Ejemplo n.º 1
0
//--------------------------------------------------------------------------------------------------
void le_sig_DeleteAll
(
    void
)
{
    // Get the monitor object for this thread.
    MonitorObj_t* monitorObjPtr = pthread_getspecific(SigMonKey);

    if (monitorObjPtr != NULL)
    {
        // Delete the monitor.
        le_fdMonitor_Delete(monitorObjPtr->monitorRef);

        // Close the file descriptor.
        while(1)
        {
            int n = close(monitorObjPtr->fd);

            if (n == 0)
            {
                break;
            }
            else if (errno != EINTR)
            {
                LE_FATAL("Could not close file descriptor.");
            }
        }

        // Remove all handler objects from the list and free them.
        le_dls_Link_t* handlerLinkPtr = le_dls_Pop(&(monitorObjPtr->handlerObjList));

        while (handlerLinkPtr != NULL)
        {
            le_mem_Release( CONTAINER_OF(handlerLinkPtr, HandlerObj_t, link) );

            handlerLinkPtr = le_dls_Pop(&(monitorObjPtr->handlerObjList));
        }

        // Release the monitor object.
        le_mem_Release(monitorObjPtr);
    }
}
Ejemplo n.º 2
0
//--------------------------------------------------------------------------------------------------
void pa_mrc_DeleteScanInformation
(
    le_dls_List_t *scanInformationListPtr ///< [IN] list of pa_mrc_ScanInformation_t
)
{
    pa_mrc_ScanInformation_t * nodePtr;
    le_dls_Link_t * linkPtr;

    while ((linkPtr = le_dls_Pop(scanInformationListPtr)) != NULL)
    {
        nodePtr = CONTAINER_OF(linkPtr, pa_mrc_ScanInformation_t, link);
        le_mem_Release(nodePtr);
    }
}
Ejemplo n.º 3
0
//--------------------------------------------------------------------------------------------------
static void DeleteSafeRefList
(
    le_dls_List_t* listPtr
)
{
    le_mrc_ScanInformationSafeRef_t* nodePtr;
    le_dls_Link_t *linkPtr;

    while ((linkPtr=le_dls_Pop(listPtr)) != NULL)
    {
        nodePtr = CONTAINER_OF(linkPtr, le_mrc_ScanInformationSafeRef_t, link);
        le_ref_DeleteRef(ScanInformationRefMap, nodePtr->safeRef);
        le_mem_Release(nodePtr);
    }
}
Ejemplo n.º 4
0
//--------------------------------------------------------------------------------------------------
void atmachinestring_ReleaseFromList
(
    le_dls_List_t *pList
)
{
    le_dls_Link_t* linkPtr;

    while ((linkPtr=le_dls_Pop(pList)) != NULL)
    {
        atmachinestring_t * currentPtr = CONTAINER_OF(linkPtr,atmachinestring_t,link);

        le_mem_Release(currentPtr);
    }
    LE_DEBUG("All string has been released");
}
Ejemplo n.º 5
0
static le_result_t TestDoublyLinkLists(size_t maxListSize)
{
    // Node definition.
    typedef struct
    {
        le_dls_Link_t link;
        uint32_t id;  
    }
    idRecord_t;

    int i;
    le_dls_List_t list0, list1;
    le_dls_Link_t* removedLinksPtr0[REMOVE_SIZE] = {NULL};
    le_dls_Link_t* removedLinksPtr1[REMOVE_SIZE] = {NULL};

    printf("\n");
    printf("*** Unit Test for le_doublyLinkedList module. ***\n");

    //
    // Multiple list creation
    //
    // Initialize the lists
    list0 = LE_DLS_LIST_INIT;
    list1 = LE_DLS_LIST_INIT;
    printf("Two doubly linked lists were successfully created.\n");


    //
    // Attempt to query empty list
    //
    if ( (le_dls_Peek(&list0) != NULL) || (le_dls_PeekTail(&list0) != NULL) ||
         (le_dls_Pop(&list0) != NULL) || (le_dls_PopTail(&list0) != NULL) )
    {
        printf("Query of empty list failed: %d", __LINE__);
        return LE_FAULT;
    }
    printf("Query of empty list correct.\n");


    //
    // Node insertions
    //
    {
        idRecord_t* newNodePtr;
        
        // Insert to the tail
        for (i = 0; i < maxListSize; i++)
        {
            // Create the new node
            newNodePtr = (idRecord_t*)malloc(sizeof(idRecord_t));
            newNodePtr->id = i;
            
            // Initialize the link.
            newNodePtr->link = LE_DLS_LINK_INIT;

            // Insert the new node to the tail.
            le_dls_Queue(&list0, &(newNodePtr->link));
        }
        printf("%zu nodes were added to the tail of list0.\n", maxListSize);
        
        // Insert to the head
        for (i = 0; i < maxListSize; i++)
        {
            // Create the new node
            newNodePtr = (idRecord_t*)malloc(sizeof(idRecord_t));
            newNodePtr->id = i;
            
            // Initialize the link.
            newNodePtr->link = LE_DLS_LINK_INIT;

            // Insert the new node to the tail.
            le_dls_Stack(&list1, &(newNodePtr->link));
        }
        printf("%zu nodes were added to the head of list1.\n", maxListSize);
    }

    //
    // Check that all the nodes have been added properly
    //
    {
        idRecord_t* nodePtr;
        le_dls_Link_t* link0Ptr = le_dls_Peek(&list0);
        le_dls_Link_t* link1Ptr = le_dls_PeekTail(&list1);
        
        if ( (link0Ptr == NULL) || (link1Ptr == NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
        
        i = 0;
        do
        {
            // Get the node from list 0
            nodePtr = CONTAINER_OF(link0Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }

            // Get the node from list 1
            nodePtr = CONTAINER_OF(link1Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }

            // Move to the next node.
            link0Ptr = le_dls_PeekNext(&list0, link0Ptr);
            link1Ptr = le_dls_PeekPrev(&list1, link1Ptr);
            i++;

        } while (link0Ptr != NULL);
        
        // Make sure everything is correct.
        if ( (i != maxListSize) || (link1Ptr != NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
    }
    
    printf("Checked that all nodes added to the head and tails are all correct.\n");
    

    //
    // Remove random nodes
    //

    //seed the random number generator with the clock
    srand((unsigned int)clock());
    
    {
        // Start at the end of the lists and randomly remove links.
        le_dls_Link_t* linkToRemovePtr;
        le_dls_Link_t* link0Ptr = le_dls_PeekTail(&list0);
        le_dls_Link_t* link1Ptr = le_dls_Peek(&list1);
        
        int r0 = 0;
        int r1 = 0;
        do
        {
            // For list 0
            if ( (rand() < REMOVE_THRESHOLD) && (r0 < REMOVE_SIZE) )
            {
                // Mark this node for removal.
                linkToRemovePtr = link0Ptr;
                
                // Move to the next node.
                link0Ptr = le_dls_PeekPrev(&list0, link0Ptr);
                
                // Remove the node.
                le_dls_Remove(&list0, linkToRemovePtr);
                
                // Store the removed node for later use.
                removedLinksPtr0[r0++] = linkToRemovePtr;
            }
            else
            {
                // Just move one
                link0Ptr = le_dls_PeekPrev(&list0, link0Ptr);
            }
            
            
            // For list 1
            if ( (rand() < REMOVE_THRESHOLD) && (r1 < REMOVE_SIZE) )
            {
                // Mark this node for removal.
                linkToRemovePtr = link1Ptr;
                
                // Move to the next node.
                link1Ptr = le_dls_PeekNext(&list1, link1Ptr);
                
                // Remove the node.
                le_dls_Remove(&list1, linkToRemovePtr);
                
                // Store the removed node for later use.
                removedLinksPtr1[r1++] = linkToRemovePtr;
            }
            else
            {
                // Just move to the next node
                link1Ptr = le_dls_PeekNext(&list1, link1Ptr);
            }
        } while (link0Ptr != NULL);
        
        printf("Randomly removed %d nodes from list0.\n", r0);
        printf("Randomly removed %d nodes from list1.\n", r1);
    }


    //
    // Check that the proper nodes were removed
    //
    {
        int numNodesRemoved = 0;
        
        // For list 0.
        // Check that the nodes in the removed nodes are indeed not in the list.
        for (i = 0; i < REMOVE_SIZE; i++)
        {
            if (removedLinksPtr0[i] == NULL)
            {
                break;
            }
            
            if (le_dls_IsInList(&list0, removedLinksPtr0[i]))
            {
                printf("Node removal incorrect: %d", __LINE__);
                return LE_FAULT;
            }
            
            numNodesRemoved++;
        }
        
        // Compare the list count.
        if ( (numNodesRemoved != maxListSize - le_dls_NumLinks(&list0)) || (le_dls_NumLinks(&list0) == maxListSize) )
        {
            printf("Node removal incorrect: %d", __LINE__);
            return LE_FAULT;
        }
        
        // For list 1.
        // Check that the nodes in the removed nodes are indeed not in the list.
        numNodesRemoved = 0;
        for (i = 0; i < REMOVE_SIZE; i++)
        {
            if (removedLinksPtr1[i] == NULL)
            {
                break;
            }
            
            if (le_dls_IsInList(&list1, removedLinksPtr1[i]))
            {
                printf("Node removal incorrect: %d", __LINE__);
                return LE_FAULT;
            }
            
            numNodesRemoved++;
        }
        
        // Compare the list count.
        if ( (numNodesRemoved != maxListSize - le_dls_NumLinks(&list1)) || (le_dls_NumLinks(&list1) == maxListSize) )
        {
            printf("Node removal incorrect: %d", __LINE__);
            return LE_FAULT;
        }
    }
    
    printf("Checked that nodes were removed correctly.\n");
    
    
    //
    // Add the randomly removed nodes back in.
    //
    {        
        idRecord_t *nodePtr, *removedNodePtr;
        le_dls_Link_t* linkPtr;
     
        // For list 0.
        for (i = 0; i < REMOVE_SIZE; i++)
        {
            if (removedLinksPtr0[i] == NULL)
            {
                break;
            }
            
            removedNodePtr = CONTAINER_OF(removedLinksPtr0[i], idRecord_t, link);
            
            if (removedNodePtr->id == maxListSize-1)
            {
                le_dls_Queue(&list0, removedLinksPtr0[i]);
            }
            else
            {            
                // Search the list for the place to insert this.            
                linkPtr = le_dls_PeekTail(&list0);
                do
                {
                    // Get the node
                    nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);
                    
                    // Find the id that is just before this one.
                    if (nodePtr->id == removedNodePtr->id + 1)
                    {
                        le_dls_AddBefore(&list0, linkPtr, removedLinksPtr0[i]);
                        break;
                    }
                    
                    linkPtr = le_dls_PeekPrev(&list0, linkPtr);
                    
                } while (linkPtr != NULL);
            }
        }
        
        
        // For list 1.
        for (i = 0; i < REMOVE_SIZE; i++)
        {
            if (removedLinksPtr1[i] == NULL)
            {
                break;
            }
            
            removedNodePtr = CONTAINER_OF(removedLinksPtr1[i], idRecord_t, link);
            
            if (removedNodePtr->id == maxListSize-1)
            {
                le_dls_Stack(&list1, removedLinksPtr1[i]);
            }
            else
            {            
                // Search the list for the place to insert this.            
                linkPtr = le_dls_Peek(&list1);
                do
                {
                    // Get the node
                    nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);
                    
                    // Find the id that is just before this one.
                    if (nodePtr->id == removedNodePtr->id + 1)
                    {
                        le_dls_AddAfter(&list1, linkPtr, removedLinksPtr1[i]);
                        break;
                    }
                    
                    linkPtr = le_dls_PeekNext(&list1, linkPtr);
                    
                } while (linkPtr != NULL);
            }
        }
    }
    
    printf("Added all randomly removed nodes back in.\n");
    
    //Check that the list is correct.
    {
        idRecord_t* nodePtr;
        le_dls_Link_t* link0Ptr = le_dls_Peek(&list0);
        le_dls_Link_t* link1Ptr = le_dls_PeekTail(&list1);
        
        if ( (link0Ptr == NULL) || (link1Ptr == NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
        
        i = 0;
        do
        {
            // Get the node from list 0
            nodePtr = CONTAINER_OF(link0Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }
            
            // Get the node from list 1
            nodePtr = CONTAINER_OF(link1Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }        
            
            // Move to the next node.
            link0Ptr = le_dls_PeekNext(&list0, link0Ptr);
            link1Ptr = le_dls_PeekPrev(&list1, link1Ptr);
            i++;
            
        } while (link0Ptr != NULL);
        
        // Make sure everything is correct.
        if ( (i != maxListSize) || (link1Ptr != NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
    }
    
    printf("Checked that all nodes are now added back in in the correct order.\n");
    
    
    //
    // Swap nodes.
    //
    {
        //Swap all the nodes in the list so the list is in reverse order.
        le_dls_Link_t* linkPtr, *tmpLinkPtr;
        le_dls_Link_t* otherlinkPtr;    
        idRecord_t* nodePtr, *otherNodePtr;

        // For list 0.
        linkPtr = le_dls_Peek(&list0);
        otherlinkPtr = le_dls_PeekTail(&list0);    
        for (i = 0; i < (le_dls_NumLinks(&list0) / 2); i++)
        {
            nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);
            otherNodePtr = CONTAINER_OF(otherlinkPtr, idRecord_t, link);
            
            if (nodePtr->id < otherNodePtr->id) 
            {
                le_dls_Swap(&list0, linkPtr, otherlinkPtr);
            }
            else
            {
                break;
            }
            
            // switch the pointers back but not the links.
            tmpLinkPtr = linkPtr;
            linkPtr = otherlinkPtr;
            otherlinkPtr = tmpLinkPtr;
            
            linkPtr = le_dls_PeekNext(&list0, linkPtr);
            otherlinkPtr = le_dls_PeekPrev(&list0, otherlinkPtr);
        }


        // For list 1.
        linkPtr = le_dls_Peek(&list1);
        otherlinkPtr = le_dls_PeekTail(&list1);    
        for (i = 0; i < (le_dls_NumLinks(&list1) / 2); i++)
        {
            nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);
            otherNodePtr = CONTAINER_OF(otherlinkPtr, idRecord_t, link);
            
            if (nodePtr->id > otherNodePtr->id) 
            {
                le_dls_Swap(&list1, linkPtr, otherlinkPtr);
            }
            else
            {
                break;
            }
            
            // switch the pointers back but not the links.
            tmpLinkPtr = linkPtr;
            linkPtr = otherlinkPtr;
            otherlinkPtr = tmpLinkPtr;
            
            linkPtr = le_dls_PeekNext(&list1, linkPtr);
            otherlinkPtr = le_dls_PeekPrev(&list1, otherlinkPtr);
        }
    }
    
    printf("Reversed the order of both lists using swap.\n");
    
    //Check that the list is correct.
    {
        idRecord_t* nodePtr;
        le_dls_Link_t* link0Ptr = le_dls_PeekTail(&list0);
        le_dls_Link_t* link1Ptr = le_dls_Peek(&list1);
        
        if ( (link0Ptr == NULL) || (link1Ptr == NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
        
        i = 0;
        do
        {
            // Get the node from list 0
            nodePtr = CONTAINER_OF(link0Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }
            
            // Get the node from list 1
            nodePtr = CONTAINER_OF(link1Ptr, idRecord_t, link);

            // Check the node.
            if ( nodePtr->id != i)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }        

            // Move to the next node.
            link0Ptr = le_dls_PeekPrev(&list0, link0Ptr);
            link1Ptr = le_dls_PeekNext(&list1, link1Ptr);
            i++;
            
        } while (link0Ptr != NULL);
        
        // Make sure everything is correct.
        if ( (i != maxListSize) || (link1Ptr != NULL) )
        {
            printf("Link error: %d", __LINE__);
            return LE_FAULT;
        }
    }
    
    printf("Checked that all nodes are now correctly in the reverse order.\n");
    

    //
    // Pop nodes.
    //
    {
        //pop all of list0 except for one node.  Save the first node using swap before the pop.
        for (i = maxListSize; i > 1; i--)
        {
            // get the first two links.
            le_dls_Link_t* linkPtr = le_dls_Peek(&list0);
            le_dls_Link_t* otherlinkPtr = le_dls_PeekNext(&list0, linkPtr);

            // swap the first two links.
            le_dls_Swap(&list0, linkPtr, otherlinkPtr);

            // pop the first link.
            le_dls_Pop(&list0);
        }
        
        
        //pop half the list.
        for (i = 0; i < (maxListSize / 2); i++)
        {
            le_dls_PopTail(&list1);
        }
    }
    
    printf("Popped all the nodes except one from the head of list0.\n");
    printf("Popped half the nodes from the tail of list1.\n");
    
    // Check that the list is still in tact.
    {
        idRecord_t* nodePtr;
        
        // For list 0.
        le_dls_Link_t* linkPtr = le_dls_Peek(&list0); 
        nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);

        if (nodePtr->id != maxListSize-1)
        {
            printf("Link error: %d", __LINE__);
        }

        // Check that the number of links left is correct.
        if (le_dls_NumLinks(&list0) != 1)
        {
            printf("Wrong number of links: %d", __LINE__);
            return LE_FAULT;
        }
        
        // For list1.
        linkPtr = le_dls_Peek(&list1); 
        i = 0;
        do
        {
            nodePtr = CONTAINER_OF(linkPtr, idRecord_t, link);
            
            if (nodePtr->id != i++)
            {
                printf("Link error: %d", __LINE__);
                return LE_FAULT;
            }
            
            linkPtr = le_dls_PeekNext(&list1, linkPtr);
        } while(linkPtr != NULL);
        
        // Check that the number of links left is correct.
        if (i != maxListSize - (maxListSize / 2))
        {
            printf("Wrong number of links: %d", __LINE__);
            return LE_FAULT;
        }
    }
    
    printf("Checked that all nodes were properly popped from the lists.\n");


    //
    // Check for list corruption.
    //
    {
        le_dls_Link_t* linkPtr;
        
        if (le_dls_IsListCorrupted(&list1))
        {
            printf("List1 is corrupt but shouldn't be: %d", __LINE__);
            return LE_FAULT;
        }

        // Access one of the links directly.  This should corrupt the list.
        linkPtr = le_dls_PeekTail(&list1);
        linkPtr = le_dls_PeekPrev(&list1, linkPtr);
        linkPtr->prevPtr = linkPtr;

        if (!le_dls_IsListCorrupted(&list1))
        {
            printf("List1 is not corrupted but should be: %d", __LINE__);
            return LE_FAULT;
        }
    }

    printf("Checked lists for corruption.\n");

    
    printf("*** Unit Test for le_doublyLinkedList module passed. ***\n");
    printf("\n");
    return LE_OK;
}