std::vector<DexType*> find(const Scope& scope, const GetNewSpec& get_new_spec) { // Compute what the new prototypes will be after we convert a method. Check // the prototypes against existing methods and other prototypes created by // this method. std::vector<DexType*> result; for (const DexClass* cls : scope) { std::unordered_set<DexMethodSpec> new_specs; for (const DexMethod* m : cls->get_dmethods()) { if (is_init(m)) { std::vector<DexType*> unsafe_refs; const auto& new_spec = get_new_spec(m, &unsafe_refs); if (new_spec) { const auto& pair = new_specs.emplace(*new_spec); bool already_there = !pair.second; if (already_there || DexMethod::get_method(*new_spec)) { always_assert_log( !unsafe_refs.empty(), "unsafe_refs should be filled with the types that will be " "replaced on this <init> method's prototype"); result.insert(result.end(), unsafe_refs.begin(), unsafe_refs.end()); } } } } } return result; }
cv::Mat SizeupOP::execute_current(const cv::Mat& img, const vector<string>& fields) { cv::Mat ret; if (!is_init()) { LOG(ERROR) << "SizeupOp is not initialized"; } else { int size = size_; if (size_fno_ > 0 && size_fno_ <= fields.size()) { size = std::stoi(fields[size_fno_ - 1]); } if (size <= 0) { LOG(ERROR) << "Invalid size (" << size <<"): " << get_key(fields); } else { double scale = 1.0 * size / max(img.rows, img.cols); cv::resize(img, ret, cv::Size((int)(img.cols * scale + 0.5), (int)(img.rows * scale + 0.5)), CV_INTER_CUBIC); } } return ret; }
cv::Mat SaveOP::execute_current(const cv::Mat& img, const vector<string>& fields) { if (!is_init()) { LOG(ERROR) << "Failed to save image: NULL db"; } else { string key = key_; if (key_fno_ > 0 && key_fno_ <= fields.size()) { key = fields[key_fno_ - 1]; } if (key.empty()) { LOG(ERROR) << "No save key for image: " << get_key(fields); } else { std::size_t last_dot = key.rfind("."); string ext; if (last_dot != string::npos) { ext = key.substr(last_dot); } vector<unsigned char> img_content; cv::imencode(ext, img, img_content); writer_->put(key, img_content); } } return img; }
void SaveOP::flush() { if (is_init()) { writer_->flush(); delete writer_; writer_ = db_->new_writer(); } }
/* * Signal sysrq helper function. Sends a signal to all user processes. */ static void send_sig_all(int sig) { struct task_struct *p; for_each_process(p) { if (p->mm && !is_init(p)) /* Not swapper, init nor kernel thread */ force_sig(sig, p); } }
DexMethod* MethodCreator::make_static_from(DexString* name, DexProto* proto, DexMethod* meth, DexClass* target_cls) { assert(!(meth->get_access() & ACC_STATIC)); assert(!is_init(meth) && !is_clinit(meth)); auto smeth = DexMethod::make_method(target_cls->get_type(), name, proto); smeth->make_concrete( meth->get_access() | ACC_STATIC, std::move(meth->get_code()), false); target_cls->add_method(smeth); return smeth; }
bool SaveOP::init(const map<string, string>& config) { string db_url = map_get(config, "db"); if (!db_url.empty()) { db_ = db::open_db(db_url, db::WRITE); if (db_) { writer_ = db_->new_writer(); } } get_string_value(config, "key", key_fno_, key_); return is_init(); }
DexMethod* MethodCreator::make_static_from(DexString* name, DexProto* proto, DexMethod* meth, DexClass* target_cls) { assert(!(meth->get_access() & ACC_STATIC)); assert(!is_init(meth) && !is_clinit(meth)); auto smeth = DexMethod::make_method(target_cls->get_type(), name, proto); smeth->make_concrete( meth->get_access() | ACC_STATIC, meth->get_code(), false); insert_sorted(target_cls->get_dmethods(), smeth, compare_dexmethods); meth->set_code(nullptr); return smeth; }
cv::Mat GrayOP::execute_current(const cv::Mat& img, const vector<string>& fields) { cv::Mat ret; if (!is_init()) { LOG(ERROR) << "GrayOp is not initialized"; } else { if (img.channels() >= 3) { cv::cvtColor(img, ret, CV_BGR2GRAY); } else { ret = img; } } return ret; }
void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe) { /* Derived from fs/exec.c:compute_creds. */ kernel_cap_t new_permitted, working; new_permitted = cap_intersect (bprm->cap_permitted, cap_bset); working = cap_intersect (bprm->cap_inheritable, current->cap_inheritable); new_permitted = cap_combine (new_permitted, working); if (bprm->e_uid != current->uid || bprm->e_gid != current->gid || !cap_issubset (new_permitted, current->cap_permitted)) { current->mm->dumpable = suid_dumpable; if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) { if (!capable(CAP_SETUID)) { bprm->e_uid = current->uid; bprm->e_gid = current->gid; } if (!capable (CAP_SETPCAP)) { new_permitted = cap_intersect (new_permitted, current->cap_permitted); } } } current->suid = current->euid = current->fsuid = bprm->e_uid; current->sgid = current->egid = current->fsgid = bprm->e_gid; /* For init, we want to retain the capabilities set * in the init_task struct. Thus we skip the usual * capability rules */ if (!is_init(current)) { current->cap_permitted = new_permitted; current->cap_effective = cap_intersect (new_permitted, bprm->cap_effective); } /* AUD: Audit candidate if current->cap_effective is set */ current->keep_capabilities = 0; }
cv::Mat RotateOP::execute_current(const cv::Mat& img, const vector<string>& fields) { cv::Mat ret; if (!is_init()) { LOG(ERROR) << "RotateOp is not initialized"; } else { int angle = angle_; if (angle_fno_ > 0 && angle_fno_ <= fields.size()) { angle = std::stoi(fields[angle_fno_ - 1]); } cv::Point2f center(img.cols/2.0F, img.rows/2.0F); cv::Mat rot = getRotationMatrix2D(center, angle, 1.0); cv::Rect bbox = cv::RotatedRect(center, img.size(), angle).boundingRect(); rot.at<double>(0, 2) += bbox.width/2.0 - center.x; rot.at<double>(1, 2) += bbox.height/2.0 - center.y; warpAffine(img, ret, rot, bbox.size(), cv::INTER_CUBIC); } return ret; }
/** * Check if a visibility/accessibility change would turn a method referenced * in a callee to virtual methods as they are inlined into the caller. * That is, once a callee is inlined we need to ensure that everything that was * referenced by a callee is visible and accessible in the caller context. * This step would not be needed if we changed all private instance to static. */ bool MultiMethodInliner::create_vmethod(DexInstruction* insn) { auto opcode = insn->opcode(); if (opcode == OPCODE_INVOKE_DIRECT || opcode == OPCODE_INVOKE_DIRECT_RANGE) { auto method = static_cast<DexOpcodeMethod*>(insn)->get_method(); method = resolver(method, MethodSearch::Direct); if (method == nullptr) { info.need_vmethod++; return true; } always_assert(method->is_def()); if (is_init(method)) { if (!method->is_concrete() && !is_public(method)) { info.non_pub_ctor++; return true; } // concrete ctors we can handle because they stay invoke_direct return false; } info.need_vmethod++; return true; } return false; }
// Check that visibility / accessibility changes to the current method // won't need to change a referenced method into a virtual or static one. bool gather_invoked_methods_that_prevent_relocation( const DexMethod* method, std::unordered_set<DexMethodRef*>* methods_preventing_relocation) { auto code = method->get_code(); always_assert(code); bool can_relocate = true; for (const auto& mie : InstructionIterable(code)) { auto insn = mie.insn; auto opcode = insn->opcode(); if (is_invoke(opcode)) { auto meth = resolve_method(insn->get_method(), opcode_to_search(insn)); if (!meth && opcode == OPCODE_INVOKE_VIRTUAL && unknown_virtuals::is_method_known_to_be_public(insn->get_method())) { continue; } if (meth) { always_assert(meth->is_def()); if (meth->is_external() && !is_public(meth)) { meth = nullptr; } else if (opcode == OPCODE_INVOKE_DIRECT && !is_init(meth)) { meth = nullptr; } } if (!meth) { can_relocate = false; if (!methods_preventing_relocation) { break; } methods_preventing_relocation->emplace(insn->get_method()); } } } return can_relocate; }
/* * This routine handles page faults. It determines the address, * and the problem, and then passes it off to one of the appropriate * routines. */ asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long write, unsigned long address) { struct vm_area_struct * vma = NULL; struct task_struct *tsk = current; struct mm_struct *mm = tsk->mm; const int field = sizeof(unsigned long) * 2; siginfo_t info; #if 0 printk("Cpu%d[%s:%d:%0*lx:%ld:%0*lx]\n", smp_processor_id(), current->comm, current->pid, field, address, write, field, regs->cp0_epc); #endif info.si_code = SEGV_MAPERR; /* * We fault-in kernel-space virtual memory on-demand. The * 'reference' page table is init_mm.pgd. * * NOTE! We MUST NOT take any locks for this case. We may * be in an interrupt or a critical region, and should * only copy the information from the master page table, * nothing more. */ if (unlikely(address >= VMALLOC_START && address <= VMALLOC_END)) goto vmalloc_fault; /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_atomic() || !mm) goto bad_area_nosemaphore; down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto bad_area; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto bad_area; if (expand_stack(vma, address)) goto bad_area; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: info.si_code = SEGV_ACCERR; if (write) { if (!(vma->vm_flags & VM_WRITE)) goto bad_area; } else { if (!(vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))) goto bad_area; } survive: /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ switch (handle_mm_fault(mm, vma, address, write)) { case VM_FAULT_MINOR: tsk->min_flt++; break; case VM_FAULT_MAJOR: tsk->maj_flt++; break; case VM_FAULT_SIGBUS: goto do_sigbus; case VM_FAULT_OOM: goto out_of_memory; default: BUG(); } up_read(&mm->mmap_sem); return; /* * Something tried to access memory that isn't in our memory map.. * Fix it, but check if it's kernel or user first.. */ bad_area: up_read(&mm->mmap_sem); bad_area_nosemaphore: /* User mode accesses just cause a SIGSEGV */ if (user_mode(regs)) { tsk->thread.cp0_badvaddr = address; tsk->thread.error_code = write; #if 0 printk("do_page_fault() #2: sending SIGSEGV to %s for " "invalid %s\n%0*lx (epc == %0*lx, ra == %0*lx)\n", tsk->comm, write ? "write access to" : "read access from", field, address, field, (unsigned long) regs->cp0_epc, field, (unsigned long) regs->regs[31]); #endif info.si_signo = SIGSEGV; info.si_errno = 0; /* info.si_code has been set above */ info.si_addr = (void __user *) address; force_sig_info(SIGSEGV, &info, tsk); return; } no_context: /* Are we prepared to handle this kernel fault? */ if (fixup_exception(regs)) { current->thread.cp0_baduaddr = address; return; } /* * Oops. The kernel tried to access some bad page. We'll have to * terminate things with extreme prejudice. */ bust_spinlocks(1); printk(KERN_ALERT "CPU %d Unable to handle kernel paging request at " "virtual address %0*lx, epc == %0*lx, ra == %0*lx\n", smp_processor_id(), field, address, field, regs->cp0_epc, field, regs->regs[31]); die("Oops", regs); /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (is_init(tsk)) { yield(); down_read(&mm->mmap_sem); goto survive; } printk("VM: killing process %s\n", tsk->comm); if (user_mode(regs)) do_exit(SIGKILL); goto no_context; do_sigbus: up_read(&mm->mmap_sem); /* Kernel mode? Handle exceptions or die */ if (!user_mode(regs)) goto no_context; else /* * Send a sigbus, regardless of whether we were in kernel * or user mode. */ #if 0 printk("do_page_fault() #3: sending SIGBUS to %s for " "invalid %s\n%0*lx (epc == %0*lx, ra == %0*lx)\n", tsk->comm, write ? "write access to" : "read access from", field, address, field, (unsigned long) regs->cp0_epc, field, (unsigned long) regs->regs[31]); #endif tsk->thread.cp0_badvaddr = address; info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = BUS_ADRERR; info.si_addr = (void __user *) address; force_sig_info(SIGBUS, &info, tsk); return; vmalloc_fault: { /* * Synchronize this task's top level page-table * with the 'reference' page table. * * Do _not_ use "tsk" here. We might be inside * an interrupt in the middle of a task switch.. */ int offset = __pgd_offset(address); pgd_t *pgd, *pgd_k; pud_t *pud, *pud_k; pmd_t *pmd, *pmd_k; pte_t *pte_k; pgd = (pgd_t *) pgd_current[smp_processor_id()] + offset; pgd_k = init_mm.pgd + offset; if (!pgd_present(*pgd_k)) goto no_context; set_pgd(pgd, *pgd_k); pud = pud_offset(pgd, address); pud_k = pud_offset(pgd_k, address); if (!pud_present(*pud_k)) goto no_context; pmd = pmd_offset(pud, address); pmd_k = pmd_offset(pud_k, address); if (!pmd_present(*pmd_k)) goto no_context; set_pmd(pmd, *pmd_k); pte_k = pte_offset_kernel(pmd_k, address); if (!pte_present(*pte_k)) goto no_context; return; } }
bool SizeupOP::init(const map<string, string>& config) { get_int_value(config, "size", size_fno_, size_); return is_init(); }
bool RotateOP::init(const map<string, string>& config) { get_int_value(config, "angle", angle_fno_, angle_); return is_init(); }
/* * This routine handles page faults. It determines the problem, and * then passes it off to one of the appropriate routines. * * error_code: * bit 0 == 0 means no page found, 1 means protection fault * bit 1 == 0 means read, 1 means write * * If this routine detects a bad access, it returns 1, otherwise it * returns 0. */ int do_page_fault(struct pt_regs *regs, unsigned long address, unsigned long error_code) { struct mm_struct *mm = current->mm; struct vm_area_struct * vma; int write, fault; #ifdef DEBUG printk ("do page fault:\nregs->sr=%#x, regs->pc=%#lx, address=%#lx, %ld, %p\n", regs->sr, regs->pc, address, error_code, current->mm->pgd); #endif /* * If we're in an interrupt or have no user * context, we must not take the fault.. */ if (in_atomic() || !mm) goto no_context; down_read(&mm->mmap_sem); vma = find_vma(mm, address); if (!vma) goto map_err; if (vma->vm_flags & VM_IO) goto acc_err; if (vma->vm_start <= address) goto good_area; if (!(vma->vm_flags & VM_GROWSDOWN)) goto map_err; if (user_mode(regs)) { /* Accessing the stack below usp is always a bug. The "+ 256" is there due to some instructions doing pre-decrement on the stack and that doesn't show up until later. */ if (address + 256 < rdusp()) goto map_err; } if (expand_stack(vma, address)) goto map_err; /* * Ok, we have a good vm_area for this memory access, so * we can handle it.. */ good_area: #ifdef DEBUG printk("do_page_fault: good_area\n"); #endif write = 0; switch (error_code & 3) { default: /* 3: write, present */ /* fall through */ case 2: /* write, not present */ if (!(vma->vm_flags & VM_WRITE)) goto acc_err; write++; break; case 1: /* read, present */ goto acc_err; case 0: /* read, not present */ if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) goto acc_err; } /* * If for any reason at all we couldn't handle the fault, * make sure we exit gracefully rather than endlessly redo * the fault. */ survive: fault = handle_mm_fault(mm, vma, address, write); #ifdef DEBUG printk("handle_mm_fault returns %d\n",fault); #endif if (unlikely(fault & VM_FAULT_ERROR)) { if (fault & VM_FAULT_OOM) goto out_of_memory; else if (fault & VM_FAULT_SIGBUS) goto bus_err; BUG(); } if (fault & VM_FAULT_MAJOR) current->maj_flt++; else current->min_flt++; up_read(&mm->mmap_sem); return 0; /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: up_read(&mm->mmap_sem); if (is_init(current)) { yield(); down_read(&mm->mmap_sem); goto survive; } printk("VM: killing process %s\n", current->comm); if (user_mode(regs)) do_exit(SIGKILL); no_context: current->thread.signo = SIGBUS; current->thread.faddr = address; return send_fault_sig(regs); bus_err: current->thread.signo = SIGBUS; current->thread.code = BUS_ADRERR; current->thread.faddr = address; goto send_sig; map_err: current->thread.signo = SIGSEGV; current->thread.code = SEGV_MAPERR; current->thread.faddr = address; goto send_sig; acc_err: current->thread.signo = SIGSEGV; current->thread.code = SEGV_ACCERR; current->thread.faddr = address; send_sig: up_read(&mm->mmap_sem); return send_fault_sig(regs); }
/* Note this is constrained to return 0, -EFAULT, -EACCESS, -ENOMEM by segv(). */ int handle_page_fault(unsigned long address, unsigned long ip, int is_write, int is_user, int *code_out) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; int err = -EFAULT; *code_out = SEGV_MAPERR; /* If the fault was during atomic operation, don't take the fault, just * fail. */ if (in_atomic()) goto out_nosemaphore; down_read(&mm->mmap_sem); vma = find_vma(mm, address); if(!vma) goto out; else if(vma->vm_start <= address) goto good_area; else if(!(vma->vm_flags & VM_GROWSDOWN)) goto out; else if(is_user && !ARCH_IS_STACKGROW(address)) goto out; else if(expand_stack(vma, address)) goto out; good_area: *code_out = SEGV_ACCERR; if(is_write && !(vma->vm_flags & VM_WRITE)) goto out; /* Don't require VM_READ|VM_EXEC for write faults! */ if(!is_write && !(vma->vm_flags & (VM_READ | VM_EXEC))) goto out; do { survive: switch (handle_mm_fault(mm, vma, address, is_write)){ case VM_FAULT_MINOR: current->min_flt++; break; case VM_FAULT_MAJOR: current->maj_flt++; break; case VM_FAULT_SIGBUS: err = -EACCES; goto out; case VM_FAULT_OOM: err = -ENOMEM; goto out_of_memory; default: BUG(); } pgd = pgd_offset(mm, address); pud = pud_offset(pgd, address); pmd = pmd_offset(pud, address); pte = pte_offset_kernel(pmd, address); } while(!pte_present(*pte)); err = 0; /* The below warning was added in place of * pte_mkyoung(); if (is_write) pte_mkdirty(); * If it's triggered, we'd see normally a hang here (a clean pte is * marked read-only to emulate the dirty bit). * However, the generic code can mark a PTE writable but clean on a * concurrent read fault, triggering this harmlessly. So comment it out. */ #if 0 WARN_ON(!pte_young(*pte) || (is_write && !pte_dirty(*pte))); #endif flush_tlb_page(vma, address); out: up_read(&mm->mmap_sem); out_nosemaphore: return(err); /* * We ran out of memory, or some other thing happened to us that made * us unable to handle the page fault gracefully. */ out_of_memory: if (is_init(current)) { up_read(&mm->mmap_sem); yield(); down_read(&mm->mmap_sem); goto survive; } goto out; }
bool GrayOP::init(const map<string, string>& config) { return is_init(); }