Ejemplo n.º 1
0
/**
 * im_benchmarkn:
 * @in: input image
 * @out: output image
 * @n: iterations
 *
 * This operation runs a complicated set of other operations on image @in,
 * producing image @out. Use @n to set the number of iterations to run: a
 * larger number will make the operation more CPU-bound, a smaller number will
 * make the operation more IO-bound.
 *
 * See http://www.vips.ecs.soton.ac.uk/index.php?title=Benchmarks for a
 * detailed discussion of the benchmark and some sample results.
 *
 * See also: im_benchmark2().
 *
 * Returns: 0 on success, -1 on error
 */
int
im_benchmarkn( IMAGE *in, IMAGE *out, int n )
{
	IMAGE *t[2];

	if( n == 0 )
		/* To sRGB.
		 */
		return( im_LabQ2disp( in, out, im_col_displays( 7 ) ) );
	else 
		return( im_open_local_array( out, t, 2, "benchmarkn", "p" ) ||
			benchmark( in, t[0] ) ||

			/* Expand back to the original size again ...
			 * benchmark does a 200 pixel crop plus a 10% shrink,
			 * so if we chain many of them together the image gets
			 * too small.
			 */
			im_affinei_all( t[0], t[1],
				vips_interpolate_bilinear_static(),
				(double) in->Xsize / t[0]->Xsize, 0, 0, 
				(double) in->Ysize / t[0]->Ysize, 
				0, 0 ) || 

			im_benchmarkn( t[1], out, n - 1 ) );
}
Ejemplo n.º 2
0
/* Init function for input displays.
 */
static int
input_display_init( im_object *obj, char *str )
{
	struct im_col_display *scr = im_col_display_name( str );

        if( !scr ) {
		int i;

		vips_error( "input_display", 
			_( "unknown display type \"%s\"" ), str );
		vips_error( "input_display", "%s", 
			_( "display should be one of:\n" ) );
                for( i = 0; (scr = im_col_displays( i )); i++ )
			vips_error( "input_display", 
				"  '%s'\n", scr->d_name );

		return( -1 );
        }

	*obj = scr;

	return( 0 );
}
Ejemplo n.º 3
0
/* Convert to a saveable format. 
 *
 * im__saveable_t gives the general type of image
 * we make: vanilla 1/3 bands (eg. PPM), with an optional alpha (eg. PNG), or
 * with CMYK as an option (eg. JPEG). 
 *
 * format_table[] says how to convert each input format. 
 *
 * Need to im_close() the result IMAGE.
 */
IMAGE *
im__convert_saveable( IMAGE *in, 
	im__saveable_t saveable, int format_table[10] ) 
{
	IMAGE *out;

	if( !(out = im_open( "convert-for-save", "p" )) )
		return( NULL );

	/* If this is an IM_CODING_LABQ, we can go straight to RGB.
	 */
	if( in->Coding == IM_CODING_LABQ ) {
		IMAGE *t = im_open_local( out, "conv:1", "p" );
		static void *table = NULL;

		/* Make sure fast LabQ2disp tables are built. 7 is sRGB.
		 */
		if( !table ) 
			table = im_LabQ2disp_build_table( NULL, 
				im_col_displays( 7 ) );

		if( !t || im_LabQ2disp_table( in, t, table ) ) {
			im_close( out );
			return( NULL );
		}

		in = t;
	}

	/* If this is an IM_CODING_RAD, we go to float RGB or XYZ. We should
	 * probably un-gamma-correct the RGB :(
	 */
	if( in->Coding == IM_CODING_RAD ) {
		IMAGE *t;

		if( !(t = im_open_local( out, "conv:1", "p" )) || 
			im_rad2float( in, t ) ) {
			im_close( out );
			return( NULL );
		}

		in = t;
	}

	/* Get the bands right. 
	 */
	if( in->Coding == IM_CODING_NONE ) {
		if( in->Bands == 2 && saveable != IM__RGBA ) {
			IMAGE *t = im_open_local( out, "conv:1", "p" );

			if( !t || im_extract_band( in, t, 0 ) ) {
				im_close( out );
				return( NULL );
			}

			in = t;
		}
		else if( in->Bands > 3 && saveable == IM__RGB ) {
			IMAGE *t = im_open_local( out, "conv:1", "p" );

			if( !t ||
				im_extract_bands( in, t, 0, 3 ) ) {
				im_close( out );
				return( NULL );
			}

			in = t;
		}
		else if( in->Bands > 4 && 
			(saveable == IM__RGB_CMYK || saveable == IM__RGBA) ) {
			IMAGE *t = im_open_local( out, "conv:1", "p" );

			if( !t ||
				im_extract_bands( in, t, 0, 4 ) ) {
				im_close( out );
				return( NULL );
			}

			in = t;
		}

		/* Else we have saveable IM__ANY and we don't chop bands down.
		 */
	}

	/* Interpret the Type field for colorimetric images.
	 */
	if( in->Bands == 3 && in->BandFmt == IM_BANDFMT_SHORT && 
		in->Type == IM_TYPE_LABS ) {
		IMAGE *t = im_open_local( out, "conv:1", "p" );

		if( !t || im_LabS2LabQ( in, t ) ) {
			im_close( out );
			return( NULL );
		}

		in = t;
	}

	if( in->Coding == IM_CODING_LABQ ) {
		IMAGE *t = im_open_local( out, "conv:1", "p" );

		if( !t || im_LabQ2Lab( in, t ) ) {
			im_close( out );
			return( NULL );
		}

		in = t;
	}

	if( in->Coding != IM_CODING_NONE ) {
		im_close( out );
		return( NULL );
	}

	if( in->Bands == 3 && in->Type == IM_TYPE_LCH ) {
		IMAGE *t[2];

                if( im_open_local_array( out, t, 2, "conv-1", "p" ) ||
			im_clip2fmt( in, t[0], IM_BANDFMT_FLOAT ) ||
			im_LCh2Lab( t[0], t[1] ) ) {
			im_close( out );
			return( NULL );
		}

		in = t[1];
	}

	if( in->Bands == 3 && in->Type == IM_TYPE_YXY ) {
		IMAGE *t[2];

                if( im_open_local_array( out, t, 2, "conv-1", "p" ) ||
			im_clip2fmt( in, t[0], IM_BANDFMT_FLOAT ) ||
			im_Yxy2XYZ( t[0], t[1] ) ) {
			im_close( out );
			return( NULL );
		}

		in = t[1];
	}

	if( in->Bands == 3 && in->Type == IM_TYPE_UCS ) {
		IMAGE *t[2];

                if( im_open_local_array( out, t, 2, "conv-1", "p" ) ||
			im_clip2fmt( in, t[0], IM_BANDFMT_FLOAT ) ||
			im_UCS2XYZ( t[0], t[1] ) ) {
			im_close( out );
			return( NULL );
		}

		in = t[1];
	}

	if( in->Bands == 3 && in->Type == IM_TYPE_LAB ) {
		IMAGE *t[2];

                if( im_open_local_array( out, t, 2, "conv-1", "p" ) ||
			im_clip2fmt( in, t[0], IM_BANDFMT_FLOAT ) ||
			im_Lab2XYZ( t[0], t[1] ) ) {
			im_close( out );
			return( NULL );
		}

		in = t[1];
	}

	if( in->Bands == 3 && in->Type == IM_TYPE_XYZ ) {
		IMAGE *t[2];

                if( im_open_local_array( out, t, 2, "conv-1", "p" ) ||
			im_clip2fmt( in, t[0], IM_BANDFMT_FLOAT ) ||
			im_XYZ2disp( t[0], t[1], im_col_displays( 7 ) ) ) {
			im_close( out );
			return( NULL );
		}

		in = t[1];
	}

	/* Cast to the output format.
	 */
	{
		IMAGE *t = im_open_local( out, "conv:1", "p" );

		if( !t || im_clip2fmt( in, t, format_table[in->BandFmt] ) ) {
			im_close( out );
			return( NULL );
		}

		in = t;
	}

	if( im_copy( in, out ) ) {
		im_close( out );
		return( NULL );
	}

	return( out );
}
Ejemplo n.º 4
0
int 
im__find_lroverlap( IMAGE *ref_in, IMAGE *sec_in, IMAGE *out,
	int bandno_in, 
	int xref, int yref, int xsec, int ysec, 
	int halfcorrelation, int halfarea,
	int *dx0, int *dy0,
	double *scale1, double *angle1, double *dx1, double *dy1 )
{
	Rect left, right, overlap;
	IMAGE *ref, *sec;
	IMAGE *t[6];
	TIE_POINTS points, *p_points;
	TIE_POINTS newpoints, *p_newpoints;
	int dx, dy;
	int i;

	/* Test cor and area.
	 */
	if( halfcorrelation < 0 || halfarea < 0 || 
		halfarea < halfcorrelation ) {
		im_error( "im_lrmosaic", "%s", _( "bad area parameters" ) );
		return( -1 );
	}

	/* Set positions of left and right.
	 */
	left.left = 0;
	left.top = 0;
	left.width = ref_in->Xsize;
	left.height = ref_in->Ysize;
	right.left = xref - xsec;
	right.top = yref - ysec;
	right.width = sec_in->Xsize;
	right.height = sec_in->Ysize;

	/* Find overlap.
	 */
	im_rect_intersectrect( &left, &right, &overlap );
	if( overlap.width < 2 * halfarea + 1 ||
		overlap.height < 2 * halfarea + 1 ) {
		im_error( "im_lrmosaic", 
			"%s", _( "overlap too small for search" ) );
		return( -1 );
	}

	/* Extract overlaps as 8-bit, 1 band.
	 */
	if( !(ref = im_open_local( out, "temp_one", "t" )) ||
		!(sec = im_open_local( out, "temp_two", "t" )) ||
		im_open_local_array( out, t, 6, "im_lrmosaic", "p" ) ||
		im_extract_area( ref_in, t[0], 
			overlap.left, overlap.top, 
			overlap.width, overlap.height ) ||
		im_extract_area( sec_in, t[1], 
			overlap.left - right.left, overlap.top - right.top, 
			overlap.width, overlap.height ) )
		return( -1 );
	if( ref_in->Coding == IM_CODING_LABQ ) {
		if( im_LabQ2Lab( t[0], t[2] ) || 
			im_LabQ2Lab( t[1], t[3] ) ||
	    		im_Lab2disp( t[2], t[4], im_col_displays( 1 ) ) || 
			im_Lab2disp( t[3], t[5], im_col_displays( 1 ) ) ||
			im_extract_band( t[4], ref, 1 ) ||
			im_extract_band( t[5], sec, 1 ) )
			return( -1 );
	}
	else if( ref_in->Coding == IM_CODING_NONE ) {
		if( im_extract_band( t[0], t[2], bandno_in ) ||
			im_extract_band( t[1], t[3], bandno_in ) ||
			im_scale( t[2], ref ) ||
			im_scale( t[3], sec ) )
			return( -1 );
	}
	else {
		im_error( "im_lrmosaic", "%s", _( "unknown Coding type" ) );
		return( -1 );
	}

	/* Initialise and fill TIE_POINTS 
	 */
	p_points = &points;
	p_newpoints = &newpoints;
	p_points->reference = ref_in->filename;
	p_points->secondary = sec_in->filename;
	p_points->nopoints = IM_MAXPOINTS;
	p_points->deltax = 0;
	p_points->deltay = 0;
	p_points->halfcorsize = halfcorrelation; 	
	p_points->halfareasize = halfarea;

	/* Initialise the structure 
	 */
	for( i = 0; i < IM_MAXPOINTS; i++ ) {
		p_points->x_reference[i] = 0;
		p_points->y_reference[i] = 0;
		p_points->x_secondary[i] = 0;
		p_points->y_secondary[i] = 0;
		p_points->contrast[i] = 0;
		p_points->correlation[i] = 0.0;
		p_points->dx[i] = 0.0;
		p_points->dy[i] = 0.0;
		p_points->deviation[i] = 0.0;
	}

	/* Search ref for possible tie-points. Sets: p_points->contrast, 
	 * p_points->x,y_reference.
 	 */
	if( im__lrcalcon( ref, p_points ) )
		return( -1 ); 

	/* For each candidate point, correlate against corresponding part of
	 * sec. Sets x,y_secondary and fills correlation and dx, dy.
 	 */
	if( im__chkpair( ref, sec, p_points ) )
		return( -1 );

	/* First call to im_clinear().
	 */
  	if( im__initialize( p_points ) )
		return( -1 );

	/* Improve the selection of tiepoints until all abs(deviations) are 
	 * < 1.0 by deleting all wrong points.
 	 */
	if( im__improve( p_points, p_newpoints ) )
		return( -1 );

	/* Average remaining offsets.
	 */
	if( im__avgdxdy( p_newpoints, &dx, &dy ) )
		return( -1 );

	/* Offset with overlap position.
	 */
	*dx0 = -right.left + dx;
	*dy0 = -right.top + dy;

	/* Write 1st order parameters too.
	 */
	*scale1 = newpoints.l_scale;
	*angle1 = newpoints.l_angle;
	*dx1 = newpoints.l_deltax;
	*dy1 = newpoints.l_deltay;

	return( 0 );
}
Ejemplo n.º 5
0
int 
im__find_tboverlap( IMAGE *ref_in, IMAGE *sec_in, IMAGE *out,
	int bandno_in, 
	int xref, int yref, int xsec, int ysec, 
	int halfcorrelation, int halfarea,
	int *dx0, int *dy0,
	double *scale1, double *angle1, double *dx1, double *dy1 )
{
	IMAGE *ref, *sec;
	TIE_POINTS points, *p_points;		/* defined in mosaic.h */
	TIE_POINTS newpoints, *p_newpoints;
	int i;
	int dx, dy;

	Rect top, bottom, overlap;

	/* Check ref and sec are compatible.
	 */
	if( ref_in->Bands != sec_in->Bands || 
		ref_in->BandFmt != sec_in->BandFmt ||
		ref_in->Coding != sec_in->Coding ) {
		im_errormsg( "im_tbmosaic: input images incompatible" );
		return( -1 );
	}

	/* Test cor and area.
	 */
	if( halfcorrelation < 0 || halfarea < 0 || 
		halfarea < halfcorrelation ) {
		im_errormsg( "im_tbmosaic: bad area parameters" );
		return( -1 );
	}

	/* Set positions of top and bottom.
	 */
	top.left = 0;
	top.top = 0;
	top.width = ref_in->Xsize;
	top.height = ref_in->Ysize;
	bottom.left = xref - xsec;
	bottom.top = yref - ysec;
	bottom.width = sec_in->Xsize;
	bottom.height = sec_in->Ysize;

	/* Find overlap.
	 */
	im_rect_intersectrect( &top, &bottom, &overlap );
	if( overlap.width < 2*halfarea + 1 ||
		overlap.height < 2*halfarea + 1 ) {
		im_errormsg( "im_tbmosaic: overlap too small for search" );
		return( -1 );
	}

	/* Extract overlaps.
	 */
	ref = im_open_local( out, "temp_one", "t" );
	sec = im_open_local( out, "temp_two", "t" );
	if( !ref || !sec )
		return( -1 );
	if( ref_in->Coding == IM_CODING_LABQ ) {
		IMAGE *t1 = im_open_local( out, "temp:3", "p" );
		IMAGE *t2 = im_open_local( out, "temp:4", "p" );
		IMAGE *t3 = im_open_local( out, "temp:5", "p" );
		IMAGE *t4 = im_open_local( out, "temp:6", "p" );
		IMAGE *t5 = im_open_local( out, "temp:7", "p" );
		IMAGE *t6 = im_open_local( out, "temp:8", "p" );

		if( !t1 || !t2 || !t3 || !t4 || !t5 || !t6 )
			return( -1 );
		if( im_extract_area( ref_in, t1, 
			overlap.left, overlap.top, 
			overlap.width, overlap.height ) )
			return( -1 );
		if( im_extract_area( sec_in, t2, 
			overlap.left - bottom.left, overlap.top - bottom.top, 
			overlap.width, overlap.height ) )
			return( -1 );
		if( im_LabQ2Lab( t1, t3 ) || im_LabQ2Lab( t2, t4 ) ||
	    		im_Lab2disp( t3, t5, im_col_displays( 1 ) ) || 
			im_Lab2disp( t4, t6, im_col_displays( 1 ) ) )
			return( -1 );
		
		/* Extract the green.
		 */
		if( im_extract_band( t5, ref, 1 ) ||
			im_extract_band( t6, sec, 1 ) )
			return( -1 );
	}
	else if( ref_in->Coding == IM_CODING_NONE ) {
		IMAGE *t1 = im_open_local( out, "temp:9", "p" );
		IMAGE *t2 = im_open_local( out, "temp:10", "p" );
		IMAGE *t3 = im_open_local( out, "temp:11", "p" );
		IMAGE *t4 = im_open_local( out, "temp:12", "p" );

		if( !t1 || !t2 || !t3 || !t4 )
			return( -1 );
		if( im_extract_area( ref_in, t1, 
			overlap.left, overlap.top, 
			overlap.width, overlap.height ) )
			return( -1 );
		if( im_extract_area( sec_in, t2, 
			overlap.left - bottom.left, overlap.top - bottom.top, 
			overlap.width, overlap.height ) )
			return( -1 );
		if( im_extract_band( t1, t3, bandno_in ) ||
			im_extract_band( t2, t4, bandno_in ) )
			return( -1 );
		if( im_scale( t3, ref ) ||
			im_scale( t4, sec ) )
			return( -1 );
	}
	else {
		im_errormsg( "im_tbmosaic: unknown Coding type" );
		return( -1 );
	}

	/* Initialise and fill TIE_POINTS 
	 */
	p_points = &points;
	p_newpoints = &newpoints;
	p_points->reference = ref_in->filename;
	p_points->secondary = sec_in->filename;
	p_points->nopoints = IM_MAXPOINTS;
	p_points->deltax = 0;
	p_points->deltay = 0;
	p_points->halfcorsize = halfcorrelation; 	
	p_points->halfareasize = halfarea;

	/* Initialise the structure 
	 */
	for( i = 0; i < IM_MAXPOINTS; i++ ) {
		p_points->x_reference[i] = 0;
		p_points->y_reference[i] = 0;
		p_points->x_secondary[i] = 0;
		p_points->y_secondary[i] = 0;
		p_points->contrast[i] = 0;
		p_points->correlation[i] = 0.0;
		p_points->dx[i] = 0.0;
		p_points->dy[i] = 0.0;
		p_points->deviation[i] = 0.0;
	}

	/* Search ref for possible tie-points. Sets: p_points->contrast, 
	 * p_points->x,y_reference.
 	 */
	if( im__tbcalcon( ref, p_points ) )
		return( -1 ); 

	/* For each candidate point, correlate against corresponding part of
	 * sec. Sets x,y_secondary and fills correlation and dx, dy.
 	 */
	if( im__chkpair( ref, sec, p_points ) )
		return( -1 );

	/* First call to im_clinear().
	 */
  	if( im__initialize( p_points ) )
		return( -1 );

	/* Improve the selection of tiepoints until all abs(deviations) are 
	 * < 1.0 by deleting all wrong points.
 	 */
	if( im__improve( p_points, p_newpoints ) )
		return( -1 );

	/* Average remaining offsets.
	 */
	if( im__avgdxdy( p_newpoints, &dx, &dy ) )
		return( -1 );

	/* Offset with overlap position.
	 */
	*dx0 = -bottom.left + dx;
	*dy0 = -bottom.top + dy;

	/* Write 1st order parameters too.
	 */
	*scale1 = newpoints.l_scale;
	*angle1 = newpoints.l_angle;
	*dx1 = newpoints.l_deltax;
	*dy1 = newpoints.l_deltay;

	return( 0 );
}
Ejemplo n.º 6
0
static int
shrink_factor( IMAGE *in, IMAGE *out, 
	int shrink, double residual, VipsInterpolate *interp )
{
	IMAGE *t[9];
	VipsImage **s = (VipsImage **) 
		vips_object_local_array( VIPS_OBJECT( out ), 1 );
	IMAGE *x;
	int tile_width;
	int tile_height;
	int nlines;

	if( im_open_local_array( out, t, 9, "thumbnail", "p" ) )
		return( -1 );
	x = in;

	/* Unpack the two coded formats we support to float for processing.
	 */
	if( x->Coding == IM_CODING_LABQ ) {
		if( verbose ) 
			printf( "unpacking LAB to RGB\n" );

		if( im_LabQ2disp( x, t[1], im_col_displays( 7 ) ) )
			return( -1 );
		x = t[1];
	}
	else if( x->Coding == IM_CODING_RAD ) {
		if( verbose ) 
			printf( "unpacking Rad to float\n" );

		if( im_rad2float( x, t[1] ) )
			return( -1 );
		x = t[1];
	}

	if( im_shrink( x, t[2], shrink, shrink ) )
		return( -1 );

	/* We want to make sure we read the image sequentially.
	 * However, the convolution we may be doing later will force us 
	 * into SMALLTILE or maybe FATSTRIP mode and that will break
	 * sequentiality.
	 *
	 * So ... read into a cache where tiles are scanlines, and make sure
	 * we keep enough scanlines to be able to serve a line of tiles.
	 */
	vips_get_tile_size( t[2], 
		&tile_width, &tile_height, &nlines );
	if( vips_tilecache( t[2], &s[0], 
		"tile_width", t[2]->Xsize,
		"tile_height", 10,
		"max_tiles", (nlines * 2) / 10,
		"strategy", VIPS_CACHE_SEQUENTIAL,
		NULL ) ||
		im_affinei_all( s[0], t[4], 
			interp, residual, 0, 0, residual, 0, 0 ) )
		return( -1 );
	x = t[4];

	/* If we are upsampling, don't sharpen, since nearest looks dumb
	 * sharpened.
	 */
	if( shrink > 1 && residual <= 1.0 && !nosharpen ) {
		if( verbose ) 
			printf( "sharpening thumbnail\n" );

		if( im_conv( x, t[5], sharpen_filter() ) )
			return( -1 );
		x = t[5];
	}

	/* Colour management: we can transform the image if we have an output
	 * profile and an input profile. The input profile can be in the
	 * image, or if there is no profile there, supplied by the user.
	 */
	if( export_profile &&
		(im_header_get_typeof( x, IM_META_ICC_NAME ) || 
		 import_profile) ) {
		if( im_header_get_typeof( x, IM_META_ICC_NAME ) ) {
			if( verbose ) 
				printf( "importing with embedded profile\n" );

			if( im_icc_import_embedded( x, t[6], 
				IM_INTENT_RELATIVE_COLORIMETRIC ) )
				return( -1 );
		}
		else {
			if( verbose ) 
				printf( "importing with profile %s\n",
					import_profile );

			if( im_icc_import( x, t[6], 
				import_profile, 
				IM_INTENT_RELATIVE_COLORIMETRIC ) )
				return( -1 );
		}

		if( verbose ) 
			printf( "exporting with profile %s\n", export_profile );

		if( im_icc_export_depth( t[6], t[7], 
			8, export_profile, 
			IM_INTENT_RELATIVE_COLORIMETRIC ) )
			return( -1 );

		x = t[7];
	}

	if( delete_profile ) {
		if( verbose )
			printf( "deleting profile from output image\n" );

		if( im_meta_get_typeof( x, IM_META_ICC_NAME ) &&
			!im_meta_remove( x, IM_META_ICC_NAME ) )
			return( -1 );
	}

	if( im_copy( x, out ) )
		return( -1 );

	return( 0 );
}