Ejemplo n.º 1
0
void
tesla_assert_fail(struct tesla_state *tsp, struct tesla_instance *tip)
{

	if (tsp->ts_handler != NULL) {
		tsp->ts_handler(tip);
		return;
	}

	switch (tsp->ts_action) {
	case TESLA_ACTION_FAILSTOP:
#ifdef _KERNEL
		panic("tesla_assert_failed: %s: %s", tsp->ts_name,
		    tsp->ts_description);
#else
		errx(-1, "tesla_assert failed: %s: %s", tsp->ts_name,
		    tsp->ts_description);
#endif
		break;		/* A bit gratuitous. */
#ifdef NOTYET
	case TESLA_ACTION_DTRACE:
		dtrace_probe(...);
		return;
#endif
	case TESLA_ACTION_PRINTF:
#if defined(_KERNEL) && defined(KDB)
		kdb_backtrace();
#endif
		printf("tesla_assert_failed: %s: %s\n", tsp->ts_name,
		    tsp->ts_description);
		break;
	}
}
Ejemplo n.º 2
0
/*
 * This is a stub for probe calls in case kernel DTrace support isn't
 * enabled. It should never get called because there is no DTrace support
 * to enable it.
 */
void
sdt_probe_stub(uint32_t id, uintptr_t arg0, uintptr_t arg1,
    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
{

	printf("sdt_probe_stub: unexpectedly called\n");
	kdb_backtrace();
}
Ejemplo n.º 3
0
/*
 * Called by KASSERT, this decides if we will panic
 * or if we will log via printf and/or ktr.
 */
void
kassert_panic(const char *fmt, ...)
{
	static char buf[256];
	va_list ap;

	va_start(ap, fmt);
	(void)vsnprintf(buf, sizeof(buf), fmt, ap);
	va_end(ap);

	/*
	 * panic if we're not just warning, or if we've exceeded
	 * kassert_log_panic_at warnings.
	 */
	if (!kassert_warn_only ||
	    (kassert_log_panic_at > 0 &&
	     kassert_warnings >= kassert_log_panic_at)) {
		va_start(ap, fmt);
		vpanic(fmt, ap);
		/* NORETURN */
	}
#ifdef KTR
	if (kassert_do_ktr)
		CTR0(ktr_mask, buf);
#endif /* KTR */
	/*
	 * log if we've not yet met the mute limit.
	 */
	if (kassert_do_log &&
	    (kassert_log_mute_at == 0 ||
	     kassert_warnings < kassert_log_mute_at)) {
		static  struct timeval lasterr;
		static  int curerr;

		if (ppsratecheck(&lasterr, &curerr, kassert_log_pps_limit)) {
			printf("KASSERT failed: %s\n", buf);
			kdb_backtrace();
		}
	}
#ifdef KDB
	if (kassert_do_kdb) {
		kdb_enter(KDB_WHY_KASSERT, buf);
	}
#endif
	atomic_add_int(&kassert_warnings, 1);
}
Ejemplo n.º 4
0
static void
wd_timeout_cb(void *arg)
{
	const char *type = arg;

#ifdef DDB
	if ((wd_pretimeout_act & WD_SOFT_DDB)) {
		char kdb_why[80];
		snprintf(kdb_why, sizeof(buf), "watchdog %s timeout", type);
		kdb_backtrace();
		kdb_enter(KDB_WHY_WATCHDOG, kdb_why);
	}
#endif
	if ((wd_pretimeout_act & WD_SOFT_LOG))
		log(LOG_EMERG, "watchdog %s-timeout, WD_SOFT_LOG", type);
	if ((wd_pretimeout_act & WD_SOFT_PRINTF))
		printf("watchdog %s-timeout, WD_SOFT_PRINTF\n", type);
	if ((wd_pretimeout_act & WD_SOFT_PANIC))
		panic("watchdog %s-timeout, WD_SOFT_PANIC set", type);
}
Ejemplo n.º 5
0
/*
 *	malloc:
 *
 *	Allocate a block of memory.
 *
 *	If M_NOWAIT is set, this routine will not block and return NULL if
 *	the allocation fails.
 */
void *
malloc(unsigned long size, struct malloc_type *mtp, int flags)
{
	int indx;
	struct malloc_type_internal *mtip;
	caddr_t va;
	uma_zone_t zone;
#if defined(DIAGNOSTIC) || defined(DEBUG_REDZONE)
	unsigned long osize = size;
#endif

#ifdef INVARIANTS
	KASSERT(mtp->ks_magic == M_MAGIC, ("malloc: bad malloc type magic"));
	/*
	 * Check that exactly one of M_WAITOK or M_NOWAIT is specified.
	 */
	indx = flags & (M_WAITOK | M_NOWAIT);
	if (indx != M_NOWAIT && indx != M_WAITOK) {
		static	struct timeval lasterr;
		static	int curerr, once;
		if (once == 0 && ppsratecheck(&lasterr, &curerr, 1)) {
			printf("Bad malloc flags: %x\n", indx);
			kdb_backtrace();
			flags |= M_WAITOK;
			once++;
		}
	}
#endif
#ifdef MALLOC_MAKE_FAILURES
	if ((flags & M_NOWAIT) && (malloc_failure_rate != 0)) {
		atomic_add_int(&malloc_nowait_count, 1);
		if ((malloc_nowait_count % malloc_failure_rate) == 0) {
			atomic_add_int(&malloc_failure_count, 1);
			t_malloc_fail = time_uptime;
			return (NULL);
		}
	}
#endif
	if (flags & M_WAITOK)
		KASSERT(curthread->td_intr_nesting_level == 0,
		   ("malloc(M_WAITOK) in interrupt context"));

#ifdef DEBUG_MEMGUARD
	if (memguard_cmp_mtp(mtp, size)) {
		va = memguard_alloc(size, flags);
		if (va != NULL)
			return (va);
		/* This is unfortunate but should not be fatal. */
	}
#endif

#ifdef DEBUG_REDZONE
	size = redzone_size_ntor(size);
#endif

	if (size <= kmem_zmax) {
		mtip = mtp->ks_handle;
		if (size & KMEM_ZMASK)
			size = (size & ~KMEM_ZMASK) + KMEM_ZBASE;
		indx = kmemsize[size >> KMEM_ZSHIFT];
		KASSERT(mtip->mti_zone < numzones,
		    ("mti_zone %u out of range %d",
		    mtip->mti_zone, numzones));
		zone = kmemzones[indx].kz_zone[mtip->mti_zone];
#ifdef MALLOC_PROFILE
		krequests[size >> KMEM_ZSHIFT]++;
#endif
		va = uma_zalloc(zone, flags);
		if (va != NULL)
			size = zone->uz_size;
		malloc_type_zone_allocated(mtp, va == NULL ? 0 : size, indx);
	} else {
Ejemplo n.º 6
0
void
vpanic(const char *fmt, va_list ap)
{
#ifdef SMP
	cpuset_t other_cpus;
#endif
	struct thread *td = curthread;
	int bootopt, newpanic;
	static char buf[256];

	spinlock_enter();

#ifdef SMP
	/*
	 * stop_cpus_hard(other_cpus) should prevent multiple CPUs from
	 * concurrently entering panic.  Only the winner will proceed
	 * further.
	 */
	if (panicstr == NULL && !kdb_active) {
		other_cpus = all_cpus;
		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
		stop_cpus_hard(other_cpus);
	}

	/*
	 * Ensure that the scheduler is stopped while panicking, even if panic
	 * has been entered from kdb.
	 */
	td->td_stopsched = 1;
#endif

	bootopt = RB_AUTOBOOT;
	newpanic = 0;
	if (panicstr)
		bootopt |= RB_NOSYNC;
	else {
		bootopt |= RB_DUMP;
		panicstr = fmt;
		newpanic = 1;
	}

	if (newpanic) {
		(void)vsnprintf(buf, sizeof(buf), fmt, ap);
		panicstr = buf;
		cngrab();
		printf("panic: %s\n", buf);
	} else {
		printf("panic: ");
		vprintf(fmt, ap);
		printf("\n");
	}
#ifdef SMP
	printf("cpuid = %d\n", PCPU_GET(cpuid));
#endif

#ifdef KDB
	if (newpanic && trace_on_panic)
		kdb_backtrace();
	if (debugger_on_panic)
		kdb_enter(KDB_WHY_PANIC, "panic");
#endif
	/*thread_lock(td); */
	td->td_flags |= TDF_INPANIC;
	/* thread_unlock(td); */
	if (!sync_on_panic)
		bootopt |= RB_NOSYNC;
	kern_reboot(bootopt);
}
Ejemplo n.º 7
0
/*
 * Panic is called on unresolvable fatal errors.  It prints "panic: mesg",
 * and then reboots.  If we are called twice, then we avoid trying to sync
 * the disks as this often leads to recursive panics.
 */
void
panic(const char *fmt, ...)
{
#ifdef SMP
	static volatile u_int panic_cpu = NOCPU;
#endif
	struct thread *td = curthread;
	int bootopt, newpanic;
	va_list ap;
	static char buf[256];

	critical_enter();
#ifdef SMP
	/*
	 * We don't want multiple CPU's to panic at the same time, so we
	 * use panic_cpu as a simple spinlock.  We have to keep checking
	 * panic_cpu if we are spinning in case the panic on the first
	 * CPU is canceled.
	 */
	if (panic_cpu != PCPU_GET(cpuid))
		while (atomic_cmpset_int(&panic_cpu, NOCPU,
		    PCPU_GET(cpuid)) == 0)
			while (panic_cpu != NOCPU)
				; /* nothing */
#endif

	bootopt = RB_AUTOBOOT;
	newpanic = 0;
	if (panicstr)
		bootopt |= RB_NOSYNC;
	else {
		bootopt |= RB_DUMP;
		panicstr = fmt;
		newpanic = 1;
	}

	va_start(ap, fmt);
	if (newpanic) {
		(void)vsnprintf(buf, sizeof(buf), fmt, ap);
		panicstr = buf;
		printf("panic: %s\n", buf);
	} else {
		printf("panic: ");
		vprintf(fmt, ap);
		printf("\n");
	}
	va_end(ap);
#ifdef SMP
	printf("cpuid = %d\n", PCPU_GET(cpuid));
#endif

#ifdef KDB
	if (newpanic && trace_on_panic)
		kdb_backtrace();
	if (debugger_on_panic)
		kdb_enter(KDB_WHY_PANIC, "panic");
#endif
	/*thread_lock(td); */
	td->td_flags |= TDF_INPANIC;
	/* thread_unlock(td); */
	if (!sync_on_panic)
		bootopt |= RB_NOSYNC;
	critical_exit();
	kern_reboot(bootopt);
}
Ejemplo n.º 8
0
/*
 * Panic is called on unresolvable fatal errors.  It prints "panic: mesg",
 * and then reboots.  If we are called twice, then we avoid trying to sync
 * the disks as this often leads to recursive panics.
 */
void
panic(const char *fmt, ...)
{
#ifdef SMP
	static volatile u_int panic_cpu = NOCPU;
	cpuset_t other_cpus;
#endif
	struct thread *td = curthread;
	int bootopt, newpanic;
	va_list ap;
	static char buf[256];

	if (stop_scheduler_on_panic)
		spinlock_enter();
	else
		critical_enter();

#ifdef SMP
	/*
	 * We don't want multiple CPU's to panic at the same time, so we
	 * use panic_cpu as a simple spinlock.  We have to keep checking
	 * panic_cpu if we are spinning in case the panic on the first
	 * CPU is canceled.
	 */
	if (panic_cpu != PCPU_GET(cpuid))
		while (atomic_cmpset_int(&panic_cpu, NOCPU,
		    PCPU_GET(cpuid)) == 0)
			while (panic_cpu != NOCPU)
				; /* nothing */

	if (stop_scheduler_on_panic) {
		if (panicstr == NULL && !kdb_active) {
			other_cpus = all_cpus;
			CPU_CLR(PCPU_GET(cpuid), &other_cpus);
			stop_cpus_hard(other_cpus);
		}

		/*
		 * We set stop_scheduler here and not in the block above,
		 * because we want to ensure that if panic has been called and
		 * stop_scheduler_on_panic is true, then stop_scheduler will
		 * always be set.  Even if panic has been entered from kdb.
		 */
		td->td_stopsched = 1;
	}
#endif

	bootopt = RB_AUTOBOOT;
	newpanic = 0;
	if (panicstr)
		bootopt |= RB_NOSYNC;
	else {
		bootopt |= RB_DUMP;
		panicstr = fmt;
		newpanic = 1;
	}

	va_start(ap, fmt);
	if (newpanic) {
		(void)vsnprintf(buf, sizeof(buf), fmt, ap);
		panicstr = buf;
		cngrab();
		printf("panic: %s\n", buf);
	} else {
		printf("panic: ");
		vprintf(fmt, ap);
		printf("\n");
	}
	va_end(ap);
#ifdef SMP
	printf("cpuid = %d\n", PCPU_GET(cpuid));
#endif

#ifdef KDB
	if (newpanic && trace_on_panic)
		kdb_backtrace();
	if (debugger_on_panic)
		kdb_enter(KDB_WHY_PANIC, "panic");
#endif
	/*thread_lock(td); */
	td->td_flags |= TDF_INPANIC;
	/* thread_unlock(td); */
	if (!sync_on_panic)
		bootopt |= RB_NOSYNC;
	if (!stop_scheduler_on_panic)
		critical_exit();
	kern_reboot(bootopt);
}