NULL;
    igraph_t *graph = NULL;
    gsl_vector_short *Ue, *Ua, *Ub;

    // Set the number of trees of the vines.
    vine->trees = n - 1;
    while (trees[vine->trees - 1] == NULL) vine->trees--;

    // Nothing to do for vines without trees.
    if (vine->trees == 0) return;

    // Selecting a structure for the trees that were truncated.
    // Is this really necessary? Think a better solution.
    if (vine->trees != n - 1) {
        igraph_i_set_attribute_table(&igraph_cattribute_table);
        last_trees = g_malloc_n(n - 1 - vine->trees, sizeof(igraph_t *));
        graph = g_malloc(sizeof(igraph_t));

        for (size_t k = vine->trees; k < n - 1; k++) { // Tree index.
            igraph_empty(graph, n - k, IGRAPH_UNDIRECTED);

            // Adding all "possible" edges.
            for (a = 0; a < igraph_vcount(graph) - 1; a++) {
                for (b = a + 1; b < igraph_vcount(graph); b++) {
                    // Checking the proximity condition.
                    igraph_edge(k <= vine->trees ? trees[k - 1] : last_trees[k - 1 - vine->trees], a, &aa, &ab);
                    igraph_edge(k <= vine->trees ? trees[k - 1] : last_trees[k - 1 - vine->trees], b, &ba, &bb);
                    if (aa == ba || aa == bb || ab == ba || ab == bb) {
                        igraph_add_edge(graph, a, b);
                        igraph_get_eid(graph, &e, a, b, IGRAPH_UNDIRECTED, 1);

                        // Variables "connected" by this edge and conditioned set.
                        Ua = EAP(k <= vine->trees ? trees[k - 1] : last_trees[k - 1 - vine->trees], "Ue", a);
                        Ub = EAP(k <= vine->trees ? trees[k - 1] : last_trees[k - 1 - vine->trees], "Ue", b);
                        Ue = gsl_vector_short_calloc(n);
                        for (size_t i = 0; i < n; i++) {
                            gsl_vector_short_set(Ue, i,
                                    gsl_vector_short_get(Ua, i)
                                            | gsl_vector_short_get(Ub, i));
                            if (gsl_vector_short_get(Ua, i)
                                    && !gsl_vector_short_get(Ub, i)) {
                                SETEAN(graph, "Cea", e, i + 1);
                            }
                            if (gsl_vector_short_get(Ub, i)
                                    && !gsl_vector_short_get(Ua, i)) {
                                SETEAN(graph, "Ceb", e, i + 1);
                            }
                        }
                        SETEAP(graph, "Ue", e, Ue);
                    }
                }
            }

            // Compute the minimum weight spanning tree.
            last_trees[k - vine->trees] = g_malloc(sizeof(igraph_t));
            igraph_minimum_spanning_tree_unweighted(graph, last_trees[k - vine->trees]);

            igraph_destroy(graph);
        }
    }

    order_inv = g_malloc0_n(n, sizeof(size_t));
    B = gsl_vector_short_calloc(n);

    // for loop in line 2.
    for (size_t i = 0; i < n - 1; i++) {
        if (trees[n - i - 2] == NULL) {
            for (e = 0; e < igraph_ecount(last_trees[n - i - 2 - vine->trees]); e++) {
                x = EAN(last_trees[n - i - 2 - vine->trees], "Cea", e);
                x_hat = EAN(last_trees[n - i - 2 - vine->trees], "Ceb", e);
                if (!gsl_vector_short_get(B, x - 1)
                        && !gsl_vector_short_get(B, x_hat - 1)) {
                    x_hat = 0;
                    copula = NULL;
                    break;
                }
            }
        } else {
            for (e = 0; e < igraph_ecount(trees[n - i - 2]); e++) {
                x = EAN(trees[n - i - 2], "Cea", e);
                x_hat = EAN(trees[n - i - 2], "Ceb", e);
                if (!gsl_vector_short_get(B, x - 1)
                        && !gsl_vector_short_get(B, x_hat - 1)) {
                    copula = EAP(trees[n - i - 2], "copula", e);
                    break;
                }
            }
        }

        // Line 4.
        gsl_vector_short_set(B, x - 1, 1);
        vine->order[n - i - 1] = x - 1;
        order_inv[x - 1] = n - i;
        vine->matrix[i][i] = x;
        vine->matrix[i + 1][i] = x_hat;
        vine->copulas[i + 1][i] = copula;

        // for loop in line 5.
        for (size_t k = i + 2; k < n; k++) {
            if (trees[n - k - 1] != NULL) {
                for (e = 0; e < igraph_ecount(trees[n - k - 1]); e++) {
                    Cea = EAN(trees[n - k - 1], "Cea", e);
                    Ceb = EAN(trees[n - k - 1], "Ceb", e);
                    if (x == Cea) {
                        x_hat_hat = Ceb;
                        if (!gsl_vector_short_get(B, x_hat_hat - 1)) {
                            // The pseudocode of the algorithm does not included
                            // this check. Invalid matrices were generated when
                            // x_hat_hat is set to an index already assigned
                            // to a diagonal entry.
                            copula = EAP(trees[n - k - 1], "copula", e);
                            break;
                        }
                    } else if (x == Ceb) {
                        x_hat_hat = Cea;
                        if (!gsl_vector_short_get(B, x_hat_hat - 1)) {
                            // Ibdem to the previous comment.
                            copula = EAP(trees[n - k - 1], "copula", e);
                            break;
                        }
                    }
                }
                vine->matrix[k][i] = x_hat_hat;
                vine->copulas[k][i] = copula;
            }
        }
    }

    for (size_t i = 0; i < n; i++) {
        if (!gsl_vector_short_get(B, i)) {
            vine->matrix[n - 1][n - 1] = i + 1;
            vine->order[0] = i;
            order_inv[i] = 1;
            break;
        }
    }
    // Reorder the variables. The simulation algorithm assumes that the
    // diagonal entries of the R-vine matrix are ordered from n to 1.
    for (size_t i = 0; i < n; i++) {
        for (size_t j = 0; j <= i; j++) {
            if (vine->matrix[i][j] > 0) {
                vine->matrix[i][j] = order_inv[vine->matrix[i][j] - 1];
            }
        }
    }

    if (vine->trees != n - 1) {
        for (size_t i = 0; i < n - 1 - vine->trees; i++) {
            for (e = 0; e < igraph_ecount(last_trees[i]); e++) {
                Ue = EAP(last_trees[i], "Ue", e);
                gsl_vector_short_free(Ue);
            }
            DELEA(last_trees[i], "Ue");
            igraph_destroy(last_trees[i]);
            g_free(last_trees[i]);
        }
        g_free(last_trees);
        g_free(graph);
    }
    g_free(order_inv);
    gsl_vector_short_free(B);
}
Ejemplo n.º 22
0
int main() {

  igraph_t g;
  igraph_vector_t v, res, reset, weights;
  igraph_arpack_options_t arpack_options;
  igraph_real_t value;
  int ret;
  igraph_pagerank_power_options_t power_options;

  /* Test graphs taken from http://www.iprcom.com/papers/pagerank/ */
  igraph_vector_init(&v, 10);
  VECTOR(v)[0]=0; VECTOR(v)[1]=1;
  VECTOR(v)[2]=1; VECTOR(v)[3]=2;
  VECTOR(v)[4]=2; VECTOR(v)[5]=0;
  VECTOR(v)[6]=3; VECTOR(v)[7]=2;
  VECTOR(v)[8]=0; VECTOR(v)[9]=2;
  igraph_create(&g, &v, 0, 1);

  igraph_vector_init(&res, 0);
  oldwarn=igraph_set_warning_handler(warning_handler_stdout);
  igraph_pagerank_old(&g, &res, igraph_vss_all(), 1, 1000, 0.001, 0.85, 0);
  print_vector(&res, stdout);
  igraph_vector_destroy(&res);
  igraph_vector_destroy(&v);
  
  igraph_destroy(&g);

  igraph_vector_init(&v, 28);
  VECTOR(v)[ 0]=0; VECTOR(v)[ 1]=1;
  VECTOR(v)[ 2]=0; VECTOR(v)[ 3]=2;
  VECTOR(v)[ 4]=0; VECTOR(v)[ 5]=3;
  VECTOR(v)[ 6]=1; VECTOR(v)[ 7]=0;
  VECTOR(v)[ 8]=2; VECTOR(v)[ 9]=0;
  VECTOR(v)[10]=3; VECTOR(v)[11]=0;
  VECTOR(v)[12]=3; VECTOR(v)[13]=4;
  VECTOR(v)[14]=3; VECTOR(v)[15]=5;
  VECTOR(v)[16]=3; VECTOR(v)[17]=6;
  VECTOR(v)[18]=3; VECTOR(v)[19]=7;
  VECTOR(v)[20]=4; VECTOR(v)[21]=0;
  VECTOR(v)[22]=5; VECTOR(v)[23]=0;
  VECTOR(v)[24]=6; VECTOR(v)[25]=0;
  VECTOR(v)[26]=7; VECTOR(v)[27]=0;
  igraph_create(&g, &v, 0, 1);

  igraph_vector_init(&res, 0);
  igraph_pagerank_old(&g, &res, igraph_vss_all(), 1, 10000, 0.0001, 0.85, 0);
  print_vector(&res, stdout);
  igraph_vector_destroy(&res);
  igraph_vector_destroy(&v);
  igraph_destroy(&g);

  igraph_set_warning_handler(oldwarn);

  /* New PageRank */
  igraph_star(&g, 11, IGRAPH_STAR_UNDIRECTED, 0);
  igraph_vector_init(&res, 0);
  igraph_arpack_options_init(&arpack_options);
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_ARPACK, &res, 0,
		  igraph_vss_all(), 0, 0.85, 0, &arpack_options);
  print_vector(&res, stdout);
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_PRPACK, &res, 0,
		  igraph_vss_all(), 0, 0.85, 0, 0);
  print_vector(&res, stdout);
  /* Check twice more for consistency */
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_ARPACK, &res, 0,
		  igraph_vss_all(), 0, 0.85, 0, &arpack_options);
  print_vector(&res, stdout);
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_PRPACK, &res, 0,
		  igraph_vss_all(), 0, 0.85, 0, 0);
  print_vector(&res, stdout);

  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_ARPACK, &res, 0,
		  igraph_vss_all(), 0, 0.85, 0, &arpack_options);
  print_vector(&res, stdout);
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_PRPACK, &res, 0,
		  igraph_vss_all(), 0, 0.85, 0, 0);
  print_vector(&res, stdout);

  /* Check personalized PageRank */
  igraph_personalized_pagerank_vs(&g, IGRAPH_PAGERANK_ALGO_ARPACK, &res, 0,
				  igraph_vss_all(), 0, 0.5,
				  igraph_vss_1(1), 0, &arpack_options);
  print_vector(&res, stdout);
  igraph_personalized_pagerank_vs(&g, IGRAPH_PAGERANK_ALGO_PRPACK, &res, 0,
				  igraph_vss_all(), 0, 0.5,
				  igraph_vss_1(1), 0, 0);
  print_vector(&res, stdout);

  /* Errors */
  power_options.niter = -1; power_options.eps=0.0001;
  igraph_set_error_handler(igraph_error_handler_ignore);
  igraph_set_warning_handler(igraph_warning_handler_ignore);
  ret=igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_POWER, &res,
		      /*value=*/ 0, igraph_vss_all(), 1, 0.85,
		      /*weights=*/ 0, &power_options);
  if (ret != IGRAPH_EINVAL) {
    return 1;
  }
  
  power_options.niter=10000; power_options.eps=-1;
  ret=igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_POWER, &res,
		      /*value=*/ 0, igraph_vss_all(), 1, 0.85,
		      /*weights=*/ 0, &power_options);
  if (ret != IGRAPH_EINVAL) {
    return 2;
  }

  power_options.niter=10000; power_options.eps=0.0001;
  ret=igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_POWER, &res,
		      /*value=*/ 0, igraph_vss_all(), 1, 1.2,
		      /*weights=*/ 0, &power_options);
  if (ret != IGRAPH_EINVAL) {
    return 3;
  }

  igraph_vector_init(&reset, 2);
  ret=igraph_personalized_pagerank(&g, IGRAPH_PAGERANK_ALGO_ARPACK, &res, 0,
				   igraph_vss_all(), 0, 0.85, &reset, 0,
				   &arpack_options);
  if (ret != IGRAPH_EINVAL) {
    return 4;
  }
  ret=igraph_personalized_pagerank(&g, IGRAPH_PAGERANK_ALGO_PRPACK, &res, 0,
				   igraph_vss_all(), 0, 0.85, &reset, 0, 0);
  if (ret != IGRAPH_EINVAL) {
    return 4;
  }
  igraph_vector_resize(&reset, 10);
  igraph_vector_fill(&reset, 0);
  ret=igraph_personalized_pagerank(&g, IGRAPH_PAGERANK_ALGO_ARPACK,
				   &res, 0, igraph_vss_all(), 0, 0.85,
				   &reset, 0, &arpack_options);
  if (ret != IGRAPH_EINVAL) {
    return 5;
  }
  ret=igraph_personalized_pagerank(&g, IGRAPH_PAGERANK_ALGO_PRPACK,
				   &res, 0, igraph_vss_all(), 0, 0.85,
				   &reset, 0, 0);
  if (ret != IGRAPH_EINVAL) {
    return 5;
  }
  igraph_vector_destroy(&reset);
  igraph_destroy(&g);
  igraph_set_error_handler(igraph_error_handler_abort);

  /* Special cases: check for empty graph */
  igraph_empty(&g, 10, 0);
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_ARPACK, &res, &value,
		  igraph_vss_all(), 1, 0.85, 0, &arpack_options);
  if (value != 1.0) {
    return 6;
  }
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_PRPACK, &res, &value,
		  igraph_vss_all(), 1, 0.85, 0, 0);
  if (value != 1.0) {
    return 6;
  }
  print_vector(&res, stdout);
  igraph_destroy(&g);

  /* Special cases: check for full graph, zero weights */
  igraph_full(&g, 10, 0, 0);
  igraph_vector_init(&v, 45);
  igraph_vector_fill(&v, 0);
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_ARPACK, &res, &value,
		  igraph_vss_all(), 1, 0.85, &v, &arpack_options);
  if (value != 1.0) {
    return 7;
  }
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_PRPACK, &res, &value,
		  igraph_vss_all(), 1, 0.85, &v, 0);
  if (value != 1.0) {
    return 7;
  }
  igraph_vector_destroy(&v);
  print_vector(&res, stdout);
  igraph_destroy(&g);

  /* Another test case for PageRank (bug #792352) */
  igraph_small(&g, 9, 1, 0, 5, 1, 5, 2, 0, 3, 1, 5, 4, 5, 7, 6, 0, 8, 0, 8, 1, -1);
  igraph_vector_init(&weights, 9);
  VECTOR(weights)[0] = 4; VECTOR(weights)[1] = 5; VECTOR(weights)[2] = 5;
  VECTOR(weights)[3] = 4; VECTOR(weights)[4] = 4; VECTOR(weights)[5] = 4;
  VECTOR(weights)[6] = 3; VECTOR(weights)[7] = 4; VECTOR(weights)[8] = 4;
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_ARPACK, &res, 0,
		  igraph_vss_all(), 1, 0.85, &weights, &arpack_options);
  print_vector(&res, stdout);
  igraph_pagerank(&g, IGRAPH_PAGERANK_ALGO_PRPACK, &res, 0,
		  igraph_vss_all(), 1, 0.85, &weights, 0);
  print_vector(&res, stdout);
  igraph_vector_destroy(&weights);
  igraph_destroy(&g);

  igraph_vector_destroy(&res);
  return 0;
}
Ejemplo n.º 23
0
int igraph_bipartite_game_gnm(igraph_t *graph, igraph_vector_bool_t *types,
			      igraph_integer_t n1, igraph_integer_t n2, 
			      igraph_integer_t m, igraph_bool_t directed, 
			      igraph_neimode_t mode) {
  igraph_vector_t edges;
  igraph_vector_t s;
  int retval=0;

  if (n1 < 0 || n2 < 0) { 
    IGRAPH_ERROR("Invalid number of vertices", IGRAPH_EINVAL);
  }
  if (m < 0) { 
    IGRAPH_ERROR("Invalid number of edges", IGRAPH_EINVAL);
  }

  if (types) {
    long int i;
    IGRAPH_CHECK(igraph_vector_bool_resize(types, n1 + n2));
    igraph_vector_bool_null(types);
    for (i=n1; i<n1+n2; i++) {
      VECTOR(*types)[i] = 1;
    }
  }
  
  if (m == 0 || n1 * n2 == 0) {
    IGRAPH_CHECK(retval=igraph_empty(graph, n1 + n2, directed));
  } else {
    
    long int i;
    double maxedges;
    if (!directed || mode != IGRAPH_ALL) {
      maxedges = n1 * n2;
    } else {
      maxedges = 2 * n1 * n2;
    }
    
    if (m > maxedges) {
      IGRAPH_ERROR("Invalid number (too large) of edges", IGRAPH_EINVAL);
    }
    
    if (maxedges == m) {
      IGRAPH_CHECK(retval=igraph_full_bipartite(graph, types, n1, n2, 
						directed, mode));
    } else {

      long int to, from;
      IGRAPH_VECTOR_INIT_FINALLY(&edges, 0);
      IGRAPH_VECTOR_INIT_FINALLY(&s, 0);
      IGRAPH_CHECK(igraph_random_sample(&s, 0, maxedges-1, m));
      IGRAPH_CHECK(igraph_vector_reserve(&edges, igraph_vector_size(&s)*2));

      for (i=0; i<m; i++) {
	if (!directed || mode != IGRAPH_ALL) {
	  to=(long) floor(VECTOR(s)[i]/n1);
	  from=(long) (VECTOR(s)[i] - ((igraph_real_t) to) * n1);
	  to += n1;
	} else {
	  long int n1n2 = n1 * n2;
	  if (VECTOR(s)[i] < n1n2) {
	    to=(long) floor(VECTOR(s)[i]/n1);
	    from=(long) (VECTOR(s)[i] - ((igraph_real_t) to) * n1);
	    to += n1;
	  } else {
	    to=(long) floor( (VECTOR(s)[i]-n1n2) /n2);
	    from=(long) (VECTOR(s)[i] - n1n2 - ((igraph_real_t) to) * n2);
	    from += n1;
	  }
	}

	if (mode != IGRAPH_IN) {
	  igraph_vector_push_back(&edges, from);
	  igraph_vector_push_back(&edges, to);
	} else {
	  igraph_vector_push_back(&edges, to);
	  igraph_vector_push_back(&edges, from);	
	}
      }

      igraph_vector_destroy(&s);
      IGRAPH_FINALLY_CLEAN(1);
      IGRAPH_CHECK(retval=igraph_create(graph, &edges, n1+n2, directed));
      igraph_vector_destroy(&edges);
      IGRAPH_FINALLY_CLEAN(1);
    }
  }  

  return retval;
}
Ejemplo n.º 24
0
int igraph_bipartite_game_gnp(igraph_t *graph, igraph_vector_bool_t *types,
			      igraph_integer_t n1, igraph_integer_t n2, 
			      igraph_real_t p, igraph_bool_t directed, 
			      igraph_neimode_t mode) {

  int retval=0;
  igraph_vector_t edges, s;
  int i;

  if (p < 0.0 || p > 1.0) {
    IGRAPH_ERROR("Invalid connection probability", IGRAPH_EINVAL);
  }

  if (types) {
    IGRAPH_CHECK(igraph_vector_bool_resize(types, n1 + n2));
    igraph_vector_bool_null(types);
    for (i=n1; i<n1+n2; i++) {
      VECTOR(*types)[i] = 1;
    }
  }

  if (p == 0 || n1 * n2 < 1) {
    IGRAPH_CHECK(retval=igraph_empty(graph, n1 + n2, directed));
  } else if (p == 1.0) {
    IGRAPH_CHECK(retval=igraph_full_bipartite(graph, types, n1, n2, directed,
					      mode));
  } else {

    long int to, from, slen;
    double maxedges, last;
    if (!directed || mode != IGRAPH_ALL) {
      maxedges = n1 * n2;
    } else {
      maxedges = 2 * n1 * n2;
    }
    
    IGRAPH_VECTOR_INIT_FINALLY(&edges, 0);
    IGRAPH_VECTOR_INIT_FINALLY(&s, 0);
    IGRAPH_CHECK(igraph_vector_reserve(&s, (long) (maxedges*p*1.1)));
    
    RNG_BEGIN();

    last=RNG_GEOM(p);
    while (last < maxedges) {
      IGRAPH_CHECK(igraph_vector_push_back(&s, last));
      last += RNG_GEOM(p);
      last += 1;
    }
    
    RNG_END();

    slen=igraph_vector_size(&s);
    IGRAPH_CHECK(igraph_vector_reserve(&edges, slen * 2));

    for (i=0; i<slen; i++) {
      if (!directed || mode != IGRAPH_ALL) {
	to=(long) floor(VECTOR(s)[i]/n1);
	from=(long) (VECTOR(s)[i] - ((igraph_real_t) to) * n1);
	to += n1;
      } else {
	long int n1n2 = n1 * n2;
	if (VECTOR(s)[i] < n1n2) {
	  to=(long) floor(VECTOR(s)[i]/n1);
	  from=(long) (VECTOR(s)[i] - ((igraph_real_t) to) * n1);
	  to += n1;
	} else {
	  to=(long) floor( (VECTOR(s)[i]-n1n2) /n2);
	  from=(long) (VECTOR(s)[i] - n1n2 - ((igraph_real_t) to) * n2);
	  from += n1;	  
	}
      }

      if (mode != IGRAPH_IN) {
	igraph_vector_push_back(&edges, from);
	igraph_vector_push_back(&edges, to);
      } else {
	igraph_vector_push_back(&edges, to);
	igraph_vector_push_back(&edges, from);	
      }
    }

    igraph_vector_destroy(&s);
    IGRAPH_FINALLY_CLEAN(1);
    IGRAPH_CHECK(retval=igraph_create(graph, &edges, n1+n2, directed));
    igraph_vector_destroy(&edges);
    IGRAPH_FINALLY_CLEAN(1);
  }

  return retval;
}
Ejemplo n.º 25
0
/* Fan-in/ Fan-out method
*/
igraph_t *ggen_generate_fifo(gsl_rng *r, unsigned long n, unsigned long od, unsigned long id)
{
    igraph_t *g = NULL;
    igraph_vector_t available_od;
    igraph_vector_t out_degrees;
    igraph_vector_t vertices;
    igraph_vector_t choice;
    igraph_vector_t edges;
    unsigned long max;
    unsigned long i,j,k;
    unsigned long vcount = 1;
    int err;

    ggen_error_start_stack();
    if(r == NULL)
        GGEN_SET_ERRNO(GGEN_EINVAL);

    if(id == 0 || od == 0 || od > n || id > n)
        GGEN_SET_ERRNO(GGEN_EINVAL);

    g = malloc(sizeof(igraph_t));
    GGEN_CHECK_ALLOC(g);
    GGEN_FINALLY3(free,g,1);

    GGEN_CHECK_IGRAPH(igraph_empty(g,1,1));
    GGEN_FINALLY3(igraph_destroy,g,1);

    GGEN_CHECK_IGRAPH(igraph_vector_init(&available_od,n));
    GGEN_FINALLY(igraph_vector_destroy,&available_od);
    GGEN_CHECK_IGRAPH(igraph_vector_init(&out_degrees,n));
    GGEN_FINALLY(igraph_vector_destroy,&out_degrees);
    GGEN_CHECK_IGRAPH(igraph_vector_init(&vertices,n));
    GGEN_FINALLY(igraph_vector_destroy,&vertices);
    GGEN_CHECK_IGRAPH(igraph_vector_init(&choice,n));
    GGEN_FINALLY(igraph_vector_destroy,&choice);
    GGEN_CHECK_IGRAPH(igraph_vector_init(&edges,n*2));
    GGEN_FINALLY(igraph_vector_destroy,&edges);
    while(vcount < n)
    {
        // never trigger errors as it doesn't allocate or free memory
        igraph_vector_resize(&available_od,vcount);
        igraph_vector_resize(&out_degrees,vcount);
        igraph_vector_resize(&vertices,vcount);

        // compute the available out degree of each vertex
        GGEN_CHECK_IGRAPH(igraph_degree(g,&out_degrees,igraph_vss_all(),IGRAPH_OUT,0));

        // fill available with od and substract out_degrees
        igraph_vector_fill(&available_od,od);
        GGEN_CHECK_IGRAPH(igraph_vector_sub(&available_od,&out_degrees));

        if(gsl_ran_bernoulli(r,0.5))     //Fan-out Step
        {
            // find max
            max = igraph_vector_max(&available_od);

            // register all vertices having max as outdegree
            j = 0;
            for (i = 0; i < vcount; i++)
                if(VECTOR(available_od)[i] == max)
                    VECTOR(vertices)[j++] = i;

            // choose randomly a vertex among availables
            GGEN_CHECK_GSL_DO(i = gsl_rng_uniform_int(r,j));

            // how many children ?
            GGEN_CHECK_GSL_DO(j = gsl_rng_uniform_int(r,max));
            j = j+1;

            // create all new nodes and add edges
            GGEN_CHECK_IGRAPH(igraph_add_vertices(g,j,NULL));

            // cannot fail
            igraph_vector_resize(&edges,j*2);

            for(k = 0; k < j; k++)
            {
                VECTOR(edges)[2*k] = i;
                VECTOR(edges)[2*k+1] = vcount + k;
            }
            vcount+=k;
        }
        else	//Fan-In Step
        {
            // register all vertices having an available outdegree
            j = 0;
            for (i = 0; i < vcount; i++)
                if(VECTOR(available_od)[i] > 0)
                    VECTOR(vertices)[j++] = i;

            // we can add at most id vertices
            max =( j > id)? id: j;
            // how many edges to add
            GGEN_CHECK_GSL_DO(k = gsl_rng_uniform_int(r,max));
            k = k+1;

            // choose that many nodes and add edges from them to the new node
            // cannot fail either
            igraph_vector_resize(&choice,k);

            gsl_ran_choose(r,VECTOR(choice),k,
                           VECTOR(vertices),j,sizeof(VECTOR(vertices)[0]));

            // add a vertex to the graph
            GGEN_CHECK_IGRAPH(igraph_add_vertices(g,1,NULL));

            igraph_vector_resize(&edges,k*2);
            // be carefull, vcount is the last ID of vertices not vcount +1
            for(i = 0; i < k; i++)
            {
                VECTOR(edges)[2*i] = VECTOR(choice)[i];
                VECTOR(edges)[2*i+1] = vcount;
            }
            vcount++;

        }
        // in all cases, edges should be added
        GGEN_CHECK_IGRAPH(igraph_add_edges(g,&edges,NULL));
    }
    ggen_error_clean(1);
    return g;
ggen_error_label:
    return NULL;
}
Ejemplo n.º 26
0
static void
fit_rvine_trees(igraph_t **trees,
                const gsl_matrix *data,
                const dml_vine_weight_t weight,
                const dml_vine_trunc_t trunc,
                const dml_copula_indeptest_t indeptest,
                const double indeptest_level,
                const dml_copula_type_t *types,
                const size_t types_size,
                const dml_copula_select_t select,
                const gsl_rng *rng)
{
    size_t m, n;
    igraph_t *graph;
    igraph_vector_t *graph_weight;
    dml_copula_t *copula;
    gsl_vector *x;
    igraph_integer_t e; // Edge id.
    igraph_integer_t a, aa, ab, b, ba, bb; // Vertex id.
    gsl_vector *u = NULL, *v = NULL;
    igraph_integer_t Cea, Ceb;
    gsl_vector_short *Ue, *Ua, *Ub;
    size_t k;
    dml_measure_t *measure;
    double tree_aic, copula_aic;
    gsl_permutation *perm, *rank, *u_rank = NULL, *v_rank = NULL;

    igraph_i_set_attribute_table(&igraph_cattribute_table);

    m = data->size1;
    n = data->size2;
    graph = g_malloc(sizeof(igraph_t));
    graph_weight = g_malloc(sizeof(igraph_vector_t));
    perm = gsl_permutation_alloc(m);

    for (k = 0; k < n - 1; k++) { // Tree index.
        if (k == 0) {
            igraph_full(graph, n, IGRAPH_UNDIRECTED, IGRAPH_NO_LOOPS);

            // Assign the observations to the nodes.
            for (size_t i = 0; i < n; i++) { // Variable and node index.
                x = gsl_vector_alloc(m);
                gsl_matrix_get_col(x, data, i);

                // Results of the h-function of the copula assigned to the
                // edge that corresponds to this vertex in the previous tree.
                // h for the h-function with its arguments in order and
                // hrev for the h-function with its arguments reversed. In the
                // first tree both are equal to the observations of the
                // corresponding variable, in the rest of the trees they differ.
                SETVAP(graph, "h", i, x);
                SETVAP(graph, "hrev", i, x);
                gsl_sort_vector_index(perm, x);
                rank = gsl_permutation_alloc(m);
                gsl_permutation_inverse(rank, perm);
                // Ranks of the h and hrev vectors.
                SETVAP(graph, "hrank", i, rank);
                SETVAP(graph, "hrevrank", i, rank);
            }

            for (e = 0; e < igraph_ecount(graph); e++) {
                igraph_edge(graph, e, &a, &b);

                // Variables "connected" by this edge.
                Ue = gsl_vector_short_calloc(n);
                gsl_vector_short_set(Ue, a, 1);
                gsl_vector_short_set(Ue, b, 1);
                SETEAP(graph, "Ue", e, Ue);

                // Conditioned set.
                SETEAN(graph, "Cea", e, a + 1);
                SETEAN(graph, "Ceb", e, b + 1);
                Cea = EAN(graph, "Cea", e);
                Ceb = EAN(graph, "Ceb", e);

                // Calculate the weight of the edge.
                u = VAP(graph, "h", a);
                v = VAP(graph, "h", b);
                u_rank = VAP(graph, "hrank", a);
                v_rank = VAP(graph, "hrank", b);
                // The conditioned set is ordered to make the order of the
                // arguments in the bivariate copulas unique as suggested in
                // Czado, C. (2010) Pair-Copula Constructions of Multivariate
                // Copulas. In Jaworski, P. and Durante, F. and Hardle, W. K.
                // and Rychlik, T. (eds.) Copula Theory and Its Applications,
                // Springer-Verlag, 93-109.
                if (Cea < Ceb) {
                    rvine_set_weight(graph, weight, e, u, v, u_rank, v_rank);
                } else {
                    rvine_set_weight(graph, weight, e, v, u, v_rank, u_rank);
                }
            }
        } else {
            igraph_empty(graph, n - k, IGRAPH_UNDIRECTED);

            // Adding all "possible" edges.
            for (a = 0; a < igraph_vcount(graph) - 1; a++) {
                for (b = a + 1; b < igraph_vcount(graph); b++) {
                    igraph_edge(trees[k - 1], a, &aa, &ab);
                    igraph_edge(trees[k - 1], b, &ba, &bb);

                    // Checking the proximity condition.
                    if (aa == ba || aa == bb || ab == ba || ab == bb) {
                        igraph_add_edge(graph, a, b);
                        igraph_get_eid(graph, &e, a, b, IGRAPH_UNDIRECTED, 1);

                        // Variables "connected" by this edge and conditioned set.
                        Ua = EAP(trees[k - 1], "Ue", a);
                        Ub = EAP(trees[k - 1], "Ue", b);
                        Ue = gsl_vector_short_calloc(n);
                        for (size_t i = 0; i < n; i++) {
                            gsl_vector_short_set(Ue, i,
                                    gsl_vector_short_get(Ua, i)
                                            | gsl_vector_short_get(Ub, i));
                            if (gsl_vector_short_get(Ua, i)
                                    && !gsl_vector_short_get(Ub, i)) {
                                SETEAN(graph, "Cea", e, i + 1);
                            }
                            if (gsl_vector_short_get(Ub, i)
                                    && !gsl_vector_short_get(Ua, i)) {
                                SETEAN(graph, "Ceb", e, i + 1);
                            }
                        }
                        SETEAP(graph, "Ue", e, Ue);
                    }
                }
            }

            // Compute pseudo-observations and edge weights.
            for (a = 0; a < igraph_vcount(graph); a++) {
                // See the comment in the code for the first tree.
                SETVAP(graph, "h", a, NULL);
                SETVAP(graph, "hrev", a, NULL);
                SETVAP(graph, "hrank", a, NULL);
                SETVAP(graph, "hrevrank", a, NULL);
            }
            for (e = 0; e < igraph_ecount(graph); e++) {
                igraph_edge(graph, e, &a, &b);
                Cea = EAN(graph, "Cea", e);
                Ceb = EAN(graph, "Ceb", e);

                // Assign u and u_rank.
                if ((Cea == EAN(trees[k - 1], "Cea", a)
                        && (EAN(trees[k - 1], "Cea", a)
                                < EAN(trees[k - 1], "Ceb", a)))
                        || (Cea != EAN(trees[k - 1], "Cea", a)
                                && (EAN(trees[k - 1], "Cea", a)
                                        > EAN(trees[k - 1], "Ceb", a)))) {
                    u = VAP(graph, "h", a);
                    if (u == NULL) {
                        copula = EAP(trees[k - 1], "copula", a);
                        measure = EAP(trees[k - 1], "measure", a);
                        u = gsl_vector_alloc(m);
                        dml_copula_h(copula, measure->x, measure->y, u);
                        SETVAP(graph, "h", a, u);
                        gsl_sort_vector_index(perm, u);
                        rank = gsl_permutation_alloc(m);
                        gsl_permutation_inverse(rank, perm);
                        SETVAP(graph, "hrank", a, rank);
                    }
                    u_rank = VAP(graph, "hrank", a);
                }
                if ((Cea == EAN(trees[k - 1], "Cea", a)
                        && (EAN(trees[k - 1], "Cea", a)
                                > EAN(trees[k - 1], "Ceb", a)))
                        || (Cea != EAN(trees[k - 1], "Cea", a)
                                && (EAN(trees[k - 1], "Cea", a)
                                        < EAN(trees[k - 1], "Ceb", a)))) {
                    u = VAP(graph, "hrev", a);
                    if (u == NULL) {
                        copula = EAP(trees[k - 1], "copula", a);
                        measure = EAP(trees[k - 1], "measure", a);
                        u = gsl_vector_alloc(m);
                        dml_copula_h(copula, measure->y, measure->x, u);
                        SETVAP(graph, "hrev", a, u);
                        gsl_sort_vector_index(perm, u);
                        rank = gsl_permutation_alloc(m);
                        gsl_permutation_inverse(rank, perm);
                        SETVAP(graph, "hrevrank", a, rank);
                    }
                    u_rank = VAP(graph, "hrevrank", a);
                }

                // Assign v and v_rank.
                if ((Ceb == EAN(trees[k - 1], "Cea", b)
                        && (EAN(trees[k - 1], "Cea", b)
                                < EAN(trees[k - 1], "Ceb", b)))
                        || (Ceb != EAN(trees[k - 1], "Cea", b)
                                && (EAN(trees[k - 1], "Cea", b)
                                        > EAN(trees[k - 1], "Ceb", b)))) {
                    v = VAP(graph, "h", b);
                    if (v == NULL) {
                        copula = EAP(trees[k - 1], "copula", b);
                        measure = EAP(trees[k - 1], "measure", b);
                        v = gsl_vector_alloc(m);
                        dml_copula_h(copula, measure->x, measure->y, v);
                        SETVAP(graph, "h", b, v);
                        gsl_sort_vector_index(perm, v);
                        rank = gsl_permutation_alloc(m);
                        gsl_permutation_inverse(rank, perm);
                        SETVAP(graph, "hrank", b, rank);
                    }
                    v_rank = VAP(graph, "hrank", b);

                }
                if ((Ceb == EAN(trees[k - 1], "Cea", b)
                        && (EAN(trees[k - 1], "Cea", b)
                                > EAN(trees[k - 1], "Ceb", b)))
                        || (Ceb != EAN(trees[k - 1], "Cea", b)
                                && (EAN(trees[k - 1], "Cea", b)
                                        < EAN(trees[k - 1], "Ceb", b)))) {
                    v = VAP(graph, "hrev", b);
                    if (v == NULL) {
                        copula = EAP(trees[k - 1], "copula", b);
                        measure = EAP(trees[k - 1], "measure", b);
                        v = gsl_vector_alloc(m);
                        dml_copula_h(copula, measure->y, measure->x, v);
                        SETVAP(graph, "hrev", b, v);
                        gsl_sort_vector_index(perm, v);
                        rank = gsl_permutation_alloc(m);
                        gsl_permutation_inverse(rank, perm);
                        SETVAP(graph, "hrevrank", b, rank);
                    }
                    v_rank = VAP(graph, "hrevrank", b);
                }

                // Set the weight of the edge. The arguments are ordered here.
                // The order determines the x and y fields of measure.
                if (Cea < Ceb) {
                    rvine_set_weight(graph, weight, e, u, v, u_rank, v_rank);
                } else {
                    rvine_set_weight(graph, weight, e, v, u, v_rank, u_rank);
                }
            }
        }

        // Compute the minimum weight spanning tree.
        trees[k] = g_malloc(sizeof(igraph_t));
        igraph_vector_init(graph_weight, igraph_ecount(graph));
        EANV(graph, "weight", graph_weight);
        igraph_minimum_spanning_tree_prim(graph, trees[k], graph_weight);
        igraph_vector_destroy(graph_weight);

        tree_aic = 0;
        for (e = 0; e < igraph_ecount(trees[k]); e++) {
            igraph_edge(trees[k], e, &a, &b);
            Cea = EAN(trees[k], "Cea", e);
            Ceb = EAN(trees[k], "Ceb", e);
            measure = EAP(trees[k], "measure", e);

            // Assign a bivariate copula to the edge.
            if (Cea < Ceb) {
                copula = dml_copula_select(measure->x, measure->y, measure,
                                           indeptest, indeptest_level, types,
                                           types_size, select, rng);
                // Get information for the truncation of the vine.
                if (trunc == DML_VINE_TRUNC_AIC) {
                    dml_copula_aic(copula, measure->x, measure->y, &copula_aic);
                    tree_aic += copula_aic;
                }
            } else {
                copula = dml_copula_select(measure->y, measure->x, measure,
                                           indeptest, indeptest_level, types,
                                           types_size, select, rng);
                // Get information for the truncation of the vine.
                if (trunc == DML_VINE_TRUNC_AIC) {
                    dml_copula_aic(copula, measure->y, measure->x, &copula_aic);
                    tree_aic += copula_aic;
                }
            }
            SETEAP(trees[k], "copula", e, copula);
        }

        igraph_destroy(graph);

        // Check if the vine should be truncated.
        if (trunc == DML_VINE_TRUNC_AIC && tree_aic >= 0) {
            // Free the memory used for the last tree.
            rvine_tree_cleanup(trees[k]);
            for (e = 0; e < igraph_ecount(trees[k]); e++) {
                copula = EAP(trees[k], "copula", e);
                dml_copula_free(copula);
            }
            igraph_destroy(trees[k]);
            g_free(trees[k]);
            trees[k] = NULL;
            break;
        }

        if (k > 0) rvine_tree_cleanup(trees[k - 1]);
    }

    // Cleanup the last tree if the vine was completely estimated.
    // If the vine was truncated, the last tree will be freed in
    // the function vine_fit_rvine, because the rvine_trees_to_vine
    // function needs some attributes of its edges.
    if (k == n - 1) {
        rvine_tree_cleanup(trees[n - 2]);
    }

    g_free(graph_weight);
    g_free(graph);
    gsl_permutation_free(perm);
}