Ejemplo n.º 1
0
int
freebsd32_sigreturn(struct thread *td, struct freebsd32_sigreturn_args *uap)
{
	ucontext32_t uc;
	int error;

	CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);

	if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
		CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
		return (EFAULT);
	}

	error = set_mcontext32(td, &uc.uc_mcontext);
	if (error != 0)
		return (error);

	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);

#if 0
	CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x",
	     td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]);
#endif

	return (EJUSTRETURN);
}
Ejemplo n.º 2
0
int
sys_swapcontext(struct thread *td, struct swapcontext_args *uap)
{
	ucontext_t uc;
	int ret;

	if (uap->oucp == NULL || uap->ucp == NULL)
		ret = EINVAL;
	else {
		bzero(&uc, sizeof(ucontext_t));
		get_mcontext(td, &uc.uc_mcontext, GET_MC_CLEAR_RET);
		PROC_LOCK(td->td_proc);
		uc.uc_sigmask = td->td_sigmask;
		PROC_UNLOCK(td->td_proc);
		ret = copyout(&uc, uap->oucp, UC_COPY_SIZE);
		if (ret == 0) {
			ret = copyin(uap->ucp, &uc, UC_COPY_SIZE);
			if (ret == 0) {
				ret = set_mcontext(td, &uc.uc_mcontext);
				if (ret == 0) {
					kern_sigprocmask(td, SIG_SETMASK,
					    &uc.uc_sigmask, NULL, 0);
				}
			}
		}
	}
	return (ret == 0 ? EJUSTRETURN : ret);
}
Ejemplo n.º 3
0
int
sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
{
	uint64_t sstatus;
	ucontext_t uc;
	int error;

	if (uap == NULL)
		return (EFAULT);
	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
		return (EFAULT);

	/*
	 * Make sure the processor mode has not been tampered with and
	 * interrupts have not been disabled.
	 */
	sstatus = uc.uc_mcontext.mc_gpregs.gp_sstatus;
	if ((sstatus & SSTATUS_PS) != 0 ||
	    (sstatus & SSTATUS_PIE) == 0)
		return (EINVAL);

	error = set_mcontext(td, &uc.uc_mcontext);
	if (error != 0)
		return (error);

	set_fpcontext(td, &uc.uc_mcontext);

	/* Restore signal mask. */
	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);

	return (EJUSTRETURN);
}
Ejemplo n.º 4
0
static void
fuse_restore_sigs(sigset_t *oldset)
{

	if (kern_sigprocmask(curthread, SIG_SETMASK, oldset, NULL, 0))
		panic("%s: Invalid operation for kern_sigprocmask()",
		    __func__);
}
Ejemplo n.º 5
0
int
ofreebsd32_sigreturn(struct thread *td, struct ofreebsd32_sigreturn_args *uap)
{
	struct ia32_sigcontext3 sc, *scp;
	struct trapframe *regs;
	int eflags, error;
	ksiginfo_t ksi;

	regs = td->td_frame;
	error = copyin(uap->sigcntxp, &sc, sizeof(sc));
	if (error != 0)
		return (error);
	scp = ≻
	eflags = scp->sc_eflags;
	if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_rflags & ~PSL_RF)) {
		return (EINVAL);
	}
	if (!CS_SECURE(scp->sc_cs)) {
		ksiginfo_init_trap(&ksi);
		ksi.ksi_signo = SIGBUS;
		ksi.ksi_code = BUS_OBJERR;
		ksi.ksi_trapno = T_PROTFLT;
		ksi.ksi_addr = (void *)regs->tf_rip;
		trapsignal(td, &ksi);
		return (EINVAL);
	}
	regs->tf_ds = scp->sc_ds;
	regs->tf_es = scp->sc_es;
	regs->tf_fs = scp->sc_fs;
	regs->tf_gs = scp->sc_gs;

	regs->tf_rax = scp->sc_eax;
	regs->tf_rbx = scp->sc_ebx;
	regs->tf_rcx = scp->sc_ecx;
	regs->tf_rdx = scp->sc_edx;
	regs->tf_rsi = scp->sc_esi;
	regs->tf_rdi = scp->sc_edi;
	regs->tf_cs = scp->sc_cs;
	regs->tf_ss = scp->sc_ss;
	regs->tf_rbp = scp->sc_ebp;
	regs->tf_rsp = scp->sc_esp;
	regs->tf_rip = scp->sc_eip;
	regs->tf_rflags = eflags;

	if (scp->sc_onstack & 1)
		td->td_sigstk.ss_flags |= SS_ONSTACK;
	else
		td->td_sigstk.ss_flags &= ~SS_ONSTACK;

	kern_sigprocmask(td, SIG_SETMASK, (sigset_t *)&scp->sc_mask, NULL,
	    SIGPROCMASK_OLD);
	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);
	return (EJUSTRETURN);
}
Ejemplo n.º 6
0
static void
fuse_block_sigs(sigset_t *oldset)
{
	sigset_t newset;

	SIGFILLSET(newset);
	SIGDELSET(newset, SIGKILL);
	if (kern_sigprocmask(curthread, SIG_BLOCK, &newset, oldset, 0))
		panic("%s: Invalid operation for kern_sigprocmask()",
		    __func__);
}
Ejemplo n.º 7
0
/*
 * System call to cleanup state after a signal
 * has been taken.  Reset signal mask and
 * stack state from context left by sendsig (above).
 * Return to previous pc as specified by
 * context left by sendsig.
 */
int
sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
{
	struct trapframe *regs;
	ucontext_t *ucp;
	ucontext_t uc;
	int error;

	ucp = &uc;

	error = copyin(uap->sigcntxp, &uc, sizeof(uc));
	if (error != 0)
	    return (error);

	regs = td->td_frame;

/* #ifdef DEBUG */
	if (ucp->uc_mcontext.mc_regs[ZERO] != UCONTEXT_MAGIC) {
		printf("sigreturn: pid %d, ucp %p\n", td->td_proc->p_pid, ucp);
		printf("  old sp %p ra %p pc %p\n",
		    (void *)(intptr_t)regs->sp, (void *)(intptr_t)regs->ra, (void *)(intptr_t)regs->pc);
		printf("  new sp %p ra %p pc %p z %p\n",
		    (void *)(intptr_t)ucp->uc_mcontext.mc_regs[SP],
		    (void *)(intptr_t)ucp->uc_mcontext.mc_regs[RA],
		    (void *)(intptr_t)ucp->uc_mcontext.mc_regs[PC],
		    (void *)(intptr_t)ucp->uc_mcontext.mc_regs[ZERO]);
		return EINVAL;
	}
/* #endif */

	bcopy((const void *)&ucp->uc_mcontext.mc_regs[1], (void *)&regs->ast,
	    sizeof(ucp->uc_mcontext.mc_regs) - sizeof(register_t));

	if (ucp->uc_mcontext.mc_fpused)
		bcopy((const void *)ucp->uc_mcontext.mc_fpregs,
		    (void *)&td->td_frame->f0,
		    sizeof(ucp->uc_mcontext.mc_fpregs));

	regs->pc = ucp->uc_mcontext.mc_pc;
	regs->mullo = ucp->uc_mcontext.mullo;
	regs->mulhi = ucp->uc_mcontext.mulhi;

	kern_sigprocmask(td, SIG_SETMASK, &ucp->uc_sigmask, NULL, 0);

	return(EJUSTRETURN);
}
Ejemplo n.º 8
0
int
cheriabi_sigreturn(struct thread *td, struct cheriabi_sigreturn_args *uap)
{
	ucontext_c_t uc;
	int error;

	error = copyincap(uap->sigcntxp, &uc, sizeof(uc));
	if (error != 0)
		return (error);

	error = cheriabi_set_mcontext(td, &uc.uc_mcontext);
	if (error != 0)
		return (error);

	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);

	return (EJUSTRETURN);
}
Ejemplo n.º 9
0
int
sys_setcontext(struct thread *td, struct setcontext_args *uap)
{
	ucontext_t uc;
	int ret;

	if (uap->ucp == NULL)
		ret = EINVAL;
	else {
		ret = copyin(uap->ucp, &uc, UC_COPY_SIZE);
		if (ret == 0) {
			ret = set_mcontext(td, &uc.uc_mcontext);
			if (ret == 0) {
				kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask,
				    NULL, 0);
			}
		}
	}
	return (ret == 0 ? EJUSTRETURN : ret);
}
Ejemplo n.º 10
0
int
sys_sigreturn(struct thread *td, struct sigreturn_args *uap)
{
	ucontext_t uc;
	uint32_t spsr;

	if (uap == NULL)
		return (EFAULT);
	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
		return (EFAULT);

	spsr = uc.uc_mcontext.mc_gpregs.gp_spsr;
	if ((spsr & PSR_M_MASK) != PSR_M_EL0t ||
	    (spsr & (PSR_F | PSR_I | PSR_A | PSR_D)) != 0)
		return (EINVAL); 

	set_mcontext(td, &uc.uc_mcontext);
	set_fpcontext(td, &uc.uc_mcontext);

	/* Restore signal mask. */
	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);

	return (EJUSTRETURN);
}
Ejemplo n.º 11
0
/*
 * Process an asynchronous software trap.
 * This is relatively easy.
 * This function will return with preemption disabled.
 */
void
ast(struct trapframe *framep)
{
	struct thread *td;
	struct proc *p;
	int flags;
	int sig;

	td = curthread;
	p = td->td_proc;

	CTR3(KTR_SYSC, "ast: thread %p (pid %d, %s)", td, p->p_pid,
            p->p_comm);
	KASSERT(TRAPF_USERMODE(framep), ("ast in kernel mode"));
	WITNESS_WARN(WARN_PANIC, NULL, "Returning to user mode");
	mtx_assert(&Giant, MA_NOTOWNED);
	THREAD_LOCK_ASSERT(td, MA_NOTOWNED);
	td->td_frame = framep;
	td->td_pticks = 0;

	/*
	 * This updates the td_flag's for the checks below in one
	 * "atomic" operation with turning off the astpending flag.
	 * If another AST is triggered while we are handling the
	 * AST's saved in flags, the astpending flag will be set and
	 * ast() will be called again.
	 */
	thread_lock(td);
	flags = td->td_flags;
	td->td_flags &= ~(TDF_ASTPENDING | TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK |
	    TDF_NEEDRESCHED | TDF_ALRMPEND | TDF_PROFPEND | TDF_MACPEND);
	thread_unlock(td);
	PCPU_INC(cnt.v_trap);

	if (td->td_ucred != p->p_ucred) 
		cred_update_thread(td);
	if (td->td_pflags & TDP_OWEUPC && p->p_flag & P_PROFIL) {
		addupc_task(td, td->td_profil_addr, td->td_profil_ticks);
		td->td_profil_ticks = 0;
		td->td_pflags &= ~TDP_OWEUPC;
	}
#ifdef HWPMC_HOOKS
	/* Handle Software PMC callchain capture. */
	if (PMC_IS_PENDING_CALLCHAIN(td))
		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_USER_CALLCHAIN_SOFT, (void *) framep);
#endif
	if (flags & TDF_ALRMPEND) {
		PROC_LOCK(p);
		kern_psignal(p, SIGVTALRM);
		PROC_UNLOCK(p);
	}
	if (flags & TDF_PROFPEND) {
		PROC_LOCK(p);
		kern_psignal(p, SIGPROF);
		PROC_UNLOCK(p);
	}
#ifdef MAC
	if (flags & TDF_MACPEND)
		mac_thread_userret(td);
#endif
	if (flags & TDF_NEEDRESCHED) {
#ifdef KTRACE
		if (KTRPOINT(td, KTR_CSW))
			ktrcsw(1, 1, __func__);
#endif
		thread_lock(td);
		sched_prio(td, td->td_user_pri);
		mi_switch(SW_INVOL | SWT_NEEDRESCHED, NULL);
		thread_unlock(td);
#ifdef KTRACE
		if (KTRPOINT(td, KTR_CSW))
			ktrcsw(0, 1, __func__);
#endif
	}

	/*
	 * Check for signals. Unlocked reads of p_pendingcnt or
	 * p_siglist might cause process-directed signal to be handled
	 * later.
	 */
	if (flags & TDF_NEEDSIGCHK || p->p_pendingcnt > 0 ||
	    !SIGISEMPTY(p->p_siglist)) {
		PROC_LOCK(p);
		mtx_lock(&p->p_sigacts->ps_mtx);
		while ((sig = cursig(td)) != 0)
			postsig(sig);
		mtx_unlock(&p->p_sigacts->ps_mtx);
		PROC_UNLOCK(p);
	}
	/*
	 * We need to check to see if we have to exit or wait due to a
	 * single threading requirement or some other STOP condition.
	 */
	if (flags & TDF_NEEDSUSPCHK) {
		PROC_LOCK(p);
		thread_suspend_check(0);
		PROC_UNLOCK(p);
	}

	if (td->td_pflags & TDP_OLDMASK) {
		td->td_pflags &= ~TDP_OLDMASK;
		kern_sigprocmask(td, SIG_SETMASK, &td->td_oldsigmask, NULL, 0);
	}

	userret(td, framep);
}
Ejemplo n.º 12
0
/*
 * System call to cleanup state after a signal
 * has been taken.  Reset signal mask and
 * stack state from context left by rt_sendsig (above).
 * Return to previous pc and psl as specified by
 * context left by sendsig. Check carefully to
 * make sure that the user has not modified the
 * psl to gain improper privileges or to cause
 * a machine fault.
 */
int
linux_rt_sigreturn(struct thread *td, struct linux_rt_sigreturn_args *args)
{
	struct l_ucontext uc;
	struct l_sigcontext *context;
	sigset_t bmask;
	l_stack_t *lss;
	stack_t ss;
	struct trapframe *regs;
	int eflags;
	ksiginfo_t ksi;

	regs = td->td_frame;

#ifdef DEBUG
	if (ldebug(rt_sigreturn))
		printf(ARGS(rt_sigreturn, "%p"), (void *)args->ucp);
#endif
	/*
	 * The trampoline code hands us the ucontext.
	 * It is unsafe to keep track of it ourselves, in the event that a
	 * program jumps out of a signal handler.
	 */
	if (copyin(args->ucp, &uc, sizeof(uc)) != 0)
		return (EFAULT);

	context = &uc.uc_mcontext;

	/*
	 * Check for security violations.
	 */
#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
	eflags = context->sc_eflags;
	if (!EFLAGS_SECURE(eflags, regs->tf_rflags))
		return(EINVAL);

	/*
	 * Don't allow users to load a valid privileged %cs.  Let the
	 * hardware check for invalid selectors, excess privilege in
	 * other selectors, invalid %eip's and invalid %esp's.
	 */
#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
	if (!CS_SECURE(context->sc_cs)) {
		ksiginfo_init_trap(&ksi);
		ksi.ksi_signo = SIGBUS;
		ksi.ksi_code = BUS_OBJERR;
		ksi.ksi_trapno = T_PROTFLT;
		ksi.ksi_addr = (void *)regs->tf_rip;
		trapsignal(td, &ksi);
		return(EINVAL);
	}

	linux_to_bsd_sigset(&uc.uc_sigmask, &bmask);
	kern_sigprocmask(td, SIG_SETMASK, &bmask, NULL, 0);

	/*
	 * Restore signal context
	 */
	regs->tf_gs	= context->sc_gs;
	regs->tf_fs	= context->sc_fs;
	regs->tf_es	= context->sc_es;
	regs->tf_ds	= context->sc_ds;
	regs->tf_rdi    = context->sc_edi;
	regs->tf_rsi    = context->sc_esi;
	regs->tf_rbp    = context->sc_ebp;
	regs->tf_rbx    = context->sc_ebx;
	regs->tf_rdx    = context->sc_edx;
	regs->tf_rcx    = context->sc_ecx;
	regs->tf_rax    = context->sc_eax;
	regs->tf_rip    = context->sc_eip;
	regs->tf_cs     = context->sc_cs;
	regs->tf_rflags = eflags;
	regs->tf_rsp    = context->sc_esp_at_signal;
	regs->tf_ss     = context->sc_ss;
	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);

	/*
	 * call sigaltstack & ignore results..
	 */
	lss = &uc.uc_stack;
	ss.ss_sp = PTRIN(lss->ss_sp);
	ss.ss_size = lss->ss_size;
	ss.ss_flags = linux_to_bsd_sigaltstack(lss->ss_flags);

#ifdef DEBUG
	if (ldebug(rt_sigreturn))
		printf(LMSG("rt_sigret flags: 0x%x, sp: %p, ss: 0x%lx, mask: 0x%x"),
		    ss.ss_flags, ss.ss_sp, ss.ss_size, context->sc_mask);
#endif
	(void)kern_sigaltstack(td, &ss, NULL);

	return (EJUSTRETURN);
}
Ejemplo n.º 13
0
/*
 * System call to cleanup state after a signal
 * has been taken.  Reset signal mask and
 * stack state from context left by sendsig (above).
 * Return to previous pc and psl as specified by
 * context left by sendsig. Check carefully to
 * make sure that the user has not modified the
 * psl to gain improper privileges or to cause
 * a machine fault.
 */
int
linux_sigreturn(struct thread *td, struct linux_sigreturn_args *args)
{
	struct l_sigframe frame;
	struct trapframe *regs;
	sigset_t bmask;
	l_sigset_t lmask;
	int eflags, i;
	ksiginfo_t ksi;

	regs = td->td_frame;

#ifdef DEBUG
	if (ldebug(sigreturn))
		printf(ARGS(sigreturn, "%p"), (void *)args->sfp);
#endif
	/*
	 * The trampoline code hands us the sigframe.
	 * It is unsafe to keep track of it ourselves, in the event that a
	 * program jumps out of a signal handler.
	 */
	if (copyin(args->sfp, &frame, sizeof(frame)) != 0)
		return (EFAULT);

	/*
	 * Check for security violations.
	 */
#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
	eflags = frame.sf_sc.sc_eflags;
	if (!EFLAGS_SECURE(eflags, regs->tf_rflags))
		return(EINVAL);

	/*
	 * Don't allow users to load a valid privileged %cs.  Let the
	 * hardware check for invalid selectors, excess privilege in
	 * other selectors, invalid %eip's and invalid %esp's.
	 */
#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
	if (!CS_SECURE(frame.sf_sc.sc_cs)) {
		ksiginfo_init_trap(&ksi);
		ksi.ksi_signo = SIGBUS;
		ksi.ksi_code = BUS_OBJERR;
		ksi.ksi_trapno = T_PROTFLT;
		ksi.ksi_addr = (void *)regs->tf_rip;
		trapsignal(td, &ksi);
		return(EINVAL);
	}

	lmask.__bits[0] = frame.sf_sc.sc_mask;
	for (i = 0; i < (LINUX_NSIG_WORDS-1); i++)
		lmask.__bits[i+1] = frame.sf_extramask[i];
	linux_to_bsd_sigset(&lmask, &bmask);
	kern_sigprocmask(td, SIG_SETMASK, &bmask, NULL, 0);

	/*
	 * Restore signal context.
	 */
	regs->tf_rdi    = frame.sf_sc.sc_edi;
	regs->tf_rsi    = frame.sf_sc.sc_esi;
	regs->tf_rbp    = frame.sf_sc.sc_ebp;
	regs->tf_rbx    = frame.sf_sc.sc_ebx;
	regs->tf_rdx    = frame.sf_sc.sc_edx;
	regs->tf_rcx    = frame.sf_sc.sc_ecx;
	regs->tf_rax    = frame.sf_sc.sc_eax;
	regs->tf_rip    = frame.sf_sc.sc_eip;
	regs->tf_cs     = frame.sf_sc.sc_cs;
	regs->tf_ds     = frame.sf_sc.sc_ds;
	regs->tf_es     = frame.sf_sc.sc_es;
	regs->tf_fs     = frame.sf_sc.sc_fs;
	regs->tf_gs     = frame.sf_sc.sc_gs;
	regs->tf_rflags = eflags;
	regs->tf_rsp    = frame.sf_sc.sc_esp_at_signal;
	regs->tf_ss     = frame.sf_sc.sc_ss;
	set_pcb_flags(td->td_pcb, PCB_FULL_IRET);

	return (EJUSTRETURN);
}
Ejemplo n.º 14
0
/*
 * System call to cleanup state after a signal
 * has been taken.  Reset signal mask and
 * stack state from context left by rt_sendsig (above).
 * Return to previous pc and psl as specified by
 * context left by sendsig. Check carefully to
 * make sure that the user has not modified the
 * psl to gain improper privileges or to cause
 * a machine fault.
 */
int
linux_rt_sigreturn(struct thread *td, struct linux_rt_sigreturn_args *args)
{
	struct l_ucontext uc;
	struct l_sigcontext *context;
	sigset_t bmask;
	l_stack_t *lss;
	stack_t ss;
	struct trapframe *regs;
	int eflags;
	ksiginfo_t ksi;

	regs = td->td_frame;

#ifdef DEBUG
	if (ldebug(rt_sigreturn))
		printf(ARGS(rt_sigreturn, "%p"), (void *)args->ucp);
#endif
	/*
	 * The trampoline code hands us the ucontext.
	 * It is unsafe to keep track of it ourselves, in the event that a
	 * program jumps out of a signal handler.
	 */
	if (copyin(args->ucp, &uc, sizeof(uc)) != 0)
		return (EFAULT);

	context = &uc.uc_mcontext;

	/*
	 * Check for security violations.
	 */
#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
	eflags = context->sc_eflags;
	/*
	 * XXX do allow users to change the privileged flag PSL_RF.  The
	 * cpu sets PSL_RF in tf_eflags for faults.  Debuggers should
	 * sometimes set it there too.  tf_eflags is kept in the signal
	 * context during signal handling and there is no other place
	 * to remember it, so the PSL_RF bit may be corrupted by the
	 * signal handler without us knowing.  Corruption of the PSL_RF
	 * bit at worst causes one more or one less debugger trap, so
	 * allowing it is fairly harmless.
	 */
	if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF))
		return(EINVAL);

	/*
	 * Don't allow users to load a valid privileged %cs.  Let the
	 * hardware check for invalid selectors, excess privilege in
	 * other selectors, invalid %eip's and invalid %esp's.
	 */
#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
	if (!CS_SECURE(context->sc_cs)) {
		ksiginfo_init_trap(&ksi);
		ksi.ksi_signo = SIGBUS;
		ksi.ksi_code = BUS_OBJERR;
		ksi.ksi_trapno = T_PROTFLT;
		ksi.ksi_addr = (void *)regs->tf_eip;
		trapsignal(td, &ksi);
		return(EINVAL);
	}

	linux_to_bsd_sigset(&uc.uc_sigmask, &bmask);
	kern_sigprocmask(td, SIG_SETMASK, &bmask, NULL, 0);

	/*
	 * Restore signal context
	 */
	/* %gs was restored by the trampoline. */
	regs->tf_fs     = context->sc_fs;
	regs->tf_es     = context->sc_es;
	regs->tf_ds     = context->sc_ds;
	regs->tf_edi    = context->sc_edi;
	regs->tf_esi    = context->sc_esi;
	regs->tf_ebp    = context->sc_ebp;
	regs->tf_ebx    = context->sc_ebx;
	regs->tf_edx    = context->sc_edx;
	regs->tf_ecx    = context->sc_ecx;
	regs->tf_eax    = context->sc_eax;
	regs->tf_eip    = context->sc_eip;
	regs->tf_cs     = context->sc_cs;
	regs->tf_eflags = eflags;
	regs->tf_esp    = context->sc_esp_at_signal;
	regs->tf_ss     = context->sc_ss;

	/*
	 * call sigaltstack & ignore results..
	 */
	lss = &uc.uc_stack;
	ss.ss_sp = lss->ss_sp;
	ss.ss_size = lss->ss_size;
	ss.ss_flags = linux_to_bsd_sigaltstack(lss->ss_flags);

#ifdef DEBUG
	if (ldebug(rt_sigreturn))
		printf(LMSG("rt_sigret flags: 0x%x, sp: %p, ss: 0x%x, mask: 0x%x"),
		    ss.ss_flags, ss.ss_sp, ss.ss_size, context->sc_mask);
#endif
	(void)kern_sigaltstack(td, &ss, NULL);

	return (EJUSTRETURN);
}
Ejemplo n.º 15
0
/*
 * System call to cleanup state after a signal
 * has been taken.  Reset signal mask and
 * stack state from context left by sendsig (above).
 * Return to previous pc and psl as specified by
 * context left by sendsig. Check carefully to
 * make sure that the user has not modified the
 * psl to gain improper privileges or to cause
 * a machine fault.
 */
int
linux_sigreturn(struct thread *td, struct linux_sigreturn_args *args)
{
	struct l_sigframe frame;
	struct trapframe *regs;
	l_sigset_t lmask;
	sigset_t bmask;
	int eflags, i;
	ksiginfo_t ksi;

	regs = td->td_frame;

#ifdef DEBUG
	if (ldebug(sigreturn))
		printf(ARGS(sigreturn, "%p"), (void *)args->sfp);
#endif
	/*
	 * The trampoline code hands us the sigframe.
	 * It is unsafe to keep track of it ourselves, in the event that a
	 * program jumps out of a signal handler.
	 */
	if (copyin(args->sfp, &frame, sizeof(frame)) != 0)
		return (EFAULT);

	/*
	 * Check for security violations.
	 */
#define	EFLAGS_SECURE(ef, oef)	((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
	eflags = frame.sf_sc.sc_eflags;
	/*
	 * XXX do allow users to change the privileged flag PSL_RF.  The
	 * cpu sets PSL_RF in tf_eflags for faults.  Debuggers should
	 * sometimes set it there too.  tf_eflags is kept in the signal
	 * context during signal handling and there is no other place
	 * to remember it, so the PSL_RF bit may be corrupted by the
	 * signal handler without us knowing.  Corruption of the PSL_RF
	 * bit at worst causes one more or one less debugger trap, so
	 * allowing it is fairly harmless.
	 */
	if (!EFLAGS_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF))
		return(EINVAL);

	/*
	 * Don't allow users to load a valid privileged %cs.  Let the
	 * hardware check for invalid selectors, excess privilege in
	 * other selectors, invalid %eip's and invalid %esp's.
	 */
#define	CS_SECURE(cs)	(ISPL(cs) == SEL_UPL)
	if (!CS_SECURE(frame.sf_sc.sc_cs)) {
		ksiginfo_init_trap(&ksi);
		ksi.ksi_signo = SIGBUS;
		ksi.ksi_code = BUS_OBJERR;
		ksi.ksi_trapno = T_PROTFLT;
		ksi.ksi_addr = (void *)regs->tf_eip;
		trapsignal(td, &ksi);
		return(EINVAL);
	}

	lmask.__bits[0] = frame.sf_sc.sc_mask;
	for (i = 0; i < (LINUX_NSIG_WORDS-1); i++)
		lmask.__bits[i+1] = frame.sf_extramask[i];
	linux_to_bsd_sigset(&lmask, &bmask);
	kern_sigprocmask(td, SIG_SETMASK, &bmask, NULL, 0);

	/*
	 * Restore signal context.
	 */
	/* %gs was restored by the trampoline. */
	regs->tf_fs     = frame.sf_sc.sc_fs;
	regs->tf_es     = frame.sf_sc.sc_es;
	regs->tf_ds     = frame.sf_sc.sc_ds;
	regs->tf_edi    = frame.sf_sc.sc_edi;
	regs->tf_esi    = frame.sf_sc.sc_esi;
	regs->tf_ebp    = frame.sf_sc.sc_ebp;
	regs->tf_ebx    = frame.sf_sc.sc_ebx;
	regs->tf_edx    = frame.sf_sc.sc_edx;
	regs->tf_ecx    = frame.sf_sc.sc_ecx;
	regs->tf_eax    = frame.sf_sc.sc_eax;
	regs->tf_eip    = frame.sf_sc.sc_eip;
	regs->tf_cs     = frame.sf_sc.sc_cs;
	regs->tf_eflags = eflags;
	regs->tf_esp    = frame.sf_sc.sc_esp_at_signal;
	regs->tf_ss     = frame.sf_sc.sc_ss;

	return (EJUSTRETURN);
}
Ejemplo n.º 16
0
static void
pmclog_loop(void *arg)
{
	struct pmclog_proc_init_args *ia;
	struct pmc_owner *po;
	struct pmclog_buffer *lb;
	struct proc *p;
	struct ucred *ownercred;
	struct ucred *mycred;
	struct thread *td;
	sigset_t unb;
	struct uio auio;
	struct iovec aiov;
	size_t nbytes;
	int error;

	td = curthread;

	SIGEMPTYSET(unb);
	SIGADDSET(unb, SIGHUP);
	(void)kern_sigprocmask(td, SIG_UNBLOCK, &unb, NULL, 0);

	ia = arg;
	MPASS(ia->kthr == curproc);
	MPASS(!ia->acted);
	mtx_lock(&pmc_kthread_mtx);
	while (ia->po == NULL && !ia->exit)
		msleep(ia, &pmc_kthread_mtx, PWAIT, "pmclogi", 0);
	if (ia->exit) {
		ia->acted = true;
		wakeup(ia);
		mtx_unlock(&pmc_kthread_mtx);
		kproc_exit(0);
	}
	MPASS(ia->po != NULL);
	po = ia->po;
	ia->acted = true;
	wakeup(ia);
	mtx_unlock(&pmc_kthread_mtx);
	ia = NULL;

	p = po->po_owner;
	mycred = td->td_ucred;

	PROC_LOCK(p);
	ownercred = crhold(p->p_ucred);
	PROC_UNLOCK(p);

	PMCDBG2(LOG,INI,1, "po=%p kt=%p", po, po->po_kthread);
	KASSERT(po->po_kthread == curthread->td_proc,
	    ("[pmclog,%d] proc mismatch po=%p po/kt=%p curproc=%p", __LINE__,
		po, po->po_kthread, curthread->td_proc));

	lb = NULL;


	/*
	 * Loop waiting for I/O requests to be added to the owner
	 * struct's queue.  The loop is exited when the log file
	 * is deconfigured.
	 */

	mtx_lock(&pmc_kthread_mtx);

	for (;;) {

		/* check if we've been asked to exit */
		if ((po->po_flags & PMC_PO_OWNS_LOGFILE) == 0)
			break;

		if (lb == NULL) { /* look for a fresh buffer to write */
			mtx_lock_spin(&po->po_mtx);
			if ((lb = TAILQ_FIRST(&po->po_logbuffers)) == NULL) {
				mtx_unlock_spin(&po->po_mtx);

				/* No more buffers and shutdown required. */
				if (po->po_flags & PMC_PO_SHUTDOWN)
					break;

				(void) msleep(po, &pmc_kthread_mtx, PWAIT,
				    "pmcloop", 0);
				continue;
			}

			TAILQ_REMOVE(&po->po_logbuffers, lb, plb_next);
			mtx_unlock_spin(&po->po_mtx);
		}

		mtx_unlock(&pmc_kthread_mtx);

		/* process the request */
		PMCDBG3(LOG,WRI,2, "po=%p base=%p ptr=%p", po,
		    lb->plb_base, lb->plb_ptr);
		/* change our thread's credentials before issuing the I/O */

		aiov.iov_base = lb->plb_base;
		aiov.iov_len  = nbytes = lb->plb_ptr - lb->plb_base;

		auio.uio_iov    = &aiov;
		auio.uio_iovcnt = 1;
		auio.uio_offset = -1;
		auio.uio_resid  = nbytes;
		auio.uio_rw     = UIO_WRITE;
		auio.uio_segflg = UIO_SYSSPACE;
		auio.uio_td     = td;

		/* switch thread credentials -- see kern_ktrace.c */
		td->td_ucred = ownercred;
		error = fo_write(po->po_file, &auio, ownercred, 0, td);
		td->td_ucred = mycred;

		if (error) {
			/* XXX some errors are recoverable */
			/* send a SIGIO to the owner and exit */
			PROC_LOCK(p);
			kern_psignal(p, SIGIO);
			PROC_UNLOCK(p);

			mtx_lock(&pmc_kthread_mtx);

			po->po_error = error; /* save for flush log */

			PMCDBG2(LOG,WRI,2, "po=%p error=%d", po, error);

			break;
		}

		mtx_lock(&pmc_kthread_mtx);

		/* put the used buffer back into the global pool */
		PMCLOG_INIT_BUFFER_DESCRIPTOR(lb);

		mtx_lock_spin(&pmc_bufferlist_mtx);
		TAILQ_INSERT_HEAD(&pmc_bufferlist, lb, plb_next);
		mtx_unlock_spin(&pmc_bufferlist_mtx);

		lb = NULL;
	}

	wakeup_one(po->po_kthread);
	po->po_kthread = NULL;

	mtx_unlock(&pmc_kthread_mtx);

	/* return the current I/O buffer to the global pool */
	if (lb) {
		PMCLOG_INIT_BUFFER_DESCRIPTOR(lb);

		mtx_lock_spin(&pmc_bufferlist_mtx);
		TAILQ_INSERT_HEAD(&pmc_bufferlist, lb, plb_next);
		mtx_unlock_spin(&pmc_bufferlist_mtx);
	}

	/*
	 * Exit this thread, signalling the waiter
	 */

	crfree(ownercred);

	kproc_exit(0);
}