Ejemplo n.º 1
0
int main()
{
	int i, j, k, t = 0;

	while (1)
	{
		scanf("%d", &n);
		if (n == 0)
			break;
		for (i = 1; i <= n; i++)
			scanf("%d%d", &stones[i].x, &stones[i].y);

		k = 0;
		for (i = 1; i <= n; i++)
			for (j = i+1; j <= n; j++)
			{
				paths[k].u = i;
				paths[k].v = j;
				paths[k].w = (stones[i].x-stones[j].x)*(stones[i].x-stones[j].x) + 
					(stones[i].y-stones[j].y)*(stones[i].y-stones[j].y);
				k++;
			}

		edge_num = k;
		kruskal();
		t++;
		printf("Scenario #%d\nFrog Distance = %.3f\n\n", t, sqrt(get_result()));
	}

	return 0;
}
Ejemplo n.º 2
0
int main()
{
    int i,k;
    double temp;
    char aa[24],bb[24];
    
	memset(father,-1,sizeof(father));
	memset(rank,0,sizeof(rank));
    scanf("%lf",&total);
    scanf("%d",&n);
    for(i=0;i<n;i++)scanf("%s",str[i]);
    
    qsort(str,n,sizeof(str[0]),cmp);
    scanf("%d",&m);
    for(k=0;k<m;k++)
    {
              scanf("%s%s%lf",aa,bb,&temp);
              nodes[k].i=find(aa);
			  nodes[k].j=find(bb);
              nodes[k].value=temp;
    }
	qsort(nodes,m,sizeof(nodes[0]),cmp1);
    if(kruskal())printf("Need %.1lf miles of cable\n",ans);
    else printf("Not enough cable\n");
	return 0;
}
int main()
{
	int n,k,cost;
	int i,j;
	char a[2],b[2];
	while(1)
	{
		scanf("%d",&n);
		if(0 == n)
		{
			break;
		}
		gIndex=0;
		for(i=0;i<n-1;++i)
		{
			scanf("%s%d",a,&k);
			for(j=0;j<k;++j)
			{
				scanf("%s%d",b,&cost);
				graph[gIndex].va=a[0]-'A';//将字符A映射到0,依次往后推
				graph[gIndex].vb=b[0]-'A';
				graph[gIndex].cost=cost;
				++gIndex;
			}
		}
		printf("%d\n",kruskal());
	}
	return 0;
}
Ejemplo n.º 4
0
int main() {
  
  Polyhedron P;
  
  Point a(1,0,0);
  Point b(0,1,0);
  Point c(0,0,1);
  Point d(0,0,0);
  
  P.make_tetrahedron(a,b,c,d);

  // associate indices to the vertices using the "id()" field of the vertex.
  vertex_iterator vb, ve;
  int index = 0;
  
  // boost::tie assigns the first and second element of the std::pair
  // returned by boost::vertices to the variables vit and ve
  for(boost::tie(vb,ve)=vertices(P); vb!=ve; ++vb ){
    vertex_descriptor  vd = *vb;
    vd->id() = index++;
  }
  
  kruskal(P);
  return 0;
}
Ejemplo n.º 5
0
int main()
{
	int n_edge, n_v, res, i, j, w, t;
	scanf("%d", &t);
	while(t--)
	{
		memset(flag, '0', sizeof(flag));
		scanf("%d", &n_v);
		n_edge = 0;
		for(i = 1;i <= n_v; i++)
		{
			for(j = 1;j <= n_v; j++)
			{
				scanf("%d", &w);
				if(i != j && flag[i][j] == '0')
				{
					flag[i][j] = '1';
					flag[j][i] = '1';
					e[n_edge].u = i;
					e[n_edge].v = j;
					e[n_edge].w = w;
					n_edge++;
				}
			}
		}
		res = kruskal(e, n_edge, n_v);
		printf("%d\n", res);
	}
	return 0;
}
Ejemplo n.º 6
0
	std::vector< LineSegment* > Voronoi::spanningTree(
			enum KruskalType type /*, keepOutMask:BitmapData = null */)
	{
		std::vector< Edge* > edges = selectNonIntersectingEdges( /*keepOutMask,*/_edges );
		std::vector< LineSegment* > segments = delaunayLinesForEdges( edges );
		return kruskal( segments, type );
	}
Ejemplo n.º 7
0
int main(int argc,char** argv){
	char c;
	bool complet=true;
	char* tvalue=NULL;
	int taille=15;
	bool BoolAffiche=true;
	bool resultat=true;
	while((c=getopt(argc,argv,"oncpsrt:"))!=-1){
		switch(c)
		{
		case 'c':
			break;
		case 'r':
			resultat=false;
			break;
		case 'p':
			complet=false;
			break;
		case 't':
			tvalue=optarg;
			break;
		case 's':
			BoolAffiche=false;
			break;
		case '?':
			printf("usage: -s desactiver l'affichage  -c:graphe complet -p:graphe partielle -t:taille a specifier\n");
		 default:
			abort();
		}
	}
	
	if(tvalue!=NULL)
		taille=atoi(tvalue);

	srand(time(NULL));
	Matrix m;

	if(complet==true)	
		m=grapheComplet(taille);
	else
		m=graphePartiel(taille);
	
	if(BoolAffiche==true){
		affichage(m);
		printf("\n");
	}

	Matrix ARPM=kruskal(m,resultat);
	
	if(BoolAffiche==true){
		printf("\n");
		affichage(ARPM);	
		printf("\n");
	}

	deleteMatrix(m);
	deleteMatrix(ARPM);
return 0;	

}
Ejemplo n.º 8
0
void main()
{

	int prev[MAX] = {0};
    int dist[MAX] = {0};
    MGraph* pG;

	// 创造一个图
    pG = createGraph();;
    // 打印图
	//printGraph(*pG);       
    
	// 深度优先遍历
    //DFSTraverse(*pG);
	
	// 广度优先遍历
    //BFSTraverse(*pG); 
	
	// prim算法生成最小生成树
    prim(*pG, 0);          
    
	// kruskal算法生成最小生成树
	kruskal(*pG);           

    // dijkstra算法获取"第4个顶点"到其它各个顶点的最短距离
    // dijkstra(*pG, 3, prev, dist);
	
	system("pause");
}
Ejemplo n.º 9
0
int main(void)
{
	int node_num, edge_num;
	double ans;
	struct Graph graph;

	while (scanf("%d %d", &node_num, &edge_num) != EOF) {
		initGraph(&graph, node_num);
		input(&graph, edge_num);

		printf("Boruvka:\n");
		ans = boruvka(&graph);
		printf("the MST weigths %2.1f\n", ans);
		clearChoosedEdge(&graph);

		printf("kruskal:\n");
		ans = kruskal(&graph);
		printf("the MST weights %.2lf\n", ans);
		clearChoosedEdge(&graph);

		printf("prim:\n");
		ans = prim(&graph);
		printf("the MST weights %.2lf\n", ans);
		deleteEdge(&graph);
	}

	return 0;
}
Ejemplo n.º 10
0
int main(int argc, char *argv[])
{
	char * filename = "DEFAYE_Johan.txt";
	int * edge_MST;

	unsigned int number_vertices = 0;
	unsigned int number_edges = 0;

	//get the number of vertices and the number of edges
	read_get_sizes(filename, &number_vertices, &number_edges);
	node nodes[number_vertices];
	edge edges[number_edges];

	//instanciate the arrays by reading the file
	read_create_arrays(filename, &nodes, &edges, number_vertices, number_edges);
	
	//finding the index of each edge which belong to the Minimum Spaning Tree
	edge_MST = kruskal(edges, number_vertices, number_edges);
	
	//create the graphe with Latex
	create_latex_file(edges, nodes, number_vertices, number_edges);
	
	//create the MST with Latex
	create_latex_file_MST(edges, nodes, edge_MST, number_vertices, number_edges);
	return 0;
}
Ejemplo n.º 11
0
int main() {
    int n, m;
    scanf("%d %d", &n, &m);
    std::vector<Point2D64F> points(n);
    for (int i = 0; i < n; ++i) {
        scanf("%lf %lf", &points[i].x, &points[i].y);
    }
    WeightedDirectedGraphAsEdgeList<double> graph(n);
    for (int i = 0; i < n; ++i) {
        for (int j = i + 1; j < n; ++j) {
            graph.AddEdge(i, j, Distance(points[i], points[j]));
        }
    }
    while (m--) {
        int u, v;
        scanf("%d %d", &u, &v);
        --u; --v;
        graph.AddEdge(u, v, 0.0);
    }

    Kruskal<WeightedDirectedGraphAsEdgeList<double> > kruskal(&graph);
    kruskal.Compute();
    printf("%.2f\n", kruskal.TotalWeight());
    return 0;
}
Ejemplo n.º 12
0
int
main(int argc, char **argv)
{
	while(scanf("%d", &n) != EOF) {
		init();
		kruskal();
	}
}
Ejemplo n.º 13
0
int g_main(int argc, char ** argv)
{
    graph_t * g = adj_list_read<char,weight_t>(cin, UNDINET);
    cout << g << endl;

    kruskal(g);
    graph_destroy(g);
    return 0;
}
Ejemplo n.º 14
0
Archivo: test.c Proyecto: Yukariko/acm
main()
{
  int n,m;
  Edge p[100001];
  scanf("%d%d",&n,&m);
  int i;
  for(i=0;i<m;i++)scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].w);
  printf("%d",kruskal(p,n,m));
}
Ejemplo n.º 15
0
int main()
{
    int a[100][100],n;
    printf("enter the number of vertices\n");
    scanf("%d",&n);
    AdjacencyMatrix(a,n);
    kruskal(a,n);
    return 0;
}
Ejemplo n.º 16
0
int main(void)
{
	int i, count = 0;
	int case_number;
	int edges_number, vertices_number;

	int path[MAX_EDGES];
	struct edge edges[MAX_EDGES];

	/* How many case will be calculate. */
	scanf("%d", &case_number);
	while (case_number--) {
		/* How many edges and vertices. */
		scanf("%d %d", &vertices_number, &edges_number);

		/* for each edges. */
		for (i = 0; i < edges_number; i++) {
			/* Get edges start, end and weight. */
			scanf("%d %d %d",
				  &edges[i].x,
				  &edges[i].y,
				  &edges[i].weight);
		}
		/* Sort edges by weight. */
		if (edges_number > 0) {
			qsort(edges, edges_number - 1, sizeof(struct edge),
				  edge_weight_compare);
		}

		int first_way_cost, second_way_cost;

		/* Initialize first_way_cost and second_way_cost to INF. */
		first_way_cost = second_way_cost = INF;

		/* Get spanning tree cost and modify path. */
		first_way_cost = kruskal(edges, edges_number, vertices_number, path);

		/* Path number is vertices_number - 1 */
		for (i = 1; i < vertices_number; i++) {
			int temp = smst(edges, edges_number,
							vertices_number, path, path[i]);
			second_way_cost = min(second_way_cost, temp);
		}

		/* Only one way, multiple way, or no way. */
		if (first_way_cost == INF)
			printf("Case #%d : No way\n", ++count);
		else if (second_way_cost == INF)
			printf("Case #%d : No second way\n", ++count);
		else
			printf("Case #%d : %d\n", ++count, second_way_cost);
	}

	return 0;
}
Ejemplo n.º 17
0
int main(int argc, char *argv[]) {
    if ( argc != 3 ) {
        printf("Voce deve fornecer um arquivo de entrada e um de saida\n");
        return 0;
    }
    Grafo *grafo = leArq(argv[1]);
    grafo = kruskal(grafo);
    salvaArqGrafo(argv[2], grafo);
    printf("Fim de execucao\n");
    return 0;
}
Ejemplo n.º 18
0
int main()
{
	while(scanf("%d %d", &n, &m) != EOF)
	{
		init();
		if(check() == 0) printf("poor snoopy\n");
		else
		{
			printf("%0.2lf\n", kruskal());
		}
	}
	return 0;
}
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF){
            int i;
            for(i=0;i<m;i++)
               scanf("%d%d%d",&nodes[i].x,&nodes[i].y,&nodes[i].len);
            qsort(nodes,m,sizeof(nodes[0]),cmp);
            printf("%d\n%d\n",kruskal(),n-1);
            for(i=0;i<n-1;i++)
                printf("%d %d\n",xx[i],yy[i]);
    }
    return 0;
}
Ejemplo n.º 20
0
int main()
{
    FILE * f = fopen("matrix.txt","r");
    readFromAdjMatrix(f);
    printAdjMatrix();
    bfs(0);
    dfs(0);
    dfsRecurs(0);
    prim(0);
    kruskal();
    dijkstra(0);
    bellman_ford(0);
    return 0;
}
Ejemplo n.º 21
0
int main(void) {
    /* read graph from stdin */
    graph_t graph = graph_from_file(stdin);
    assert(graph != NULL);
    /* run kruskal */
    graph_t mst = kruskal(graph);
    /* dump graph */
    graph_dump(mst, stdout);
    /* dump total weight */
    printf("\n# MST : %u\n", mst_total_weight(mst));
    /* destroy both graphs */
    graph = graph_destroy(graph);
    mst = graph_destroy(mst);
}
Ejemplo n.º 22
0
int main() {

  Polyhedron P;
  Point a(1,0,0);
  Point b(0,1,0);
  Point c(0,0,1);
  Point d(0,0,0);

  P.make_tetrahedron(a,b,c,d);

  kruskal(P);

  return 0;
}
void main()
{
	Graph graph;
	Graph tree;
	createdGraph(&graph);
	initTree(&tree);
	printf("普里姆算法树中顶点加入的顺序:\n");
	prim(&graph,&tree);
	printf("\n");
	initTree(&tree);
	printf("克鲁斯卡尔算法树中边加入的顺序:\n");
	kruskal(&graph,&tree);
	printf("\n");
}
Ejemplo n.º 24
0
int main()
{
	int a,b,i,n,m;
	scanf("%d%d",&n,&m);
	for (i=0;i<m;i++)
	{
		scanf("%d%d%d",&a,&b,&edge[i].weigh);
		rank[i]=i;
		edge[i].a=a-1;
		edge[i].b=b-1;
	}
	printf("%d\n",kruskal(n,m));
	return 0;
}
Ejemplo n.º 25
0
int main() {
    for (int i = 0; i < max_v; i++) {
        p[i] = i;
    }
    add_edge(0, 2, 5);
    add_edge(0, 3, 5);
    add_edge(3, 4, 5);
    add_edge(0, 1, 1);
    add_edge(1, 2, 1);
    add_edge(2, 3, 1);
    add_edge(4, 1, 1);
    printf("%d", kruskal());
    return 0;
}
int main()
{
	int t;
	si(t);
	int i,j;
	while(t--)
	{
		ans=0;
		int size=0;
		int n;
		si(n);
		vert[0].x=0;
		vert[0].y=0;
		parent[0]=-1;
		for(i=1;i<=n;i++)
		{
			int a,b;
			si(a);
			si(b);
			vert[i].x=a;
			vert[i].y=b;
			parent[i]=-1;
		}
		size=0;
		for(i=0;i<=n;i++)
		{
			for(j=i;j<=n;j++)
			{
				if(j!=i)
				{
				edge[size].st=i;
				edge[size].en=j;
				edge[size].w=abs(vert[i].x-vert[j].x)+abs(vert[i].y-vert[j].y);
				size++;
				}
			}
		}
		qsort(edge,size,sizeof(ed),cmp);
		/*for(i=0;i<size;i++)
		{
			printf("%d%d%d\n",vert[edge[i].st].x,vert[edge[i].en].x,edge[i].w);
		}*/
		kruskal(size);
		printf("%lld\n",ans);

	}
	return 0;

}
Ejemplo n.º 27
0
int main()
{
	scanf("%d %d",&n,&m);
	int i;
	for(i=0;i<m;i++)
		scanf("%d %d %d",&edges[i].u,&edges[i].v,&edges[i].w);
	qsort(edges,m,sizeof(edge),cmpfunc);
	/*for(i=0;i<m;i++)
	{
		printf("%d %d %d\n",edges[i].u,edges[i].v,edges[i].w);
	}*/
	kruskal();
	printf("%lld\n",ans);
	return 0;
}
void main()
{
    Graph* pG;

    // 自定义"图"(输入矩阵队列)
    //pG = create_graph();
    // 采用已有的"图"
    pG = create_example_graph();

    //print_graph(*pG);       // 打印图
    //DFSTraverse(*pG);       // 深度优先遍历
    //BFS(*pG);               // 广度优先遍历
    //prim(*pG, 0);           // prim算法生成最小生成树

    kruskal(*pG);             // kruskal算法生成最小生成树
}
Ejemplo n.º 29
0
int main()
{
  int r[10],i,cost[10][10],j,n;
  printf("enter the no of vertices");
  scanf("%d",&n);
  for(i=1;i<=n;i++)
  r[i]=i;
  printf("enter the cost adjacency matrix");
  for(i=1;i<=n;i++)
  {
    for(j=1;j<=n;j++)
     scanf("%d",&cost[i][j]);
   }
   kruskal(n,cost,r);
   return 0;
 }
Ejemplo n.º 30
0
int main()
{
    MGraph G;
    createGraph(G);
    Edge *edges = (Edge*)malloc(G.arcnum*sizeof(Edge));
    kruskal(G,edges);
    printf("最小生成树包含的边的信息如下:\n");
    int i;
    for(i=0; i<G.arcnum; i++)
    {
        if(edges[i].isIn == 1)
        {
            printf("%d->%d:%d\n",edges[i].u+1,edges[i].v+1,edges[i].weight);
        }
    }
    return 1;
}