Ejemplo n.º 1
0
bool match_pattern(type_checker & tc, expr const & pattern, declaration const & d, unsigned max_steps, bool cheap) {
    name_generator ngen = tc.mk_ngen();
     buffer<level> ls;
    unsigned num_ls = d.get_num_univ_params();
    for (unsigned i = 0; i < num_ls; i++)
        ls.push_back(mk_meta_univ(ngen.next()));
    expr dt        = instantiate_type_univ_params(d, to_list(ls.begin(), ls.end()));

    unsigned num_e = get_expect_num_args(tc, pattern);
    unsigned num_d = get_expect_num_args(tc, dt);
    if (num_e > num_d)
        return false;
    for (unsigned i = 0; i < num_d - num_e; i++) {
        dt         = tc.whnf(dt).first;
        expr local = mk_local(ngen.next(), binding_domain(dt));
        dt         = instantiate(binding_body(dt), local);
    }
    try {
        unifier_config cfg;
        cfg.m_max_steps            = max_steps;
        cfg.m_kind                 = cheap ? unifier_kind::Cheap : unifier_kind::Liberal;
        cfg.m_ignore_context_check = true;
        auto r = unify(tc.env(), pattern, dt, tc.mk_ngen(), substitution(), cfg);
        return static_cast<bool>(r.pull());
    } catch (exception&) {
        return false;
    }
}
static optional<pair<expr, expr>> mk_op(environment const & env, old_local_context & ctx, type_checker_ptr & tc,
                                        name const & op, unsigned nunivs, unsigned nargs, std::initializer_list<expr> const & explicit_args,
                                        constraint_seq & cs, tag g) {
    levels lvls;
    for (unsigned i = 0; i < nunivs; i++)
        lvls = levels(mk_meta_univ(mk_fresh_name()), lvls);
    expr c = mk_constant(op, lvls);
    expr op_type = instantiate_type_univ_params(env.get(op), lvls);
    buffer<expr> args;
    for (unsigned i = 0; i < nargs; i++) {
        if (!is_pi(op_type))
            return optional<pair<expr, expr>>();
        expr arg = ctx.mk_meta(some_expr(binding_domain(op_type)), g);
        args.push_back(arg);
        op_type  = instantiate(binding_body(op_type), arg);
    }
    expr r = mk_app(c, args, g);
    for (expr const & explicit_arg : explicit_args) {
        if (!is_pi(op_type))
            return optional<pair<expr, expr>>();
        r = mk_app(r, explicit_arg);
        expr type = tc->infer(explicit_arg, cs);
        justification j = mk_app_justification(r, op_type, explicit_arg, type);
        if (!tc->is_def_eq(binding_domain(op_type), type, j, cs))
            return optional<pair<expr, expr>>();
        op_type  = instantiate(binding_body(op_type), explicit_arg);
    }
    return some(mk_pair(r, op_type));
}
Ejemplo n.º 3
0
static simp_rule_sets add_core(type_checker & tc, simp_rule_sets const & s, name const & cname) {
    declaration const & d = tc.env().get(cname);
    buffer<level> us;
    unsigned num_univs = d.get_num_univ_params();
    for (unsigned i = 0; i < num_univs; i++) {
        us.push_back(mk_meta_univ(name(*g_prefix, i)));
    }
    levels ls = to_list(us);
    expr e    = instantiate_type_univ_params(d, ls);
    expr h    = mk_constant(cname, ls);
    return add_core(tc, s, cname, ls, e, h);
}
Ejemplo n.º 4
0
 optional<constraints> try_instance(name const & inst) {
     environment const & env = m_C->env();
     if (auto decl = env.find(inst)) {
         name_generator & ngen = m_C->m_ngen;
         buffer<level> ls_buffer;
         unsigned num_univ_ps = decl->get_num_univ_params();
         for (unsigned i = 0; i < num_univ_ps; i++)
             ls_buffer.push_back(mk_meta_univ(ngen.next()));
         levels ls = to_list(ls_buffer.begin(), ls_buffer.end());
         expr inst_cnst = copy_tag(m_meta, mk_constant(inst, ls));
         expr inst_type = instantiate_type_univ_params(*decl, ls);
         return try_instance(inst_cnst, inst_type);
     } else {
         return optional<constraints>();
     }
 }
Ejemplo n.º 5
0
optional<environment> mk_no_confusion_type(environment const & env, name const & n) {
    optional<inductive::inductive_decls> decls = inductive::is_inductive_decl(env, n);
    if (!decls)
        throw exception(sstream() << "error in 'no_confusion' generation, '" << n << "' is not an inductive datatype");
    if (is_inductive_predicate(env, n))
        return optional<environment>(); // type is a proposition
    name_generator ngen;
    unsigned nparams       = std::get<1>(*decls);
    declaration ind_decl   = env.get(n);
    declaration cases_decl = env.get(name(n, "cases_on"));
    level_param_names lps  = cases_decl.get_univ_params();
    level  rlvl            = mk_param_univ(head(lps));
    levels ilvls           = param_names_to_levels(tail(lps));
    if (length(ilvls) != length(ind_decl.get_univ_params()))
        return optional<environment>(); // type does not have only a restricted eliminator
    expr ind_type          = instantiate_type_univ_params(ind_decl, ilvls);
    name eq_name("eq");
    name heq_name("heq");
    // All inductive datatype parameters and indices are arguments
    buffer<expr> args;
    ind_type = to_telescope(ngen, ind_type, args, some(mk_implicit_binder_info()));
    if (!is_sort(ind_type) || args.size() < nparams)
        throw_corrupted(n);
    lean_assert(!(env.impredicative() && is_zero(sort_level(ind_type))));
    unsigned nindices      = args.size() - nparams;
    // Create inductive datatype
    expr I = mk_app(mk_constant(n, ilvls), args);
    // Add (P : Type)
    expr P = mk_local(ngen.next(), "P", mk_sort(rlvl), binder_info());
    args.push_back(P);
    // add v1 and v2 elements of the inductive type
    expr v1 = mk_local(ngen.next(), "v1", I, binder_info());
    expr v2 = mk_local(ngen.next(), "v2", I, binder_info());
    args.push_back(v1);
    args.push_back(v2);
    expr R  = mk_sort(rlvl);
    name no_confusion_type_name{n, "no_confusion_type"};
    expr no_confusion_type_type = Pi(args, R);
    // Create type former
    buffer<expr> type_former_args;
    for (unsigned i = nparams; i < nparams + nindices; i++)
        type_former_args.push_back(args[i]);
    type_former_args.push_back(v1);
    expr type_former = Fun(type_former_args, R);
    // Create cases_on
    levels clvls   = levels(mk_succ(rlvl), ilvls);
    expr cases_on  = mk_app(mk_app(mk_constant(cases_decl.get_name(), clvls), nparams, args.data()), type_former);
    cases_on       = mk_app(cases_on, nindices, args.data() + nparams);
    expr cases_on1 = mk_app(cases_on, v1);
    expr cases_on2 = mk_app(cases_on, v2);
    type_checker tc(env);
    expr t1        = tc.infer(cases_on1).first;
    expr t2        = tc.infer(cases_on2).first;
    buffer<expr> outer_cases_on_args;
    unsigned idx1 = 0;
    while (is_pi(t1)) {
        buffer<expr> minor1_args;
        expr minor1 = to_telescope(tc, binding_domain(t1), minor1_args);
        expr curr_t2  = t2;
        buffer<expr> inner_cases_on_args;
        unsigned idx2 = 0;
        while (is_pi(curr_t2)) {
            buffer<expr> minor2_args;
            expr minor2 = to_telescope(tc, binding_domain(curr_t2), minor2_args);
            if (idx1 != idx2) {
                // infeasible case, constructors do not match
                inner_cases_on_args.push_back(Fun(minor2_args, P));
            } else {
                if (minor1_args.size() != minor2_args.size())
                    throw_corrupted(n);
                buffer<expr> rtype_hyp;
                // add equalities
                for (unsigned i = 0; i < minor1_args.size(); i++) {
                    expr lhs      = minor1_args[i];
                    expr rhs      = minor2_args[i];
                    expr lhs_type = mlocal_type(lhs);
                    expr rhs_type = mlocal_type(rhs);
                    level l       = sort_level(tc.ensure_type(lhs_type).first);
                    expr h_type;
                    if (tc.is_def_eq(lhs_type, rhs_type).first) {
                        h_type = mk_app(mk_constant(eq_name, to_list(l)), lhs_type, lhs, rhs);
                    } else {
                        h_type = mk_app(mk_constant(heq_name, to_list(l)), lhs_type, lhs, rhs_type, rhs);
                    }
                    rtype_hyp.push_back(mk_local(ngen.next(), local_pp_name(lhs).append_after("_eq"), h_type, binder_info()));
                }
                inner_cases_on_args.push_back(Fun(minor2_args, mk_arrow(Pi(rtype_hyp, P), P)));
            }
            idx2++;
            curr_t2 = binding_body(curr_t2);
        }
        outer_cases_on_args.push_back(Fun(minor1_args, mk_app(cases_on2, inner_cases_on_args)));
        idx1++;
        t1 = binding_body(t1);
    }
    expr no_confusion_type_value = Fun(args, mk_app(cases_on1, outer_cases_on_args));

    bool opaque       = false;
    bool use_conv_opt = true;
    declaration new_d = mk_definition(env, no_confusion_type_name, lps, no_confusion_type_type, no_confusion_type_value,
                                      opaque, ind_decl.get_module_idx(), use_conv_opt);
    environment new_env = module::add(env, check(env, new_d));
    return some(add_protected(new_env, no_confusion_type_name));
}
Ejemplo n.º 6
0
environment mk_no_confusion(environment const & env, name const & n) {
    optional<environment> env1 = mk_no_confusion_type(env, n);
    if (!env1)
        return env;
    environment new_env = *env1;
    type_checker tc(new_env);
    inductive::inductive_decls decls   = *inductive::is_inductive_decl(new_env, n);
    unsigned nparams                   = std::get<1>(decls);
    name_generator ngen;
    declaration no_confusion_type_decl = new_env.get(name{n, "no_confusion_type"});
    declaration cases_decl             = new_env.get(name(n, "cases_on"));
    level_param_names lps              = no_confusion_type_decl.get_univ_params();
    levels ls                          = param_names_to_levels(lps);
    expr no_confusion_type_type        = instantiate_type_univ_params(no_confusion_type_decl, ls);
    name eq_name("eq");
    name heq_name("heq");
    name eq_refl_name{"eq", "refl"};
    name heq_refl_name{"heq", "refl"};
    buffer<expr> args;
    expr type = no_confusion_type_type;
    type = to_telescope(ngen, type, args, some(mk_implicit_binder_info()));
    lean_assert(args.size() >= nparams + 3);
    unsigned nindices = args.size() - nparams - 3; // 3 is for P v1 v2
    expr range        = mk_app(mk_constant(no_confusion_type_decl.get_name(), ls), args);
    expr P            = args[args.size()-3];
    expr v1           = args[args.size()-2];
    expr v2           = args[args.size()-1];
    expr v_type       = mlocal_type(v1);
    level v_lvl       = sort_level(tc.ensure_type(v_type).first);
    expr eq_v         = mk_app(mk_constant(eq_name, to_list(v_lvl)), v_type);
    expr H12          = mk_local(ngen.next(), "H12", mk_app(eq_v, v1, v2), binder_info());
    args.push_back(H12);
    name no_confusion_name{n, "no_confusion"};
    expr no_confusion_ty = Pi(args, range);
    // The gen proof is of the form
    //   (fun H11 : v1 = v1, cases_on Params (fun Indices v1, no_confusion_type Params Indices P v1 v1) Indices v1
    //        <for-each case>
    //        (fun H : (equations -> P), H (refl) ... (refl))
    //        ...
    //   )

    // H11 is for creating the generalization
    expr H11          = mk_local(ngen.next(), "H11", mk_app(eq_v, v1, v1), binder_info());
    // Create the type former (fun Indices v1, no_confusion_type Params Indices P v1 v1)
    buffer<expr> type_former_args;
    for (unsigned i = nparams; i < nparams + nindices; i++)
        type_former_args.push_back(args[i]);
    type_former_args.push_back(v1);
    buffer<expr> no_confusion_type_args;
    for (unsigned i = 0; i < nparams + nindices; i++)
        no_confusion_type_args.push_back(args[i]);
    no_confusion_type_args.push_back(P);
    no_confusion_type_args.push_back(v1);
    no_confusion_type_args.push_back(v1);
    expr no_confusion_type_app = mk_app(mk_constant(no_confusion_type_decl.get_name(), ls), no_confusion_type_args);
    expr type_former = Fun(type_former_args, no_confusion_type_app);
    // create cases_on
    levels clvls   = ls;
    expr cases_on  = mk_app(mk_app(mk_constant(cases_decl.get_name(), clvls), nparams, args.data()), type_former);
    cases_on       = mk_app(mk_app(cases_on, nindices, args.data() + nparams), v1);
    expr cot       = tc.infer(cases_on).first;

    while (is_pi(cot)) {
        buffer<expr> minor_args;
        expr minor = to_telescope(tc, binding_domain(cot), minor_args);
        lean_assert(!minor_args.empty());
        expr H  = minor_args.back();
        expr Ht = mlocal_type(H);
        buffer<expr> refl_args;
        while (is_pi(Ht)) {
            buffer<expr> eq_args;
            expr eq_fn = get_app_args(binding_domain(Ht), eq_args);
            if (const_name(eq_fn) == eq_name) {
                refl_args.push_back(mk_app(mk_constant(eq_refl_name, const_levels(eq_fn)), eq_args[0], eq_args[1]));
            } else {
                refl_args.push_back(mk_app(mk_constant(heq_refl_name, const_levels(eq_fn)), eq_args[0], eq_args[1]));
            }
            Ht = binding_body(Ht);
        }
        expr pr  = mk_app(H, refl_args);
        cases_on = mk_app(cases_on, Fun(minor_args, pr));
        cot = binding_body(cot);
    }
    expr gen = Fun(H11, cases_on);
    // Now, we use gen to build the final proof using eq.rec
    //
    //  eq.rec InductiveType v1 (fun (a : InductiveType), v1 = a -> no_confusion_type Params Indices v1 a) gen v2 H12 H12
    //
    name eq_rec_name{"eq", "rec"};
    expr eq_rec = mk_app(mk_constant(eq_rec_name, {head(ls), v_lvl}), v_type, v1);
    // create eq_rec type_former
    //    (fun (a : InductiveType), v1 = a -> no_confusion_type Params Indices v1 a)
    expr a   = mk_local(ngen.next(), "a",   v_type, binder_info());
    expr H1a = mk_local(ngen.next(), "H1a", mk_app(eq_v, v1, a), binder_info());
    // reusing no_confusion_type_args... we just replace the last argument with a
    no_confusion_type_args.pop_back();
    no_confusion_type_args.push_back(a);
    expr no_confusion_type_app_1a = mk_app(mk_constant(no_confusion_type_decl.get_name(), ls), no_confusion_type_args);
    expr rec_type_former = Fun(a, Pi(H1a, no_confusion_type_app_1a));
    // finalize eq_rec
    eq_rec = mk_app(mk_app(eq_rec, rec_type_former, gen, v2, H12), H12);
    //
    expr no_confusion_val = Fun(args, eq_rec);

    bool opaque       = false;
    bool use_conv_opt = true;
    declaration new_d = mk_definition(new_env, no_confusion_name, lps, no_confusion_ty, no_confusion_val,
                                      opaque, no_confusion_type_decl.get_module_idx(), use_conv_opt);
    new_env = module::add(new_env, check(new_env, new_d));
    return add_protected(new_env, no_confusion_name);
}
Ejemplo n.º 7
0
void add_congr_core(environment const & env, simp_rule_sets & s, name const & n) {
    declaration const & d = env.get(n);
    type_checker tc(env);
    buffer<level> us;
    unsigned num_univs = d.get_num_univ_params();
    for (unsigned i = 0; i < num_univs; i++) {
        us.push_back(mk_meta_univ(name(*g_prefix, i)));
    }
    levels ls = to_list(us);
    expr pr   = mk_constant(n, ls);
    expr e    = instantiate_type_univ_params(d, ls);
    buffer<bool> explicit_args;
    buffer<expr> metas;
    unsigned idx = 0;
    while (is_pi(e)) {
        expr mvar = mk_metavar(name(*g_prefix, idx), binding_domain(e));
        idx++;
        explicit_args.push_back(is_explicit(binding_info(e)));
        metas.push_back(mvar);
        e   = instantiate(binding_body(e), mvar);
        pr  = mk_app(pr, mvar);
    }
    expr rel, lhs, rhs;
    if (!is_simp_relation(env, e, rel, lhs, rhs) || !is_constant(rel)) {
        throw exception(sstream() << "invalid congruence rule, '" << n
                        << "' resulting type is not of the form t ~ s, where '~' is a transitive and reflexive relation");
    }
    name_set found_mvars;
    buffer<expr> lhs_args, rhs_args;
    expr const & lhs_fn = get_app_args(lhs, lhs_args);
    expr const & rhs_fn = get_app_args(rhs, rhs_args);
    if (is_constant(lhs_fn)) {
        if (!is_constant(rhs_fn) || const_name(lhs_fn) != const_name(rhs_fn) || lhs_args.size() != rhs_args.size()) {
            throw exception(sstream() << "invalid congruence rule, '" << n
                            << "' resulting type is not of the form (" << const_name(lhs_fn) << "  ...) "
                            << "~ (" << const_name(lhs_fn) << " ...), where ~ is '" << const_name(rel) << "'");
        }
        for (expr const & lhs_arg : lhs_args) {
            if (is_sort(lhs_arg))
                continue;
            if (!is_metavar(lhs_arg) || found_mvars.contains(mlocal_name(lhs_arg))) {
                throw exception(sstream() << "invalid congruence rule, '" << n
                                << "' the left-hand-side of the congruence resulting type must be of the form ("
                                << const_name(lhs_fn) << " x_1 ... x_n), where each x_i is a distinct variable or a sort");
            }
            found_mvars.insert(mlocal_name(lhs_arg));
        }
    } else if (is_binding(lhs)) {
        if (lhs.kind() != rhs.kind()) {
            throw exception(sstream() << "invalid congruence rule, '" << n
                            << "' kinds of the left-hand-side and right-hand-side of "
                            << "the congruence resulting type do not match");
        }
        if (!is_valid_congr_rule_binding_lhs(lhs, found_mvars)) {
            throw exception(sstream() << "invalid congruence rule, '" << n
                            << "' left-hand-side of the congruence resulting type must "
                            << "be of the form (fun/Pi (x : A), B x)");
        }
    } else {
        throw exception(sstream() << "invalid congruence rule, '" << n
                        << "' left-hand-side is not an application nor a binding");
    }

    buffer<expr> congr_hyps;
    lean_assert(metas.size() == explicit_args.size());
    for (unsigned i = 0; i < metas.size(); i++) {
        expr const & mvar = metas[i];
        if (explicit_args[i] && !found_mvars.contains(mlocal_name(mvar))) {
            buffer<expr> locals;
            expr type = mlocal_type(mvar);
            while (is_pi(type)) {
                expr local = mk_local(tc.mk_fresh_name(), binding_domain(type));
                locals.push_back(local);
                type = instantiate(binding_body(type), local);
            }
            expr h_rel, h_lhs, h_rhs;
            if (!is_simp_relation(env, type, h_rel, h_lhs, h_rhs) || !is_constant(h_rel))
                continue;
            unsigned j = 0;
            for (expr const & local : locals) {
                j++;
                if (!only_found_mvars(mlocal_type(local), found_mvars)) {
                    throw exception(sstream() << "invalid congruence rule, '" << n
                                    << "' argument #" << j << " of parameter #" << (i+1) << " contains "
                                    << "unresolved parameters");
                }
            }
            if (!only_found_mvars(h_lhs, found_mvars)) {
                throw exception(sstream() << "invalid congruence rule, '" << n
                                << "' argument #" << (i+1) << " is not a valid hypothesis, the left-hand-side contains "
                                << "unresolved parameters");
            }
            if (!is_valid_congr_hyp_rhs(h_rhs, found_mvars)) {
                throw exception(sstream() << "invalid congruence rule, '" << n
                                << "' argument #" << (i+1) << " is not a valid hypothesis, the right-hand-side must be "
                                << "of the form (m l_1 ... l_n) where m is parameter that was not "
                                << "'assigned/resolved' yet and l_i's are locals");
            }
            found_mvars.insert(mlocal_name(mvar));
            congr_hyps.push_back(mvar);
        }
    }
    congr_rule rule(n, ls, to_list(metas), lhs, rhs, pr, to_list(congr_hyps));
    s.insert(const_name(rel), rule);
}
Ejemplo n.º 8
0
static optional<head_index> get_backward_target(type_context & ctx, name const & c) {
    declaration const & d = ctx.env().get(c);
    list<level> us = param_names_to_levels(d.get_univ_params());
    expr type      = ctx.try_to_pi(instantiate_type_univ_params(d, us));
    return get_backward_target(ctx, type);
}