Ejemplo n.º 1
0
status_t
arch_int_init_io(kernel_args* args)
{
	msi_init(args);
	ioapic_init(args);
	return B_OK;
}
Ejemplo n.º 2
0
void arch_init()
{
	pci_init();
#ifdef __CONFIG_ENABLE_MPTABLES__
	mptables_parse();
	ioapic_init(); // MUST BE AFTER PCI/ISA INIT!
	// TODO: move these back to regular init.  requires fixing the 
	// __CONFIG_NETWORKING__ inits to not need multiple cores running.
#endif
	// this returns when all other cores are done and ready to receive IPIs
	#ifdef __CONFIG_SINGLE_CORE__
		smp_percpu_init();
	#else
		smp_boot();
	#endif
	proc_init();

	/* EXPERIMENTAL NETWORK FUNCTIONALITY
	 * To enable, define __CONFIG_NETWORKING__ in your Makelocal
	 * If enabled, will load the rl8168 driver (if device exists)
	 * and will a boot into userland matrix, so remote syscalls can be performed.
 	 * If in simulation, will do some debugging information with the ne2k device
	 *
	 * Note: If you use this, you should also define the mac address of the 
	 * teathered machine via USER_MAC_ADDRESS in Makelocal.
	 *
	 * Additionally, you should have a look at the syscall server in the tools directory
	 */
	#ifdef __CONFIG_NETWORKING__
	#ifdef __CONFIG_SINGLE_CORE__
		warn("You currently can't have networking if you boot into single core mode!!\n");
	#else
		rl8168_init();		
		ne2k_init();
		e1000_init();
	#endif // __CONFIG_SINGLE_CORE__
	#endif // __CONFIG_NETWORKING__

	perfmon_init();
		
#ifdef __CONFIG_MONITOR_ON_INT__
	/* Handler to read a char from the interrupt source and call the monitor.
	 * Need to read the character so the device will send another interrupt.
	 * Note this will read from both the serial and the keyboard, and throw away
	 * the result.  We condition, since we don't want to trigger on a keyboard
	 * up interrupt */
	void mon_int(struct trapframe *tf, void *data)
	{
		// Enable interrupts here so that we can receive 
		// other interrupts (e.g. from the NIC)
		enable_irq();
		if (cons_getc())
			monitor(0);
	}
Ejemplo n.º 3
0
Archivo: main.c Proyecto: pranas/jaos64
void kernel_entry (multiboot_info* bootinfo) 
{
	clear_screen();	puts("Kernel loaded.\n");
	gdt_install();  puts("GDT initialised.\n");
	idt_install();	puts("IDT initialised.\n");
    memman_init(bootinfo);
	kheap_init();
	fat32_init();
	// TODO: figure out how to do it safely
	//acpi_init();
	apic_init();
	ioapic_init(); // keyboard only for now

	register_handler(0x21, keyboard_handler);
	register_handler(0xD, gpf_handler);

	syscalls_init(); // maybe syscalls_init() like acpi_init, apic_init, etc... there should be common naming

	timer_init(0x20, 0x002fffff, 0xB, 1); // vector, counter, divider, periodic -- check manual before using

	// sets up kernel task and registers handler for timer
	scheduler_init();
	// registers locking sys
	monitor_init();
	keyboard_init();

	// testing scheduler
    if (fork_kernel() == 0)
    {
        if (!exec("SHELL"))
        {
            // something horrible happend
            // exit()
        }
        exit();
    }
    else
    {
        for(;;)
        {
			asm volatile("hlt");
        }
    }
	
	asm ("sti"); // release monsters, it can be set earlier, but fails horribly if set before acpi_init
    for(;;);
}
Ejemplo n.º 4
0
void inmate_main(void)
{
	printk_uart_base = UART_BASE;

	int_init();
	int_set_handler(IRQ_VECTOR, irq_handler);

	ioapic_init();
	ioapic_pin_set_vector(ACPI_GSI, TRIGGER_LEVEL_ACTIVE_HIGH, IRQ_VECTOR);

	printk("Press power button to trigger an IRQ\n"
	       "Note: ACPI IRQs are broken for Linux now.\n");
	asm volatile("sti");

	while (1)
		asm volatile("hlt");
}
Ejemplo n.º 5
0
void inmate_main(void)
{
	printk_uart_base = UART_BASE;

	int_init();
	int_set_handler(IRQ_VECTOR, irq_handler);

	ioapic_init();
	ioapic_pin_set_vector(ACPI_GSI, TRIGGER_LEVEL_ACTIVE_HIGH, IRQ_VECTOR);

	pm_base = comm_region->pm_timer_address - 8;
	outw(inw(pm_base + PM1_ENABLE) | PM1_TMR_EN, pm_base + PM1_ENABLE);

	printk("Note: ACPI IRQs are broken for Linux now.\n");
	asm volatile("sti");

	while (1)
		asm volatile("hlt");
}
Ejemplo n.º 6
0
static void
vm_reset_vdevs(struct vmctx *ctx)
{
	/*
	 * The current virtual devices doesn't define virtual
	 * device reset function. So we call vdev deinit/init
	 * pairing to emulate the device reset operation.
	 *
	 * pci/ioapic deinit/init is needed because of dependency
	 * of pci irq allocation/free.
	 *
	 * acpi build is necessary because irq for each vdev
	 * could be assigned with different number after reset.
	 */
	atkbdc_deinit(ctx);

	if (debugexit_enabled)
		deinit_debugexit();

	vhpet_deinit(ctx);
	vpit_deinit(ctx);
	vrtc_deinit(ctx);

	deinit_pci(ctx);
	pci_irq_deinit(ctx);
	ioapic_deinit();

	pci_irq_init(ctx);
	atkbdc_init(ctx);
	vrtc_init(ctx);
	vpit_init(ctx);
	vhpet_init(ctx);

	if (debugexit_enabled)
		init_debugexit();

	ioapic_init(ctx);
	init_pci(ctx);

	if (acpi) {
		acpi_build(ctx, guest_ncpus);
	}
}
Ejemplo n.º 7
0
Archivo: apic.c Proyecto: gusc/mbr2gpt
bool apic_init(){
	char apic[4] = {'A', 'P', 'I', 'C'};
	MADT_t *madt = (MADT_t *)acpi_table(apic);
	if (madt != null){
		// Gather Local and IO APIC(s)
		_lapic_addr = (uint64)madt->lapic_addr;
		
		// Enumerate APICs
		uint64 length = (madt->h.length - sizeof(MADT_t) + 4);
		APICHeader_t *ah = (APICHeader_t *)(&madt->ptr);
		while (length > 0){
#if DEBUG == 1
			//debug_print(DC_WGR, "APIC type: %d", ah->type);
#endif
			switch (ah->type){
				case APIC_TYPE_LAPIC:
					// Test if it's enabled - if not - don't touch it
					if ((((LocalAPIC_t *)ah)->flags & 1) != 0){
						_lapic[_lapic_count] = (LocalAPIC_t *)ah;
						_lapic_count ++;
					}
					break;
				case APIC_TYPE_IOAPIC:
					_ioapic[_ioapic_count] = (IOAPIC_t *)ah;
					_ioapic_count ++;
					break;
			}
			length -= ah->length;
			ah = (APICHeader_t *)(((uint64)ah) + ah->length);
		}
#if DEBUG == 1
		debug_print(DC_WB, "CPU count:%d", _lapic_count);
#endif

		// Initialize Local APIC
		lapic_init();
		// Initialize IO APIC
		ioapic_init();
	}
}
Ejemplo n.º 8
0
Archivo: main.c Proyecto: sihai/myos
/**
 * Bootstrap processor starts running C code here.
 */
int main(void)
{
	/**
	 * ld会生成如下几个变量用来标识程序的段
	 *
	 *  _etext(etext)	正文段结束后第一个地址
	 *	_edata(edata)	数据段结束后第一个地址
	 *	_end(end)		bss段结束后第一个地址
	 */
	extern char edata[], end[];

  	// clear BSS
  	memset(edata, 0, end - edata);

  	// collect info about this machine
  	mp_init();
  	lapic_init(mp_bcpu());

  	cprintf("\ncpu%d: starting myos\n\n", cpu());
	cprintf("Welcome to myos !\n");

	pinit();         // process table
	binit();         // buffer cache
	pic_init();      // interrupt controller
	ioapic_init();   // another interrupt controller

	kinit();         // physical memory allocator
	tvinit();        // trap vectors
	fileinit();      // file table
	iinit();         // inode cache
	console_init();  // I/O devices & their interrupts
	ide_init();      // disk
	if(!ismp)
			timer_init();  // uniprocessor timer
	userinit();      // first user process
	bootothers();    // start other processors

	// Finish setting up this processor in mpmain.
	mpmain();
}
Ejemplo n.º 9
0
/* PC hardware initialisation */
static void pc_init1(ram_addr_t ram_size,
                     const char *boot_device,
                     const char *kernel_filename,
                     const char *kernel_cmdline,
                     const char *initrd_filename,
                     const char *cpu_model,
                     int pci_enabled)
{
    int i;
    ram_addr_t below_4g_mem_size, above_4g_mem_size;
    PCIBus *pci_bus;
    PCII440FXState *i440fx_state;
    int piix3_devfn = -1;
    qemu_irq *cpu_irq;
    qemu_irq *isa_irq;
    qemu_irq *i8259;
    qemu_irq *cmos_s3;
    qemu_irq *smi_irq;
    IsaIrqState *isa_irq_state;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    FDCtrl *floppy_controller;
    BusState *idebus[MAX_IDE_BUS];
    ISADevice *rtc_state;

    pc_cpus_init(cpu_model);

    vmport_init();

    /* allocate ram and load rom/bios */
    pc_memory_init(ram_size, kernel_filename, kernel_cmdline, initrd_filename,
                   &below_4g_mem_size, &above_4g_mem_size);

    cpu_irq = pc_allocate_cpu_irq();
    i8259 = i8259_init(cpu_irq[0]);
    isa_irq_state = qemu_mallocz(sizeof(*isa_irq_state));
    isa_irq_state->i8259 = i8259;
    if (pci_enabled) {
        ioapic_init(isa_irq_state);
    }
    isa_irq = qemu_allocate_irqs(isa_irq_handler, isa_irq_state, 24);

    if (pci_enabled) {
        pci_bus = i440fx_init(&i440fx_state, &piix3_devfn, isa_irq, ram_size);
    } else {
        pci_bus = NULL;
        i440fx_state = NULL;
        isa_bus_new(NULL);
    }
    isa_bus_irqs(isa_irq);

    pc_register_ferr_irq(isa_reserve_irq(13));

    pc_vga_init(pci_enabled? pci_bus: NULL);

    /* init basic PC hardware */
    pc_basic_device_init(isa_irq, &floppy_controller, &rtc_state);

    for(i = 0; i < nb_nics; i++) {
        NICInfo *nd = &nd_table[i];

        if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
            pc_init_ne2k_isa(nd);
        else
            pci_nic_init_nofail(nd, "e1000", NULL);
    }

    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
        fprintf(stderr, "qemu: too many IDE bus\n");
        exit(1);
    }

    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
        hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
    }

    if (pci_enabled) {
        PCIDevice *dev;
        dev = pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1);
        idebus[0] = qdev_get_child_bus(&dev->qdev, "ide.0");
        idebus[1] = qdev_get_child_bus(&dev->qdev, "ide.1");
    } else {
        for(i = 0; i < MAX_IDE_BUS; i++) {
            ISADevice *dev;
            dev = isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
                               hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
            idebus[i] = qdev_get_child_bus(&dev->qdev, "ide.0");
        }
    }

    audio_init(isa_irq, pci_enabled ? pci_bus : NULL);

    pc_cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device,
                 idebus[0], idebus[1], floppy_controller, rtc_state);

    if (pci_enabled && usb_enabled) {
        usb_uhci_piix3_init(pci_bus, piix3_devfn + 2);
    }

    if (pci_enabled && acpi_enabled) {
        uint8_t *eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
        i2c_bus *smbus;

        cmos_s3 = qemu_allocate_irqs(pc_cmos_set_s3_resume, rtc_state, 1);
        smi_irq = qemu_allocate_irqs(pc_acpi_smi_interrupt, first_cpu, 1);
        /* TODO: Populate SPD eeprom data.  */
        smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
                              isa_reserve_irq(9), *cmos_s3, *smi_irq,
                              kvm_enabled());
        for (i = 0; i < 8; i++) {
            DeviceState *eeprom;
            eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
            qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
            qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
            qdev_init_nofail(eeprom);
        }
    }

    if (i440fx_state) {
        i440fx_init_memory_mappings(i440fx_state);
    }

    if (pci_enabled) {
        pc_pci_device_init(pci_bus);
    }
}
Ejemplo n.º 10
0
Archivo: boot_sys.c Proyecto: scan/seL4
static BOOT_CODE bool_t
try_boot_sys(
    unsigned long multiboot_magic,
    multiboot_info_t* mbi
)
{
    /* ==== following code corresponds to the "select" in abstract specification ==== */

    acpi_rsdt_t* acpi_rsdt; /* physical address of ACPI root */
    paddr_t mods_end_paddr; /* physical address where boot modules end */
    paddr_t load_paddr;
    word_t i;
    p_region_t ui_p_regs;
    multiboot_module_t *modules = (multiboot_module_t*)(word_t)mbi->mod_list;

    if (multiboot_magic != MULTIBOOT_MAGIC) {
        printf("Boot loader not multiboot compliant\n");
        return false;
    }
    cmdline_parse((const char *)(word_t)mbi->cmdline, &cmdline_opt);

    if ((mbi->flags & MULTIBOOT_INFO_MEM_FLAG) == 0) {
        printf("Boot loader did not provide information about physical memory size\n");
        return false;
    }

    if (!x86_cpuid_initialize()) {
        printf("Warning: Your x86 CPU has an unsupported vendor, '%s'.\n"
               "\tYour setup may not be able to competently run seL4 as "
               "intended.\n"
               "\tCurrently supported x86 vendors are AMD and Intel.\n",
               x86_cpuid_get_identity()->vendor_string);
    }

    if (!is_compiled_for_microarchitecture()) {
        printf("Warning: Your kernel was not compiled for the current microarchitecture.\n");
    }

#if CONFIG_MAX_NUM_NODES > 1
    /* copy boot code for APs to lower memory to run in real mode */
    if (!copy_boot_code_aps(mbi->mem_lower)) {
        return false;
    }
    /* Initialize any kernel TLS */
    mode_init_tls(0);
#endif

    /* initialize the memory. We track two kinds of memory regions. Physical memory
     * that we will use for the kernel, and physical memory regions that we must
     * not give to the user. Memory regions that must not be given to the user
     * include all the physical memory in the kernel window, but also includes any
     * important or kernel devices. */
    boot_state.mem_p_regs.count = 0;
    init_allocated_p_regions();
    if (mbi->flags & MULTIBOOT_INFO_MMAP_FLAG) {
        if (!parse_mem_map(mbi->mmap_length, mbi->mmap_addr)) {
            return false;
        }
    } else {
        /* calculate memory the old way */
        p_region_t avail;
        avail.start = HIGHMEM_PADDR;
        avail.end = ROUND_DOWN(avail.start + (mbi->mem_upper << 10), PAGE_BITS);
        if (!add_mem_p_regs(avail)) {
            return false;
        }
    }

    boot_state.ki_p_reg.start = PADDR_LOAD;
    boot_state.ki_p_reg.end = kpptr_to_paddr(ki_end);

    /* copy VESA information from multiboot header */
    if ((mbi->flags & MULTIBOOT_INFO_GRAPHICS_FLAG) == 0) {
        boot_state.vbe_info.vbeMode = -1;
        printf("Multiboot gave us no video information\n");
    } else {
        boot_state.vbe_info.vbeInfoBlock = *(seL4_VBEInfoBlock_t*)(seL4_Word)mbi->vbe_control_info;
        boot_state.vbe_info.vbeModeInfoBlock = *(seL4_VBEModeInfoBlock_t*)(seL4_Word)mbi->vbe_mode_info;
        boot_state.vbe_info.vbeMode = mbi->vbe_mode;
        printf("Got VBE info in multiboot. Current video mode is %d\n", mbi->vbe_mode);
        boot_state.vbe_info.vbeInterfaceSeg = mbi->vbe_interface_seg;
        boot_state.vbe_info.vbeInterfaceOff = mbi->vbe_interface_off;
        boot_state.vbe_info.vbeInterfaceLen = mbi->vbe_interface_len;
    }

    printf("Kernel loaded to: start=0x%lx end=0x%lx size=0x%lx entry=0x%lx\n",
           boot_state.ki_p_reg.start,
           boot_state.ki_p_reg.end,
           boot_state.ki_p_reg.end - boot_state.ki_p_reg.start,
           (paddr_t)_start
          );

    /* remapping legacy IRQs to their correct vectors */
    pic_remap_irqs(IRQ_INT_OFFSET);
    if (config_set(CONFIG_IRQ_IOAPIC)) {
        /* Disable the PIC so that it does not generate any interrupts. We need to
         * do this *before* we initialize the apic */
        pic_disable();
    }

    /* get ACPI root table */
    acpi_rsdt = acpi_init();
    if (!acpi_rsdt) {
        return false;
    }

    /* check if kernel configuration matches platform requirments */
    if (!acpi_fadt_scan(acpi_rsdt)) {
        return false;
    }

    if (!config_set(CONFIG_IOMMU) || cmdline_opt.disable_iommu) {
        boot_state.num_drhu = 0;
    } else {
        /* query available IOMMUs from ACPI */
        acpi_dmar_scan(
            acpi_rsdt,
            boot_state.drhu_list,
            &boot_state.num_drhu,
            MAX_NUM_DRHU,
            &boot_state.rmrr_list
        );
    }

    /* query available CPUs from ACPI */
    boot_state.num_cpus = acpi_madt_scan(acpi_rsdt, boot_state.cpus, &boot_state.num_ioapic, boot_state.ioapic_paddr);
    if (boot_state.num_cpus == 0) {
        printf("No CPUs detected\n");
        return false;
    }

    if (config_set(CONFIG_IRQ_IOAPIC)) {
        if (boot_state.num_ioapic == 0) {
            printf("No IOAPICs detected\n");
            return false;
        }
    } else {
        if (boot_state.num_ioapic > 0) {
            printf("Detected %d IOAPICs, but configured to use PIC instead\n", boot_state.num_ioapic);
        }
    }

    if (!(mbi->flags & MULTIBOOT_INFO_MODS_FLAG)) {
        printf("Boot loader did not provide information about boot modules\n");
        return false;
    }

    printf("Detected %d boot module(s):\n", mbi->mod_count);

    if (mbi->mod_count < 1) {
        printf("Expect at least one boot module (containing a userland image)\n");
        return false;
    }

    mods_end_paddr = 0;

    for (i = 0; i < mbi->mod_count; i++) {
        printf(
            "  module #%ld: start=0x%x end=0x%x size=0x%x name='%s'\n",
            i,
            modules[i].start,
            modules[i].end,
            modules[i].end - modules[i].start,
            (char *) (long)modules[i].name
        );
        if ((sword_t)(modules[i].end - modules[i].start) <= 0) {
            printf("Invalid boot module size! Possible cause: boot module file not found by QEMU\n");
            return false;
        }
        if (mods_end_paddr < modules[i].end) {
            mods_end_paddr = modules[i].end;
        }
    }
    mods_end_paddr = ROUND_UP(mods_end_paddr, PAGE_BITS);
    assert(mods_end_paddr > boot_state.ki_p_reg.end);

    printf("ELF-loading userland images from boot modules:\n");
    load_paddr = mods_end_paddr;

    load_paddr = load_boot_module(modules, load_paddr);
    if (!load_paddr) {
        return false;
    }

    /* calculate final location of userland images */
    ui_p_regs.start = boot_state.ki_p_reg.end;
    ui_p_regs.end = ui_p_regs.start + load_paddr - mods_end_paddr;

    printf(
        "Moving loaded userland images to final location: from=0x%lx to=0x%lx size=0x%lx\n",
        mods_end_paddr,
        ui_p_regs.start,
        ui_p_regs.end - ui_p_regs.start
    );
    memcpy((void*)ui_p_regs.start, (void*)mods_end_paddr, ui_p_regs.end - ui_p_regs.start);

    /* adjust p_reg and pv_offset to final load address */
    boot_state.ui_info.p_reg.start -= mods_end_paddr - ui_p_regs.start;
    boot_state.ui_info.p_reg.end   -= mods_end_paddr - ui_p_regs.start;
    boot_state.ui_info.pv_offset   -= mods_end_paddr - ui_p_regs.start;

    /* ==== following code corresponds to abstract specification after "select" ==== */

    if (!platAddDevices()) {
        return false;
    }

    /* Total number of cores we intend to boot */
    ksNumCPUs = boot_state.num_cpus;

    printf("Starting node #0 with APIC ID %lu\n", boot_state.cpus[0]);
    if (!try_boot_sys_node(boot_state.cpus[0])) {
        return false;
    }

    if (config_set(CONFIG_IRQ_IOAPIC)) {
        ioapic_init(1, boot_state.cpus, boot_state.num_ioapic);
    }

    /* initialize BKL before booting up APs */
    SMP_COND_STATEMENT(clh_lock_init());
    SMP_COND_STATEMENT(start_boot_aps());

    /* grab BKL before leaving the kernel */
    NODE_LOCK_SYS;

    printf("Booting all finished, dropped to user space\n");

    return true;
}
Ejemplo n.º 11
0
// Called first from entry.S on the bootstrap processor,
// and later from boot/bootother.S on all other processors.
// As a rule, "init" functions in PIOS are called once on EACH processor.
void
init(void)
{
	extern char start[], edata[], end[];

	// Before anything else, complete the ELF loading process.
	// Clear all uninitialized global data (BSS) in our program,
	// ensuring that all static/global variables start out zero.
	if (cpu_onboot())
		memset(edata, 0, end - edata);

	// Initialize the console.
	// Can't call cprintf until after we do this!
	cons_init();

  	extern uint8_t _binary_obj_boot_bootother_start[],
    	_binary_obj_boot_bootother_size[];

  	uint8_t *code = (uint8_t*)lowmem_bootother_vec;
  	memmove(code, _binary_obj_boot_bootother_start, (uint32_t) _binary_obj_boot_bootother_size);

	// Lab 1: test cprintf and debug_trace
	cprintf("1234 decimal is %o octal!\n", 1234);
	debug_check();

	// Initialize and load the bootstrap CPU's GDT, TSS, and IDT.
	cpu_init();
	trap_init();

	// Physical memory detection/initialization.
	// Can't call mem_alloc until after we do this!
	mem_init();

	// Lab 2: check spinlock implementation
	if (cpu_onboot())
		spinlock_check();

	// Initialize the paged virtual memory system.
	pmap_init();

	// Find and start other processors in a multiprocessor system
	mp_init();		// Find info about processors in system
	pic_init();		// setup the legacy PIC (mainly to disable it)
	ioapic_init();		// prepare to handle external device interrupts
	lapic_init();		// setup this CPU's local APIC
	cpu_bootothers();	// Get other processors started
//	cprintf("CPU %d (%s) has booted\n", cpu_cur()->id,
//		cpu_onboot() ? "BP" : "AP");

	file_init();		// Create root directory and console I/O files

	// Lab 4: uncomment this when you can handle IRQ_SERIAL and IRQ_KBD.
	//cons_intenable();	// Let the console start producing interrupts

	// Initialize the process management code.
	proc_init();
	// Initialize the process management code.
	proc_init();


	if(!cpu_onboot())
		proc_sched();
 	proc *root = proc_root = proc_alloc(NULL,0);
  
  	elfhdr *ehs = (elfhdr *)ROOTEXE_START;
  	assert(ehs->e_magic == ELF_MAGIC);

  	proghdr *phs = (proghdr *) ((void *) ehs + ehs->e_phoff);
  	proghdr *ep = phs + ehs->e_phnum;

  	for (; phs < ep; phs++)
	{
    		if (phs->p_type != ELF_PROG_LOAD)
      		continue;

    		void *fa = (void *) ehs + ROUNDDOWN(phs->p_offset, PAGESIZE);
    		uint32_t va = ROUNDDOWN(phs->p_va, PAGESIZE);
    		uint32_t zva = phs->p_va + phs->p_filesz;
    		uint32_t eva = ROUNDUP(phs->p_va + phs->p_memsz, PAGESIZE);

    		uint32_t perm = SYS_READ | PTE_P | PTE_U;
    		if(phs->p_flags & ELF_PROG_FLAG_WRITE) perm |= SYS_WRITE | PTE_W;

    		for (; va < eva; va += PAGESIZE, fa += PAGESIZE) 
		{
    			pageinfo *pi = mem_alloc(); assert(pi != NULL);
      			if(va < ROUNDDOWN(zva, PAGESIZE))
        			memmove(mem_pi2ptr(pi), fa, PAGESIZE);
      			else if (va < zva && phs->p_filesz)
			{
      				memset(mem_pi2ptr(pi),0, PAGESIZE);
      				memmove(mem_pi2ptr(pi), fa, zva-va);
      			} 
			else
        			memset(mem_pi2ptr(pi), 0, PAGESIZE);

      			pte_t *pte = pmap_insert(root->pdir, pi, va, perm);
      			assert(pte != NULL);
      		}
      }

      root->sv.tf.eip = ehs->e_entry;
      root->sv.tf.eflags |= FL_IF;

      pageinfo *pi = mem_alloc(); assert(pi != NULL);
      pte_t *pte = pmap_insert(root->pdir, pi, VM_STACKHI-PAGESIZE,
      SYS_READ | SYS_WRITE | PTE_P | PTE_U | PTE_W);

      assert(pte != NULL);
      root->sv.tf.esp = VM_STACKHI;

      proc_ready(root);
      proc_sched();
	// Initialize the I/O system.

	// Lab 1: change this so it enters user() in user mode,
	// running on the user_stack declared above,
	// instead of just calling user() directly.
	user(); // FIXME: Maybe get rid of this
}
Ejemplo n.º 12
0
/* PC hardware initialisation */
static void pc_init1(MemoryRegion *system_memory,
                     MemoryRegion *system_io,
                     ram_addr_t ram_size,
                     const char *boot_device,
                     const char *kernel_filename,
                     const char *kernel_cmdline,
                     const char *initrd_filename,
                     const char *cpu_model,
                     int pci_enabled,
                     int kvmclock_enabled)
{
    int i;
    ram_addr_t below_4g_mem_size, above_4g_mem_size;
    PCIBus *pci_bus;
    ISABus *isa_bus;
    PCII440FXState *i440fx_state;
    int piix3_devfn = -1;
    qemu_irq *cpu_irq;
    qemu_irq *gsi;
    qemu_irq *i8259;
    qemu_irq *cmos_s3;
    qemu_irq *smi_irq;
    GSIState *gsi_state;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    BusState *idebus[MAX_IDE_BUS];
    ISADevice *rtc_state;
    ISADevice *floppy;
    MemoryRegion *ram_memory;
    MemoryRegion *pci_memory;
    MemoryRegion *rom_memory;
    DeviceState *dev;

    pc_cpus_init(cpu_model);

    if (kvmclock_enabled) {
        kvmclock_create();
    }

    if (ram_size >= 0xe0000000 ) {
        above_4g_mem_size = ram_size - 0xe0000000;
        below_4g_mem_size = 0xe0000000;
    } else {
        above_4g_mem_size = 0;
        below_4g_mem_size = ram_size;
    }

    if (pci_enabled) {
        pci_memory = g_new(MemoryRegion, 1);
        memory_region_init(pci_memory, "pci", INT64_MAX);
        rom_memory = pci_memory;
    } else {
        pci_memory = NULL;
        rom_memory = system_memory;
    }

    /* allocate ram and load rom/bios */
    if (!xen_enabled()) {
        pc_memory_init(system_memory,
                       kernel_filename, kernel_cmdline, initrd_filename,
                       below_4g_mem_size, above_4g_mem_size,
                       pci_enabled ? rom_memory : system_memory, &ram_memory);
    }

    gsi_state = g_malloc0(sizeof(*gsi_state));
    if (kvm_enabled() && kvm_irqchip_in_kernel()) {
        kvm_piix3_setup_irq_routing(pci_enabled);
        gsi = qemu_allocate_irqs(kvm_piix3_gsi_handler, gsi_state,
                                 GSI_NUM_PINS);
    } else {
        gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS);
    }

    if (pci_enabled) {
        pci_bus = i440fx_init(&i440fx_state, &piix3_devfn, &isa_bus, gsi,
                              system_memory, system_io, ram_size,
                              below_4g_mem_size,
                              0x100000000ULL - below_4g_mem_size,
                              0x100000000ULL + above_4g_mem_size,
                              (sizeof(target_phys_addr_t) == 4
                               ? 0
                               : ((uint64_t)1 << 62)),
                              pci_memory, ram_memory);
    } else {
        pci_bus = NULL;
        i440fx_state = NULL;
        isa_bus = isa_bus_new(NULL, system_io);
        no_hpet = 1;
    }
    isa_bus_irqs(isa_bus, gsi);

    if (kvm_enabled() && kvm_irqchip_in_kernel()) {
        i8259 = kvm_i8259_init(isa_bus);
    } else if (xen_enabled()) {
        i8259 = xen_interrupt_controller_init();
    } else {
        cpu_irq = pc_allocate_cpu_irq();
        i8259 = i8259_init(isa_bus, cpu_irq[0]);
    }

    for (i = 0; i < ISA_NUM_IRQS; i++) {
        gsi_state->i8259_irq[i] = i8259[i];
    }
    if (pci_enabled) {
        ioapic_init(gsi_state);
    }

    pc_register_ferr_irq(gsi[13]);

    dev = pc_vga_init(isa_bus, pci_enabled ? pci_bus : NULL);
    if (dev) {
        qdev_property_add_child(qdev_get_root(), "vga", dev, NULL);
    }

    if (xen_enabled()) {
        pci_create_simple(pci_bus, -1, "xen-platform");
    }

    /* init basic PC hardware */
    pc_basic_device_init(isa_bus, gsi, &rtc_state, &floppy, xen_enabled());

    for(i = 0; i < nb_nics; i++) {
        NICInfo *nd = &nd_table[i];

        if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
            pc_init_ne2k_isa(isa_bus, nd);
        else
            pci_nic_init_nofail(nd, "e1000", NULL);
    }

    ide_drive_get(hd, MAX_IDE_BUS);
    if (pci_enabled) {
        PCIDevice *dev;
        if (xen_enabled()) {
            dev = pci_piix3_xen_ide_init(pci_bus, hd, piix3_devfn + 1);
        } else {
            dev = pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1);
        }
        idebus[0] = qdev_get_child_bus(&dev->qdev, "ide.0");
        idebus[1] = qdev_get_child_bus(&dev->qdev, "ide.1");

        /* FIXME there's some major spaghetti here.  Somehow we create the
         * devices on the PIIX before we actually create it.  We create the
         * PIIX3 deep in the recess of the i440fx creation too and then lose
         * the DeviceState.
         *
         * For now, let's "fix" this by making judicious use of paths.  This
         * is not generally the right way to do this.
         */
        qdev_property_add_child(qdev_resolve_path("/i440fx/piix3", NULL),
                                "rtc", (DeviceState *)rtc_state, NULL);
    } else {
        for(i = 0; i < MAX_IDE_BUS; i++) {
            ISADevice *dev;
            dev = isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i],
                               ide_irq[i],
                               hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
            idebus[i] = qdev_get_child_bus(&dev->qdev, "ide.0");
        }
    }

    audio_init(isa_bus, pci_enabled ? pci_bus : NULL);

    pc_cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device,
                 floppy, idebus[0], idebus[1], rtc_state);

    if (pci_enabled && usb_enabled) {
        usb_uhci_piix3_init(pci_bus, piix3_devfn + 2);
    }

    if (pci_enabled && acpi_enabled) {
        i2c_bus *smbus;

        if (!xen_enabled()) {
            cmos_s3 = qemu_allocate_irqs(pc_cmos_set_s3_resume, rtc_state, 1);
        } else {
            cmos_s3 = qemu_allocate_irqs(xen_cmos_set_s3_resume, rtc_state, 1);
        }
        smi_irq = qemu_allocate_irqs(pc_acpi_smi_interrupt, first_cpu, 1);
        /* TODO: Populate SPD eeprom data.  */
        smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
                              gsi[9], *cmos_s3, *smi_irq,
                              kvm_enabled());
        smbus_eeprom_init(smbus, 8, NULL, 0);
    }

    if (pci_enabled) {
        pc_pci_device_init(pci_bus);
    }
}
Ejemplo n.º 13
0
int
main(int argc, char *argv[])
{
	int c, error, gdb_port, err, bvmcons;
	int max_vcpus, mptgen, memflags;
	int rtc_localtime;
	struct vmctx *ctx;
	uint64_t rip;
	size_t memsize;
	char *optstr;

	bvmcons = 0;
	progname = basename(argv[0]);
	gdb_port = 0;
	guest_ncpus = 1;
	memsize = 256 * MB;
	mptgen = 1;
	rtc_localtime = 1;
	memflags = 0;

	optstr = "abehuwxACHIPSWYp:g:c:s:m:l:U:";
	while ((c = getopt(argc, argv, optstr)) != -1) {
		switch (c) {
		case 'a':
			x2apic_mode = 0;
			break;
		case 'A':
			acpi = 1;
			break;
		case 'b':
			bvmcons = 1;
			break;
		case 'p':
                        if (pincpu_parse(optarg) != 0) {
                            errx(EX_USAGE, "invalid vcpu pinning "
                                 "configuration '%s'", optarg);
                        }
			break;
                case 'c':
			guest_ncpus = atoi(optarg);
			break;
		case 'C':
			memflags |= VM_MEM_F_INCORE;
			break;
		case 'g':
			gdb_port = atoi(optarg);
			break;
		case 'l':
			if (lpc_device_parse(optarg) != 0) {
				errx(EX_USAGE, "invalid lpc device "
				    "configuration '%s'", optarg);
			}
			break;
		case 's':
			if (pci_parse_slot(optarg) != 0)
				exit(1);
			else
				break;
		case 'S':
			memflags |= VM_MEM_F_WIRED;
			break;
                case 'm':
			error = vm_parse_memsize(optarg, &memsize);
			if (error)
				errx(EX_USAGE, "invalid memsize '%s'", optarg);
			break;
		case 'H':
			guest_vmexit_on_hlt = 1;
			break;
		case 'I':
			/*
			 * The "-I" option was used to add an ioapic to the
			 * virtual machine.
			 *
			 * An ioapic is now provided unconditionally for each
			 * virtual machine and this option is now deprecated.
			 */
			break;
		case 'P':
			guest_vmexit_on_pause = 1;
			break;
		case 'e':
			strictio = 1;
			break;
		case 'u':
			rtc_localtime = 0;
			break;
		case 'U':
			guest_uuid_str = optarg;
			break;
		case 'w':
			strictmsr = 0;
			break;
		case 'W':
			virtio_msix = 0;
			break;
		case 'x':
			x2apic_mode = 1;
			break;
		case 'Y':
			mptgen = 0;
			break;
		case 'h':
			usage(0);			
		default:
			usage(1);
		}
	}
	argc -= optind;
	argv += optind;

	if (argc != 1)
		usage(1);

	vmname = argv[0];
	ctx = do_open(vmname);

	if (guest_ncpus < 1) {
		fprintf(stderr, "Invalid guest vCPUs (%d)\n", guest_ncpus);
		exit(1);
	}

	max_vcpus = num_vcpus_allowed(ctx);
	if (guest_ncpus > max_vcpus) {
		fprintf(stderr, "%d vCPUs requested but only %d available\n",
			guest_ncpus, max_vcpus);
		exit(1);
	}

	fbsdrun_set_capabilities(ctx, BSP);

	vm_set_memflags(ctx, memflags);
	err = vm_setup_memory(ctx, memsize, VM_MMAP_ALL);
	if (err) {
		fprintf(stderr, "Unable to setup memory (%d)\n", errno);
		exit(1);
	}

	error = init_msr();
	if (error) {
		fprintf(stderr, "init_msr error %d", error);
		exit(1);
	}

	init_mem();
	init_inout();
	pci_irq_init(ctx);
	ioapic_init(ctx);

	rtc_init(ctx, rtc_localtime);
	sci_init(ctx);

	/*
	 * Exit if a device emulation finds an error in it's initilization
	 */
	if (init_pci(ctx) != 0)
		exit(1);

	if (gdb_port != 0)
		init_dbgport(gdb_port);

	if (bvmcons)
		init_bvmcons();

	if (lpc_bootrom()) {
		if (vm_set_capability(ctx, BSP, VM_CAP_UNRESTRICTED_GUEST, 1)) {
			fprintf(stderr, "ROM boot failed: unrestricted guest "
			    "capability not available\n");
			exit(1);
		}
		error = vcpu_reset(ctx, BSP);
		assert(error == 0);
	}

	error = vm_get_register(ctx, BSP, VM_REG_GUEST_RIP, &rip);
	assert(error == 0);

	/*
	 * build the guest tables, MP etc.
	 */
	if (mptgen) {
		error = mptable_build(ctx, guest_ncpus);
		if (error)
			exit(1);
	}

	error = smbios_build(ctx);
	assert(error == 0);

	if (acpi) {
		error = acpi_build(ctx, guest_ncpus);
		assert(error == 0);
	}

	if (lpc_bootrom())
		fwctl_init();

	/*
	 * Change the proc title to include the VM name.
	 */
	setproctitle("%s", vmname); 
	
	/*
	 * Add CPU 0
	 */
	fbsdrun_addcpu(ctx, BSP, BSP, rip);

	/*
	 * Head off to the main event dispatch loop
	 */
	mevent_dispatch();

	exit(1);
}
Ejemplo n.º 14
0
/*
 * Bootstrap-CPU start; we came from head.S
 */
void __no_return kernel_start(void)
{
	/* Before anything else, zero the bss section. As said by C99:
	 * “All objects with static storage duration shall be inited
	 * before program startup”, and that the implicit init is done
	 * with zero. Kernel assembly code also assumes a zeroed BSS
	 * space */
	clear_bss();

	/*
	 * Very-early setup: Do not call any code that will use
	 * printk(), `current', per-CPU vars, or a spin lock.
	 */

	setup_idt();

	schedulify_this_code_path(BOOTSTRAP);

	/*
	 * Memory Management init
	 */

	print_info();

	/* First, don't override the ramdisk area (if any) */
	ramdisk_init();

	/* Then discover our physical memory map .. */
	e820_init();

	/* and tokenize the available memory into allocatable pages */
	pagealloc_init();

	/* With the page allocator in place, git rid of our temporary
	 * early-boot page tables and setup dynamic permanent ones */
	vm_init();

	/* MM basics done, enable dynamic heap memory to kernel code
	 * early on .. */
	kmalloc_init();

	/*
	 * Secondary-CPUs startup
	 */

	/* Discover our secondary-CPUs and system IRQs layout before
	 * initializing the local APICs */
	mptables_init();

	/* Remap and mask the PIC; it's just a disturbance */
	serial_init();
	pic_init();

	/* Initialize the APICs (and map their MMIO regs) before enabling
	 * IRQs, and before firing other cores using Inter-CPU Interrupts */
	apic_init();
	ioapic_init();

	/* SMP infrastructure ready, fire the CPUs! */
	smpboot_init();

	keyboard_init();

	/* Startup finished, roll-in the scheduler! */
	sched_init();
	local_irq_enable();

	/*
	 * Second part of kernel initialization (Scheduler is now on!)
	 */

	ext2_init();

	// Signal the secondary cores to run their own test-cases code.
	// They've been waiting for us (thread 0) till all of kernel
	// subsystems has been properly initialized.  Wait No More!
	smpboot_trigger_secondary_cores_testcases();

	run_test_cases();
	halt();
}
Ejemplo n.º 15
0
int
main(int argc, char *argv[])
{
	int c, error, gdb_port, err, bvmcons;
	int max_vcpus;
	struct vmctx *ctx;
	uint64_t rip;
	size_t memsize;

	bvmcons = 0;
	progname = basename(argv[0]);
	gdb_port = 0;
	guest_ncpus = 1;
	memsize = 256 * MB;

	while ((c = getopt(argc, argv, "abehwxAHIPWp:g:c:s:m:l:U:")) != -1) {
		switch (c) {
		case 'a':
			x2apic_mode = 0;
			break;
		case 'A':
			acpi = 1;
			break;
		case 'b':
			bvmcons = 1;
			break;
		case 'p':
			pincpu = atoi(optarg);
			break;
                case 'c':
			guest_ncpus = atoi(optarg);
			break;
		case 'g':
			gdb_port = atoi(optarg);
			break;
		case 'l':
			if (lpc_device_parse(optarg) != 0) {
				errx(EX_USAGE, "invalid lpc device "
				    "configuration '%s'", optarg);
			}
			break;
		case 's':
			if (pci_parse_slot(optarg) != 0)
				exit(1);
			else
				break;
                case 'm':
			error = vm_parse_memsize(optarg, &memsize);
			if (error)
				errx(EX_USAGE, "invalid memsize '%s'", optarg);
			break;
		case 'H':
			guest_vmexit_on_hlt = 1;
			break;
		case 'I':
			/*
			 * The "-I" option was used to add an ioapic to the
			 * virtual machine.
			 *
			 * An ioapic is now provided unconditionally for each
			 * virtual machine and this option is now deprecated.
			 */
			break;
		case 'P':
			guest_vmexit_on_pause = 1;
			break;
		case 'e':
			strictio = 1;
			break;
		case 'U':
			guest_uuid_str = optarg;
			break;
		case 'w':
			strictmsr = 0;
			break;
		case 'W':
			virtio_msix = 0;
			break;
		case 'x':
			x2apic_mode = 1;
			break;
		case 'h':
			usage(0);			
		default:
			usage(1);
		}
	}
	argc -= optind;
	argv += optind;

	if (argc != 1)
		usage(1);

	vmname = argv[0];

	ctx = vm_open(vmname);
	if (ctx == NULL) {
		perror("vm_open");
		exit(1);
	}

	max_vcpus = num_vcpus_allowed(ctx);
	if (guest_ncpus > max_vcpus) {
		fprintf(stderr, "%d vCPUs requested but only %d available\n",
			guest_ncpus, max_vcpus);
		exit(1);
	}

	fbsdrun_set_capabilities(ctx, BSP);

	err = vm_setup_memory(ctx, memsize, VM_MMAP_ALL);
	if (err) {
		fprintf(stderr, "Unable to setup memory (%d)\n", err);
		exit(1);
	}

	init_mem();
	init_inout();
	ioapic_init(ctx);

	rtc_init(ctx);

	/*
	 * Exit if a device emulation finds an error in it's initilization
	 */
	if (init_pci(ctx) != 0)
		exit(1);

	if (gdb_port != 0)
		init_dbgport(gdb_port);

	if (bvmcons)
		init_bvmcons();

	error = vm_get_register(ctx, BSP, VM_REG_GUEST_RIP, &rip);
	assert(error == 0);

	/*
	 * build the guest tables, MP etc.
	 */
	mptable_build(ctx, guest_ncpus);

	error = smbios_build(ctx);
	assert(error == 0);

	if (acpi) {
		error = acpi_build(ctx, guest_ncpus);
		assert(error == 0);
	}

	/*
	 * Change the proc title to include the VM name.
	 */
	setproctitle("%s", vmname); 
	
	/*
	 * Add CPU 0
	 */
	fbsdrun_addcpu(ctx, BSP, BSP, rip);

	/*
	 * Head off to the main event dispatch loop
	 */
	mevent_dispatch();

	exit(1);
}
Ejemplo n.º 16
0
int kern_init(uint64_t mbmagic, uint64_t mbmem)
{
	extern char edata[], end[];
	memset(edata, 0, end - edata);

	/* percpu variable for CPU0 is preallocated */
	percpu_offsets[0] = __percpu_start;

	cons_init();		// init the console

	const char *message = "(THU.CST) os is loading ...";
	kprintf("%s\n\n", message);
	if(mbmagic == MULTIBOOT_BOOTLOADER_MAGIC){
		kprintf("Multiboot dectected: param %p\n", (void*)mbmem);
		mbmem2e820((Mbdata*)VADDR_DIRECT(mbmem));
		parse_initrd((Mbdata*)VADDR_DIRECT(mbmem));
	}

	print_kerninfo();

	/* get_cpu_var not available before tls_init() */
	hz_init();
	gdt_init(per_cpu_ptr(cpus, 0));
	tls_init(per_cpu_ptr(cpus, 0));
	acpitables_init();
	lapic_init();
	numa_init();

	pmm_init_numa();		// init physical memory management, numa awared
	/* map the lapic */
	lapic_init_late();

	//init the acpi stuff

	idt_init();		// init interrupt descriptor table
	pic_init();		// init interrupt controller

//	acpi_conf_init();


	percpu_init();
	cpus_init();
#ifdef UCONFIG_ENABLE_IPI
	ipi_init();
#endif

	refcache_init();

	vmm_init();		// init virtual memory management
	sched_init();		// init scheduler
	proc_init();		// init process table
	sync_init();		// init sync struct

	/* ext int */
	ioapic_init();
	acpi_init();

	ide_init();		// init ide devices
#ifdef UCONFIG_SWAP
	swap_init();		// init swap
#endif
	fs_init();		// init fs

	clock_init();		// init clock interrupt
	mod_init();

	trap_init();

	//XXX put here?
	bootaps();

	intr_enable();		// enable irq interrupt

#ifdef UCONFIG_HAVE_LINUX_DDE36_BASE
	dde_kit_init();
#endif

	/* do nothing */
	cpu_idle();		// run idle process
}
Ejemplo n.º 17
0
static int
vm_init_vdevs(struct vmctx *ctx)
{
	int ret;

	init_mem();
	init_inout();
	pci_irq_init(ctx);
	atkbdc_init(ctx);
	ioapic_init(ctx);

	/*
	 * We don't care ioc_init return value so far.
	 * Will add return value check once ioc is full function.
	 */
	ret = ioc_init(ctx);

	ret = vrtc_init(ctx);
	if (ret < 0)
		goto vrtc_fail;

	ret = vpit_init(ctx);
	if (ret < 0)
		goto vpit_fail;

	ret = vhpet_init(ctx);
	if (ret < 0)
		goto vhpet_fail;

	sci_init(ctx);

	if (debugexit_enabled)
		init_debugexit();

	ret = monitor_init(ctx);
	if (ret < 0)
		goto monitor_fail;

	ret = init_pci(ctx);
	if (ret < 0)
		goto pci_fail;

	init_vtpm2(ctx);

	return 0;

pci_fail:
	monitor_close();
monitor_fail:
	if (debugexit_enabled)
		deinit_debugexit();

	vhpet_deinit(ctx);
vhpet_fail:
	vpit_deinit(ctx);
vpit_fail:
	vrtc_deinit(ctx);
vrtc_fail:
	ioc_deinit(ctx);
	atkbdc_deinit(ctx);
	pci_irq_deinit(ctx);
	ioapic_deinit();
	return -1;
}
Ejemplo n.º 18
0
/* PC hardware initialisation */
static void pc_init1(MemoryRegion *system_memory,
                     MemoryRegion *system_io,
                     ram_addr_t ram_size,
                     const char *boot_device,
                     const char *kernel_filename,
                     const char *kernel_cmdline,
                     const char *initrd_filename,
                     const char *cpu_model,
                     int pci_enabled,
                     int kvmclock_enabled)
{
    int i;
    ram_addr_t below_4g_mem_size, above_4g_mem_size;
    PCIBus *pci_bus;
    ISABus *isa_bus;
    PCII440FXState *i440fx_state;
    int piix3_devfn = -1;
    qemu_irq *cpu_irq;
    qemu_irq *gsi;
    qemu_irq *i8259;
    qemu_irq *smi_irq;
    GSIState *gsi_state;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    BusState *idebus[MAX_IDE_BUS];
    ISADevice *rtc_state;
    ISADevice *floppy;
    MemoryRegion *ram_memory;
    MemoryRegion *pci_memory;
    MemoryRegion *rom_memory;
    void *fw_cfg = NULL;

    pc_cpus_init(cpu_model);

    if (kvmclock_enabled) {
        kvmclock_create();
    }

    if (ram_size >= 0xe0000000 ) {
        above_4g_mem_size = ram_size - 0xe0000000;
        below_4g_mem_size = 0xe0000000;
    } else {
        above_4g_mem_size = 0;
        below_4g_mem_size = ram_size;
    }

    if (pci_enabled) {
        pci_memory = g_new(MemoryRegion, 1);
        memory_region_init(pci_memory, "pci", INT64_MAX);
        rom_memory = pci_memory;
    } else {
        pci_memory = NULL;
        rom_memory = system_memory;
    }

    /* allocate ram and load rom/bios */
    if (!xen_enabled()) {
        fw_cfg = pc_memory_init(system_memory,
                       kernel_filename, kernel_cmdline, initrd_filename,
                       below_4g_mem_size, above_4g_mem_size,
                       pci_enabled ? rom_memory : system_memory, &ram_memory);
    }

    gsi_state = g_malloc0(sizeof(*gsi_state));
    if (kvm_irqchip_in_kernel()) {
        kvm_piix3_setup_irq_routing(pci_enabled);
        gsi = qemu_allocate_irqs(kvm_piix3_gsi_handler, gsi_state,
                                 GSI_NUM_PINS);
    } else {
        gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS);
    }

    if (pci_enabled) {
        pci_bus = i440fx_init(&i440fx_state, &piix3_devfn, &isa_bus, gsi,
                              system_memory, system_io, ram_size,
                              below_4g_mem_size,
                              0x100000000ULL - below_4g_mem_size,
                              0x100000000ULL + above_4g_mem_size,
                              (sizeof(target_phys_addr_t) == 4
                               ? 0
                               : ((uint64_t)1 << 62)),
                              pci_memory, ram_memory);
    } else {
        pci_bus = NULL;
        i440fx_state = NULL;
        isa_bus = isa_bus_new(NULL, system_io);
        no_hpet = 1;
    }
    isa_bus_irqs(isa_bus, gsi);

    if (kvm_irqchip_in_kernel()) {
        i8259 = kvm_i8259_init(isa_bus);
    } else if (xen_enabled()) {
        i8259 = xen_interrupt_controller_init();
    } else {
        cpu_irq = pc_allocate_cpu_irq();
        i8259 = i8259_init(isa_bus, cpu_irq[0]);
    }

    for (i = 0; i < ISA_NUM_IRQS; i++) {
        gsi_state->i8259_irq[i] = i8259[i];
    }
    if (pci_enabled) {
        ioapic_init(gsi_state);
    }

    pc_register_ferr_irq(gsi[13]);

    pc_vga_init(isa_bus, pci_enabled ? pci_bus : NULL);
    if (xen_enabled()) {
        pci_create_simple(pci_bus, -1, "xen-platform");
    }
    if (pci_enabled && vmsocket_enabled)
	pci_vmsocket_init(pci_bus);
    /* init basic PC hardware */
    pc_basic_device_init(isa_bus, gsi, &rtc_state, &floppy, xen_enabled());

    for(i = 0; i < nb_nics; i++) {
        NICInfo *nd = &nd_table[i];

        if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
            pc_init_ne2k_isa(isa_bus, nd);
        else
            pci_nic_init_nofail(nd, "e1000", NULL);
    }

    ide_drive_get(hd, MAX_IDE_BUS);
    if (pci_enabled) {
        PCIDevice *dev;
        if (xen_enabled()) {
            dev = pci_piix3_xen_ide_init(pci_bus, hd, piix3_devfn + 1);
        } else {
            dev = pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1);
        }
        idebus[0] = qdev_get_child_bus(&dev->qdev, "ide.0");
        idebus[1] = qdev_get_child_bus(&dev->qdev, "ide.1");
    } else {
        for(i = 0; i < MAX_IDE_BUS; i++) {
            ISADevice *dev;
            dev = isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i],
                               ide_irq[i],
                               hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
            idebus[i] = qdev_get_child_bus(&dev->qdev, "ide.0");
        }
    }

    audio_init(isa_bus, pci_enabled ? pci_bus : NULL);

    pc_cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device,
                 floppy, idebus[0], idebus[1], rtc_state);

    if (pci_enabled && usb_enabled) {
        pci_create_simple(pci_bus, piix3_devfn + 2, "piix3-usb-uhci");
    }

    if (pci_enabled && acpi_enabled) {
        i2c_bus *smbus;

        smi_irq = qemu_allocate_irqs(pc_acpi_smi_interrupt, first_cpu, 1);
        /* TODO: Populate SPD eeprom data.  */
        smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
                              gsi[9], *smi_irq,
                              kvm_enabled(), fw_cfg);
        smbus_eeprom_init(smbus, 8, NULL, 0);
    }

    if (pci_enabled) {
        pc_pci_device_init(pci_bus);
    }
}
Ejemplo n.º 19
0
Archivo: pc_piix.c Proyecto: brehm/tlmu
/* PC hardware initialisation */
static void pc_init1(MemoryRegion *system_memory,
                     ram_addr_t ram_size,
                     const char *boot_device,
                     const char *kernel_filename,
                     const char *kernel_cmdline,
                     const char *initrd_filename,
                     const char *cpu_model,
                     int pci_enabled,
                     int kvmclock_enabled)
{
    int i;
    ram_addr_t below_4g_mem_size, above_4g_mem_size;
    PCIBus *pci_bus;
    PCII440FXState *i440fx_state;
    int piix3_devfn = -1;
    qemu_irq *cpu_irq;
    qemu_irq *isa_irq;
    qemu_irq *i8259;
    qemu_irq *cmos_s3;
    qemu_irq *smi_irq;
    IsaIrqState *isa_irq_state;
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
    BusState *idebus[MAX_IDE_BUS];
    ISADevice *rtc_state;

    pc_cpus_init(cpu_model);

    if (kvmclock_enabled) {
        kvmclock_create();
    }

    if (ram_size >= 0xe0000000 ) {
        above_4g_mem_size = ram_size - 0xe0000000;
        below_4g_mem_size = 0xe0000000;
    } else {
        above_4g_mem_size = 0;
        below_4g_mem_size = ram_size;
    }

    /* allocate ram and load rom/bios */
    if (!xen_enabled()) {
        pc_memory_init(system_memory,
                       kernel_filename, kernel_cmdline, initrd_filename,
                       below_4g_mem_size, above_4g_mem_size);
    }

    if (!xen_enabled()) {
        cpu_irq = pc_allocate_cpu_irq();
        i8259 = i8259_init(cpu_irq[0]);
    } else {
        i8259 = xen_interrupt_controller_init();
    }
    isa_irq_state = qemu_mallocz(sizeof(*isa_irq_state));
    isa_irq_state->i8259 = i8259;
    if (pci_enabled) {
        ioapic_init(isa_irq_state);
    }
    isa_irq = qemu_allocate_irqs(isa_irq_handler, isa_irq_state, 24);

    if (pci_enabled) {
        pci_bus = i440fx_init(&i440fx_state, &piix3_devfn, isa_irq,
                              system_memory, ram_size);
    } else {
        pci_bus = NULL;
        i440fx_state = NULL;
        isa_bus_new(NULL);
    }
    isa_bus_irqs(isa_irq);

    pc_register_ferr_irq(isa_get_irq(13));

    pc_vga_init(pci_enabled? pci_bus: NULL);

    if (xen_enabled()) {
        pci_create_simple(pci_bus, -1, "xen-platform");
    }

    /* init basic PC hardware */
    pc_basic_device_init(isa_irq, &rtc_state, xen_enabled());

    for(i = 0; i < nb_nics; i++) {
        NICInfo *nd = &nd_table[i];

        if (!pci_enabled || (nd->model && strcmp(nd->model, "ne2k_isa") == 0))
            pc_init_ne2k_isa(nd);
        else
            pci_nic_init_nofail(nd, "e1000", NULL);
    }

    ide_drive_get(hd, MAX_IDE_BUS);
    if (pci_enabled) {
        PCIDevice *dev;
        if (xen_enabled()) {
            dev = pci_piix3_xen_ide_init(pci_bus, hd, piix3_devfn + 1);
        } else {
            dev = pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1);
        }
        idebus[0] = qdev_get_child_bus(&dev->qdev, "ide.0");
        idebus[1] = qdev_get_child_bus(&dev->qdev, "ide.1");
    } else {
        for(i = 0; i < MAX_IDE_BUS; i++) {
            ISADevice *dev;
            dev = isa_ide_init(ide_iobase[i], ide_iobase2[i], ide_irq[i],
                               hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
            idebus[i] = qdev_get_child_bus(&dev->qdev, "ide.0");
        }
    }

    audio_init(isa_irq, pci_enabled ? pci_bus : NULL);

    pc_cmos_init(below_4g_mem_size, above_4g_mem_size, boot_device,
                 idebus[0], idebus[1], rtc_state);

    if (pci_enabled && usb_enabled) {
        usb_uhci_piix3_init(pci_bus, piix3_devfn + 2);
    }

    if (pci_enabled && acpi_enabled) {
        i2c_bus *smbus;

        if (!xen_enabled()) {
            cmos_s3 = qemu_allocate_irqs(pc_cmos_set_s3_resume, rtc_state, 1);
        } else {
            cmos_s3 = qemu_allocate_irqs(xen_cmos_set_s3_resume, rtc_state, 1);
        }
        smi_irq = qemu_allocate_irqs(pc_acpi_smi_interrupt, first_cpu, 1);
        /* TODO: Populate SPD eeprom data.  */
        smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
                              isa_get_irq(9), *cmos_s3, *smi_irq,
                              kvm_enabled());
        smbus_eeprom_init(smbus, 8, NULL, 0);
    }

    if (i440fx_state) {
        i440fx_init_memory_mappings(i440fx_state);
    }

    if (pci_enabled) {
        pc_pci_device_init(pci_bus);
    }
}