Ejemplo n.º 1
0
int main()
{
  while(true){
    Reset();
    systickInit();
    gpioInit();
    adcInit();
    lcdInit();
    tsInit();
    welcomeScreen();
    #ifdef DEBUG
      ledInit();
    #endif
    spiInit();
    while(!IsRebootRequired()){
      if(IsSynchronizationRequired()){
        AssertGoBusIRQ();
      }
      #ifdef DEBUG
        GPIO_ToggleBits(GPIOC, GPIO_Pin_13);
        delay(5);
      #endif
    }
  }
}
Ejemplo n.º 2
0
int main(void)
{
	initMyExtIRQ();

	eepromInit();
	buttonsInit();
	ledInit();
	timerInit();

	loggerInit();
	loggerWriteToMarker((LogMesT)" \nStarting program \n*", '*');

	initNockMachine_0();


    while(1)
    {

    	userCommandMachine_1();
    	nockMachine_2();
    	radioSendMachine_3();


    }
}
Ejemplo n.º 3
0
void mainInit()
{
	// not used pins as inputs with pull-ups
	DDRB &= ~(1 << PB4);
	PORTB |= (1 << PB4);
	DDRB &= ~(1 << PB5);
	PORTB |= (1 << PB5);

	s_timerCounter = 0;
	s_started = 0;
	s_buttonPressed = 0;
	s_buttonLock = 0;
	s_speed = 40;
	s_straightMode = CONTROLLER_LEFT_AND_RIGHT;

	sei();

	motorsInit();
	wheelsInit();
	controllerInitWithTimer(&mainTimerTick);
	remoteInit();
	sensorsInit();
	ledInit();
	buttonInit();
}
Ejemplo n.º 4
0
portTASK_FUNCTION_PROTO(signalTask, pvParameters)
{
	portTickType xLastWakeTime;

	// Initialise the xLastWakeTime variable with the current time.
	xLastWakeTime = xTaskGetTickCount();

	/* Create timers for LED & buzzer */
	LedTimer[LED_STS] = xTimerCreate((signed char *) "TimLedSTS", 10, pdFALSE, (void *) LED_STS, LedTimerCallback);
	LedTimer[LED_ERR] = xTimerCreate((signed char *) "TimLedERR", 10, pdFALSE, (void *) LED_ERR, LedTimerCallback);
	LedTimer[LED_NAV] = xTimerCreate((signed char *) "TimLedNAV", 10, pdFALSE, (void *) LED_NAV, LedTimerCallback);
	BuzzerTimer = xTimerCreate((signed char *) "TimBuzzer", 10, pdFALSE, (void *) 0, BuzzerTimerCallback);

	buzzerInit();

	ledInit();

    while (1)
    {
    	beep_handler();

		// Wait for the next cycle.
		vTaskDelayUntil(&xLastWakeTime, 100);	// Task cycle time 100 ms
    }
}
Ejemplo n.º 5
0
int main() 
{
  //Initialize the platform.
  int err = platformInit();
  if (err != 0) {
    // The firmware is running on the wrong hardware. Halt
    while(1);
  }

  //Launch the system task that will initialize and start everything
  systemLaunch();

  //Start the FreeRTOS scheduler
  vTaskStartScheduler();

  //TODO: Move to platform launch failed
  ledInit();
  ledSet(0, 1);
  ledSet(1, 1);

  //Should never reach this point!
  while(1);

  return 0;
}
Ejemplo n.º 6
0
int main(int argc, const char *argv[])
{
  if (argc != 2) {
    printf("invalid arguments! Usage: ./rgb.out <error-code>\n");
    return 2;
  }

  if(wiringPiSetup() == -1) {
    printf("setup wiringPi failed!");
    return 1;
  }

  ledInit();

  if (strcmp(argv[1], "ok") == 0) {
    flashGreen();
  }
  else if (strcmp(argv[1], "request_error") == 0) {
    flashOrange();
  }
  else if (strcmp(argv[1], "sensor_broken") == 0) {
    flashRed();
  }
  else if (strcmp(argv[1], "pairing_succeeded") == 0) {
    flashBlue();
  }

  return 0;
}
int main(void)
{
	int i;

	if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
		printf("setup wiringPi failed !");
		return 1; 
	}
	//printf("linker LedPin : GPIO %d(wiringPi pin)\n",LedPin); //when initialize wiring successfully,print message to screen

	ledInit();

	while(1){
		ledColorSet(0xff,0x00);   //red	
		delay(500);
		ledColorSet(0x00,0xff);   //green
		delay(500);
		ledColorSet(0xff,0x45);	
		delay(500);
		ledColorSet(0xff,0xff);	
		delay(500);
		ledColorSet(0x7c,0xfc);	
		delay(500);
	}

	return 0;
}
Ejemplo n.º 8
0
void systemInit(bool overclock)
{

#ifdef STM32F303xC
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X_MD
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(overclock);
#endif

    // Configure NVIC preempt/priority groups
    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);

#ifdef STM32F10X_MD
    // Turn on clocks for stuff we use
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
#endif

    RCC_ClearFlag();


    enableGPIOPowerUsageAndNoiseReductions();


#ifdef STM32F10X_MD
    // Turn off JTAG port 'cause we're using the GPIO for leds
#define AFIO_MAPR_SWJ_CFG_NO_JTAG_SW            (0x2 << 24)
    AFIO->MAPR |= AFIO_MAPR_SWJ_CFG_NO_JTAG_SW;
#endif

    ledInit();
    beeperInit();

    // Init cycle counter
    cycleCounterInit();

    // SysTick
    SysTick_Config(SystemCoreClock / 1000);

#ifdef CC3D
    spiInit(SPI1);
    spiInit(SPI2);
#endif

#ifndef CC3D
    // Configure the rest of the stuff
    i2cInit(I2C2);
#endif

    // sleep for 100ms
    delay(100);
}
Ejemplo n.º 9
0
/*************************************************************
 * Main function
 ************************************************************/
int main(void)
{
    int err;
    bootparam_t bootparam;

    //Initial initialisation
    pmClkInit(FCPU, FPBA);
    usartInit(USART0, &usart0_options, FPBA);    //Init serial communication
    usartWriteLine(USART0, version);
    ledInit();

    usartWriteLine(USART0, "Preinit done.\nGetting bootparm.txt...\n");

    //Load boot parameters from SD-card
    bootparam = bootparamLoad("bootparm.txt");
    done();

    //Second init according to boot parameters
    //pmClkReInit(bootparam.fcpu, bootparam.fpba);
    usartWriteLine(USART0, "reinit USART");
    usartSetBaudrate(USART0, bootparam.baudrate, bootparam.fpba);
    done();

    usartWriteLine(USART0, "Init SDRAM...");
    sdramInit(bootparam.fcpu);
    done();

    spiReset(&AVR32_SPI1);

    //Optional loading a banner from SD-card and display on terminal.
    usartWriteLine(USART0, "Loading banner...");
    banner(&bootparam);
    done();

    //Boot file from SD-card, according to the bootparam.txt that should exist
    //on the SD-card. Otherwise default settings will be used.
    //If the boot is successful we (probably) never come back here.
    //If the boot is unsuccessful we come back here.
    usartWriteLine(USART0, "Loading bootfile, wait at least 15 sec...");
    err = boot(&bootparam);

    if(err) {
        //TODO: Booting another file might NOT be the proper way to handle failure to load the user specified file. Reconsider!
        usartWriteLine(USART0, "\nCould not boot ");
        usartWriteLine(USART0, bootparam.bootfile);
        usartWriteLine(USART0, "\nWarning: Trying to boot ");
        usartWriteLine(USART0, DEFAULT_AUTORUN_FILE);

        strcpy(bootparam.bootfile, DEFAULT_AUTORUN_FILE);
        err = boot(&bootparam);
    }

    if(err) {
        /* Execution will only return to here on error */
        usartWriteLine(USART0, "\nError booting, stopping here.");
        while(1); //TODO: Sleep
    }
    while(1); //TODO: Sleep
}
Ejemplo n.º 10
0
void initPorts(void) {
   // Enable all port clocks
   SIM_SCGC5 |=   SIM_SCGC5_PORTA_MASK
                | SIM_SCGC5_PORTB_MASK
                | SIM_SCGC5_PORTC_MASK
                | SIM_SCGC5_PORTD_MASK
                | SIM_SCGC5_PORTE_MASK;
   ledInit();
}
Ejemplo n.º 11
0
/*********************************************************************************************
 * Setup relevant hardware
 *********************************************************************************************/
static void prvSetupHardware( void ) {
	// Ensure that all 4 interrupt priority bits are used as the pre-emption priority
	NVIC_PriorityGroupConfig( NVIC_PriorityGroup_4 );

	// Setup LEDs
	ledInit();

	// Setup WiFi
	wifiInit();
}
Ejemplo n.º 12
0
main()
{
    ledInit();
    
    for (;;) {
        ledOn();
        delay(1000);
        ledOff();
        delay(1000);
    }
}
Ejemplo n.º 13
0
int main(void)
{
	

	ledInit();
	buttonsInit();
	loggerInit();
	timerInit();
	initMyExtIRQ();

	if(buttonIsPressed(BUTTONNEWNOCK) == TRUE){
		#ifdef LOGGDEBUG
		loggerWriteToMarker((LogMesT)"\r\r\r goto colibrateDetector \r*", '*');
		#endif

		while(1)
			colibrateDetector();
	}

	#ifdef LOGGDEBUG
	loggerWriteToMarker((LogMesT)"\r\r\r Starting program \r*", '*');
	#endif
		
	initNockMachine();

	#ifdef LOGGDEBUG
	loggerWriteToMarker((LogMesT)" iRaSeMac \r*", '*');
	#endif

	initSendMachine();

	#ifdef LOGGDEBUG
	loggerWriteToMarker((LogMesT)" exit iRaSeMac \r*", '*');
	#endif

//	ledOn(LEDRED2);
//timerSet(TIMER_NOCK,0,50);

   while(1)
    {

		//if(timerIsElapsed(TIMER_NOCK) == TRUE){
		//	timerSet(TIMER_NOCK,0,50);
		//	ledTaggle(LEDRED1);
		//}
		//continue;
		
    	userNewNockCommandMachine_1();
    	nockMachine_2();
    	sendMachine_3();
		doorSignalMachine_4();

    }
}
Ejemplo n.º 14
0
void systemInit(void)
{
	// Init cycle counter
    cycleCounterInit();

    // SysTick
    SysTick_Config(SystemCoreClock / 1000);

    ///////////////////////////////////

    checkFirstTime(false);
	readEEPROM();

	if (eepromConfig.receiverType == SPEKTRUM)
		checkSpektrumBind();

	checkResetType();

	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);  // 2 bits for pre-emption priority, 2 bits for subpriority

	initMixer();

    ledInit();
    cliInit();

    BLUE_LED_ON;

    delay(20000);  // 20 sec total delay for sensor stabilization - probably not long enough.....

    adcInit();
    batteryInit();
    gpsInit();
    i2cInit(I2C1);
    i2cInit(I2C2);
    pwmEscInit(eepromConfig.escPwmRate);
    pwmServoInit(eepromConfig.servoPwmRate);
    rxInit();
    spiInit(SPI2);
    spiInit(SPI3);
    telemetryInit();
    timingFunctionsInit();

    initFirstOrderFilter();
    initGPS();
    initMax7456();
    initPID();

    GREEN_LED_ON;

    initMPU6000();
    initMag(HMC5883L_I2C);
    initPressure(MS5611_I2C);
}
Ejemplo n.º 15
0
void systemTask(void *arg) {
    bool pass = true;

    //Init the high-levels modules
    systemInit();

#ifndef USE_UART_CRTP
#ifdef UART_OUTPUT_TRACE_DATA
    debugInitTrace();
#endif
#ifdef HAS_UART
    uartInit();
#endif
#endif //ndef USE_UART_CRTP
    commInit();

    DEBUG_PRINT("Crazyflie is up and running!\n");
    DEBUG_PRINT("Build %s:%s (%s) %s\n", V_SLOCAL_REVISION, V_SREVISION, V_STAG, (V_MODIFIED) ? "MODIFIED" : "CLEAN");
    DEBUG_PRINT("I am 0x%X%X%X and I have %dKB of flash!\n", *((int* )(0x1FFFF7E8 + 8)), *((int* )(0x1FFFF7E8 + 4)), *((int* )(0x1FFFF7E8 + 0)), *((short* )(0x1FFFF7E0)));

    commanderInit();
    stabilizerInit();

    //Test the modules
    pass &= systemTest();
    pass &= commTest();
    pass &= commanderTest();
    pass &= stabilizerTest();

    //Start the firmware
    if (pass) {
        systemStart();
        ledseqRun(LED_RED, seq_alive);
        ledseqRun(LED_GREEN, seq_testPassed);
    } else {
        if (systemTest()) {
            while (1) {
                ledseqRun(LED_RED, seq_testPassed); //Red passed == not passed!
                vTaskDelay(M2T(2000) );
            }
        } else {
            ledInit();
            ledSet(LED_RED, true);
        }
    }

    workerLoop();

    //Should never reach this point!
    while (1)
        vTaskDelay(portMAX_DELAY);
}
int main(void){

	if(wiringPiSetup() == -1){ //when initialize wiring failed, printf messageto screen
		printf("setup wiringPi failed !");
		return 1; 
	}

	ledInit();

	printf("\n");
	printf("\n");
	printf("========================================\n");
	printf("|              Breath LED              |\n");
	printf("|    ------------------------------    |\n");
	printf("|       Red Pin connect to GPIO0       |\n");
	printf("|      Green Pin connect to GPIO1      |\n");
	printf("|       Blue Pin connect to GPIO2      |\n");
	printf("|                                      |\n");
	printf("|  Make a RGB LED emits various color  |\n");
	printf("|                                      |\n");
	printf("|                            SunFounder|\n");
	printf("========================================\n");
	printf("\n");
	printf("\n");

	while(1){
		printf("Red\n");
		ledColorSet(0xff,0x00,0x00);   //red	
		delay(500);
		printf("Green\n");
		ledColorSet(0x00,0xff,0x00);   //green
		delay(500);
		printf("Blue\n");
		ledColorSet(0x00,0x00,0xff);   //blue
		delay(500);

		printf("Yellow\n");
		ledColorSet(0xff,0xff,0x00);   //yellow
		delay(500);
		printf("Purple\n");
		ledColorSet(0xff,0x00,0xff);   //purple
		delay(500);
		printf("Cyan\n");
		ledColorSet(0xc0,0xff,0x3e);   //cyan
		delay(500);
	}

	return 0;
}
Ejemplo n.º 17
0
void systemTask(void *arg)
{
  bool pass = true;

  /* Init the high-levels modules */
  systemInit();
	
	uartInit();
	commInit();
	stabilizerInit();
	
	//Test the modules
  pass &= systemTest();
	pass &= commTest();
//	pass &= commanderTest();
	pass &= stabilizerTest();
	
	if (pass)
	{
		systemStart();
		ledseqRun(LED_RED, seq_alive);
    ledseqRun(LED_GREEN, seq_testPassed);
	}
	else
  {
    if (systemTest())
    {
      while(1)
      {
        ledseqRun(LED_RED, seq_testPassed); //Red passed == not passed!
        vTaskDelay(M2T(2000));
      }
    }
    else
    {
      ledInit();
      ledSet(LED_RED, true);
    }
  }
	
	pmSetChargeState(charge500mA);
	
	//Should never reach this point!
	while(1)
    vTaskDelay(portMAX_DELAY);
	
}
Ejemplo n.º 18
0
int platformInit(void)
{
	//Low level init: Clock and Interrupt controller
	NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);

	// Disable the jtag gpio
	GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);

	// adcInit();

	ledInit();

	ledSet(0, 0);
	ledSet(1, 0);
	ledSet(2, 0);

	delay_ms(500);
	ledSet(0, 1);
	delay_ms(500);
	ledSet(1, 1);
	delay_ms(500);
	ledSet(2, 1);

	delay_ms(500);

	// while(1)
	// {
	// 	uint8_t i;
	// 	for(i = 0; i < 3; i++)
	// 	{
	// 		ledSet(i, 1);
	// 		delay_ms(1000);
	// 		ledSet(0, 0);
	// 		ledSet(1, 0);
	// 		ledSet(2, 0);
	// 	}

	// }

	uartInit();

	timInit();

	return 0;
}
Ejemplo n.º 19
0
int main(void)  
{  
	int i;  

	if(wiringPiSetup() == -1){      //When wiringPi initialize failed, print message to screen  
		printf("setup wiringPi failed !\n");  
		return 1;   
	}  

	ledInit();  

	while(1){  
		for(i = 0; i < sizeof(colors)/sizeof(int); i++){  
			ledColorSet(colors[i]);  
			delay(500);  
		}  
	}  

	return 0;  
}  
Ejemplo n.º 20
0
void ledseqInit()
{
  int i,j;

  if(isInit)
    return;

  ledInit();

  //Initialise the sequences state
  for(i=0; i<LED_NUM; i++) {
    activeSeq[i] = LEDSEQ_STOP;
    for(j=0; j<SEQ_NUM; j++)
      state[i][j] = LEDSEQ_STOP;
  }

  //Init the soft timers that runs the led sequences for each leds
  for(i=0; i<LED_NUM; i++)
    timer[i] = xTimerCreate("ledseqTimer", M2T(1000), pdFALSE, (void*)i, runLedseq);

  vSemaphoreCreateBinary(ledseqSem);

  isInit = true;
}
Ejemplo n.º 21
0
void systemInit(void)
{
    GPIO_InitTypeDef GPIO_InitStructure;

    // Turn on clocks for stuff we use
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOC | RCC_APB2Periph_AFIO, ENABLE);
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,   ENABLE);
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,   ENABLE);
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,   ENABLE);
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,   ENABLE);
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1,   ENABLE);
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2,   ENABLE);
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,     ENABLE);
    RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2,     ENABLE);
    RCC_ClearFlag();

    // Make all GPIO in by default to save power and reduce noise
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
    GPIO_Init(GPIOB, &GPIO_InitStructure);
    GPIO_Init(GPIOC, &GPIO_InitStructure);

    // Turn off JTAG port 'cause we're using the GPIO for leds
    GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);

    // Init cycle counter
    cycleCounterInit();

    // SysTick
    SysTick_Config(SystemCoreClock / 1000);

    NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);     // 2 bits for pre-emption priority, 2 bits for subpriority

    checkFirstTime(false);
    readEEPROM();

    ledInit();

    LED0_ON;

    initMixer();

    pwmOutputConfig.escPwmRate   = eepromConfig.escPwmRate;
    pwmOutputConfig.servoPwmRate = eepromConfig.servoPwmRate;

    cliInit(115200);
    i2cInit(I2C2);
    pwmOutputInit(&pwmOutputConfig);
    rxInit();

    delay(20000);               // 20 sec delay for sensor stabilization - probably not long enough.....

    LED1_ON;

    initAccel();
    initGyro();
    initMag();
    initPressure();

    initPID();
}
Ejemplo n.º 22
0
// TODO: Implement!
int platformInit ( void )
{
	uint8_t i = 0;
	int checksum = 0;

	//Low level init: Clock and Interrupt controller
	NVIC_PriorityGroupConfig ( NVIC_PriorityGroup_4 );

	// Disable the jtag gpio
	GPIO_PinRemapConfig ( GPIO_Remap_SWJ_JTAGDisable, ENABLE );

	ledInit();

	ledSet ( 0, 0 );
	ledSet ( 1, 0 );
	ledSet ( 2, 0 );

	delay_ms ( 500 );
	ledSet ( 0, 1 );
	delay_ms ( 500 );
	ledSet ( 1, 1 );
	delay_ms ( 500 );
	ledSet ( 2, 1 );

	delay_ms ( 500 );

	uartInit();

	DEBUG_PRINT ( "Too young too simple, sometimes naive.\n" );
	DEBUG_PRINT ( "I'm a journalist from Hongkong.\n" );
	DEBUG_PRINT ( "I could run very fast.\n" );
	DEBUG_PRINT ( "------------------------------\n" );

	DEBUG_PRINT ( "uart init successfully.\n" );

	ledSet ( 0, 0 );

	// adcInit();

	DEBUG_PRINT ( "test motor.\n" );

	timInit();

	DEBUG_PRINT ( "waking up driver.\n" );

	wakeupDriver();

	timSetPulse ( TIM2, 3, 0 );
	timSetPulse ( TIM3, 3, 0 );
	timSetPulse ( TIM4, 3, 0 );
	timSetPulse ( TIM2, 4, 0 );
	timSetPulse ( TIM3, 4, 0 );
	timSetPulse ( TIM4, 4, 0 );

	delay_ms ( 500 );

	timSetPulse ( TIM2, 4, 500 );
	timSetPulse ( TIM3, 4, 500 );
	timSetPulse ( TIM4, 4, 500 );

	delay_ms ( 500 );

	timSetPulse ( TIM2, 3, 0 );
	timSetPulse ( TIM3, 3, 0 );
	timSetPulse ( TIM4, 3, 0 );
	timSetPulse ( TIM2, 4, 0 );
	timSetPulse ( TIM3, 4, 0 );
	timSetPulse ( TIM4, 4, 0 );

	delay_ms ( 500 );

	timSetPulse ( TIM2, 3, 500 );
	timSetPulse ( TIM3, 3, 500 );
	timSetPulse ( TIM4, 3, 500 );

	delay_ms ( 500 );

	timSetPulse ( TIM2, 3, 0 );
	timSetPulse ( TIM3, 3, 0 );
	timSetPulse ( TIM4, 3, 0 );
	timSetPulse ( TIM2, 4, 0 );
	timSetPulse ( TIM3, 4, 0 );
	timSetPulse ( TIM4, 4, 0 );

	ledSet ( 1, 0 );

	delay_ms ( 200 );

	nrf24l01Init();

	i = nrf24l01ConnectCheck();

	nrf24l01SetAddress();
	// i = nrf24l01ConnectCheck();

	if ( i == 1 )
	{
		checksum --;
		ledSet ( 2, 0 );
	}

	delay_ms ( 1000 );

	// mpu9150Init();
	// i = mpu9150Status();

	// if(!i)
	// {
	//  checksum --;
	//  ledSet(1, 0);
	// }

	if ( checksum > 0 )
	{
		delay_ms ( 1000 );

		timSetPulse ( TIM2, 3, 0 );
		timSetPulse ( TIM3, 3, 0 );
		timSetPulse ( TIM4, 3, 0 );
		timSetPulse ( TIM2, 4, 0 );
		timSetPulse ( TIM3, 4, 0 );
		timSetPulse ( TIM4, 4, 0 );
		// timSetPulse(TIM2, 4, 999);
		// timSetPulse(TIM3, 4, 999);
		// timSetPulse(TIM4, 4, 999);

		while ( 1 )
		{

			ledSet ( 0, 1 );
			ledSet ( 1, 1 );
			ledSet ( 2, 1 );
			delay_ms ( 100 );
			ledSet ( 0, 0 );
			ledSet ( 1, 0 );
			ledSet ( 2, 0 );
			delay_ms ( 100 );
		}
	}

	ledSet ( 0, 0 );
	ledSet ( 1, 0 );
	ledSet ( 2, 0 );

	delay_ms ( 500 );

	ledSet ( 0, 1 );
	ledSet ( 1, 1 );
	ledSet ( 2, 1 );

	delay_ms ( 500 );

	ledSet ( 0, 0 );
	ledSet ( 1, 0 );
	ledSet ( 2, 0 );

	return 0;
}
Ejemplo n.º 23
0
void init(void)
{
#ifdef USE_HAL_DRIVER
    HAL_Init();
#endif

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

    systemInit();

    //i2cSetOverclock(masterConfig.i2c_overclock);

    // initialize IO (needed for all IO operations)
    IOInitGlobal();

    debugMode = masterConfig.debug_mode;

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

#ifdef ALIENFLIGHTF3
    ledInit(hardwareRevision == AFF3_REV_1 ? false : true);
#else
    ledInit(false);
#endif
    LED2_ON;

#ifdef USE_EXTI
    EXTIInit();
#endif

#if defined(BUTTONS)
    gpio_config_t buttonAGpioConfig = {
        BUTTON_A_PIN,
        Mode_IPU,
        Speed_2MHz
    };
    gpioInit(BUTTON_A_PORT, &buttonAGpioConfig);

    gpio_config_t buttonBGpioConfig = {
        BUTTON_B_PIN,
        Mode_IPU,
        Speed_2MHz
    };
    gpioInit(BUTTON_B_PORT, &buttonBGpioConfig);

    // Check status of bind plug and exit if not active
    delayMicroseconds(10);  // allow GPIO configuration to settle

    if (!isMPUSoftReset()) {
        uint8_t secondsRemaining = 5;
        bool bothButtonsHeld;
        do {
            bothButtonsHeld = !digitalIn(BUTTON_A_PORT, BUTTON_A_PIN) && !digitalIn(BUTTON_B_PORT, BUTTON_B_PIN);
            if (bothButtonsHeld) {
                if (--secondsRemaining == 0) {
                    resetEEPROM();
                    systemReset();
                }
                delay(1000);
                LED0_TOGGLE;
            }
        } while (bothButtonsHeld);
    }
#endif

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

#if !defined(USE_HAL_DRIVER)
    dmaInit();
#endif

#if defined(AVOID_UART1_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART1 : SERIAL_PORT_NONE);
#elif defined(AVOID_UART2_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART2 : SERIAL_PORT_NONE);
#elif defined(AVOID_UART3_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART3 : SERIAL_PORT_NONE);
#else
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), SERIAL_PORT_NONE);
#endif

    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer);
#ifdef USE_SERVOS
    servoMixerInit(masterConfig.customServoMixer);
#endif

    uint16_t idlePulse = masterConfig.motorConfig.mincommand;
    if (feature(FEATURE_3D)) {
        idlePulse = masterConfig.flight3DConfig.neutral3d;
    }

    if (masterConfig.motorConfig.motorPwmProtocol == PWM_TYPE_BRUSHED) {
        featureClear(FEATURE_3D);
        idlePulse = 0; // brushed motors
    }

#ifdef USE_QUAD_MIXER_ONLY
    motorInit(&masterConfig.motorConfig, idlePulse, QUAD_MOTOR_COUNT);
#else
    motorInit(&masterConfig.motorConfig, idlePulse, mixers[masterConfig.mixerMode].motorCount);
#endif

#ifdef USE_SERVOS
    if (isMixerUsingServos()) {
        //pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
        servoInit(&masterConfig.servoConfig);
    }
#endif

#ifndef SKIP_RX_PWM_PPM
    if (feature(FEATURE_RX_PPM)) {
        ppmRxInit(&masterConfig.ppmConfig, masterConfig.motorConfig.motorPwmProtocol);
    } else if (feature(FEATURE_RX_PARALLEL_PWM)) {
        pwmRxInit(&masterConfig.pwmConfig);        
    }
    pwmRxSetInputFilteringMode(masterConfig.inputFilteringMode);
#endif

    mixerConfigureOutput();
#ifdef USE_SERVOS
    servoConfigureOutput();
#endif
    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef BEEPER
    beeperInit(&masterConfig.beeperConfig);
#endif
/* temp until PGs are implemented. */
#ifdef INVERTER
    initInverter();
#endif

#ifdef USE_BST
    bstInit(BST_DEVICE);
#endif

#ifdef USE_SPI
#ifdef USE_SPI_DEVICE_1
    spiInit(SPIDEV_1);
#endif
#ifdef USE_SPI_DEVICE_2
    spiInit(SPIDEV_2);
#endif
#ifdef USE_SPI_DEVICE_3
#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_2) {
        spiInit(SPIDEV_3);
    }
#else
    spiInit(SPIDEV_3);
#endif
#endif
#ifdef USE_SPI_DEVICE_4
    spiInit(SPIDEV_4);
#endif
#endif

#ifdef VTX
    vtxInit();
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_USART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif

#if defined(SPRACINGF3MINI) || defined(OMNIBUS) || defined(X_RACERSPI)
#if defined(SONAR) && defined(USE_SOFTSERIAL1)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
    }
#endif
#endif

#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE);
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

#ifdef USE_RTC6705
    if (feature(FEATURE_VTX)) {
        rtc6705_soft_spi_init();
        current_vtx_channel = masterConfig.vtx_channel;
        rtc6705_soft_spi_set_channel(vtx_freq[current_vtx_channel]);
        rtc6705_soft_spi_set_rf_power(masterConfig.vtx_power);
    }
#endif

#ifdef OSD
    if (feature(FEATURE_OSD)) {
        osdInit();
    }
#endif

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig,
            masterConfig.acc_hardware,
            masterConfig.mag_hardware,
            masterConfig.baro_hardware,
            masterConfig.mag_declination,
            masterConfig.gyro_lpf,
            masterConfig.gyro_sync_denom)) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    LED1_ON;
    LED0_OFF;
    LED2_OFF;

    for (int i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        if (!(getBeeperOffMask() & (1 << (BEEPER_SYSTEM_INIT - 1)))) BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspFcInit();
    mspSerialInit();

#ifdef USE_CLI
    cliInit(&masterConfig.serialConfig);
#endif

    failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    rxInit(&masterConfig.rxConfig, masterConfig.modeActivationConditions);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &masterConfig.gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(&masterConfig.sonarConfig);
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors, masterConfig.modeColors, &masterConfig.specialColors);

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USB_CABLE_DETECTION
    usbCableDetectInit();
#endif

#ifdef TRANSPONDER
    if (feature(FEATURE_TRANSPONDER)) {
        transponderInit(masterConfig.transponderData);
        transponderEnable();
        transponderStartRepeating();
        systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED;
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init(IO_TAG_NONE);
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init(IO_TAG_NONE);
#endif

    flashfsInit();
#endif

#ifdef USE_SDCARD
    bool sdcardUseDMA = false;

    sdcardInsertionDetectInit();

#ifdef SDCARD_DMA_CHANNEL_TX

#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
    // Ensure the SPI Tx DMA doesn't overlap with the led strip
#if defined(STM32F4) || defined(STM32F7)
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_STREAM;
#else
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#endif
#else
    sdcardUseDMA = true;
#endif

#endif

    sdcard_init(sdcardUseDMA);

    afatfs_init();
#endif

    if (masterConfig.gyro_lpf > 0 && masterConfig.gyro_lpf < 7) {
        masterConfig.pid_process_denom = 1; // When gyro set to 1khz always set pid speed 1:1 to sampling speed
        masterConfig.gyro_sync_denom = 1;
    }

    setTargetPidLooptime((gyro.targetLooptime + LOOPTIME_SUSPEND_TIME) * masterConfig.pid_process_denom); // Initialize pid looptime

#ifdef BLACKBOX
    initBlackbox();
#endif

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles();
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    fcTasksInit();
    systemState |= SYSTEM_STATE_READY;
}
Ejemplo n.º 24
0
void init(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(masterConfig.emf_avoidance);
#endif
#ifdef STM32F40_41xxx
    SetSysClock();
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    systemInit();

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

    ledInit();

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL));

#ifdef USE_SERVOS
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer);
#else
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer);
#endif

    memset(&pwm_params, 0, sizeof(pwm_params));

#ifdef SONAR
    const sonarHardware_t *sonarHardware = NULL;

    if (feature(FEATURE_SONAR)) {
        sonarHardware = sonarGetHardwareConfiguration(&masterConfig.batteryConfig);
        sonarGPIOConfig_t sonarGPIOConfig = {
            .gpio = SONAR_GPIO,
            .triggerPin = sonarHardware->echo_pin,
            .echoPin = sonarHardware->trigger_pin,
        };
        pwm_params.sonarGPIOConfig = &sonarGPIOConfig;
    }
#endif

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_USART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#ifdef STM32F303xC
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3);
#endif
#if defined(USE_USART2) && defined(STM32F40_41xxx)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#if defined(USE_USART6) && defined(STM32F40_41xxx)
    pwm_params.useUART6 = doesConfigurationUsePort(SERIAL_PORT_USART6);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER)
        && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC;
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);
#ifdef SONAR
    pwm_params.useSonar = feature(FEATURE_SONAR);
#endif

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
#endif

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = masterConfig.motor_pwm_rate;
    pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand;
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

    pwmRxInit(masterConfig.inputFilteringMode);

    pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);

    mixerUsePWMOutputConfiguration(pwmOutputConfiguration);

    if (!feature(FEATURE_ONESHOT125))
        motorControlEnable = true;

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioPeripheral = BEEP_PERIPHERAL,
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
#ifdef BEEPER_INVERTED
        .gpioMode = Mode_Out_PP,
        .isInverted = true
#else
        .gpioMode = Mode_Out_OD,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
    spiInit(SPI3);
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_USART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif


#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE_INT);
#if defined(ANYFC) || defined(COLIBRI) || defined(REVO) || defined(SPARKY2)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
#ifdef I2C_DEVICE_EXT
        i2cInit(I2C_DEVICE_EXT);
#endif
    }
#endif
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, masterConfig.baro_hardware, currentProfile->mag_declination)) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspInit(&masterConfig.serialConfig);

#ifdef USE_CLI
    cliInit(&masterConfig.serialConfig);
#endif

    failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    rxInit(&masterConfig.rxConfig);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &currentProfile->gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(sonarHardware);
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors);

    if (feature(FEATURE_LED_STRIP)) {
#ifdef COLIBRI
        if (!doesConfigurationUsePort(SERIAL_PORT_USART1)) {
            ledStripEnable();
        }
#else
        ledStripEnable();
#endif
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init();
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init();
#endif

    flashfsInit();
#endif

#ifdef BLACKBOX
    initBlackbox();
#endif

    previousTime = micros();

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialTotalBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

int main(void) {
    init();

    while (1) {
        loop();
        processLoopback();
    }
}

void HardFault_Handler(void)
{
    // fall out of the sky
    uint8_t requiredState = SYSTEM_STATE_CONFIG_LOADED | SYSTEM_STATE_MOTORS_READY;
    if ((systemState & requiredState) == requiredState) {
        stopMotors();
    }
    while (1);
}
Ejemplo n.º 25
0
void init(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;
    bool sensorsOK = false;

    initPrintfSupport();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(masterConfig.emf_avoidance);
#endif

#ifdef NAZE
    detectHardwareRevision();
#endif

    systemInit();

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    ledInit();

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioMode = Mode_Out_OD,
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
        .gpioPeripheral = BEEP_PERIPHERAL,
        .isInverted = false
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
#endif

#ifdef NAZE
    updateHardwareRevision();
#endif

#ifdef USE_I2C
#ifdef NAZE
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    }
#else
    // Configure the rest of the stuff
    i2cInit(I2C_DEVICE);
#endif
#endif

#if !defined(SPARKY)
    drv_adc_config_t adc_params;

    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

    // We have these sensors; SENSORS_SET defined in board.h depending on hardware platform
    sensorsSet(SENSORS_SET);
    // drop out any sensors that don't seem to work, init all the others. halt if gyro is dead.
    sensorsOK = sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, currentProfile->mag_declination);

    // if gyro was not detected due to whatever reason, we give up now.
    if (!sensorsOK)
        failureMode(3);

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

    imuInit();
    mixerInit(masterConfig.mixerMode, masterConfig.customMixer);

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    serialInit(&masterConfig.serialConfig);

    memset(&pwm_params, 0, sizeof(pwm_params));
    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(SERIAL_PORT_USART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER);
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.extraServos = currentProfile->gimbalConfig.gimbal_flags & GIMBAL_FORWARDAUX;
    pwm_params.motorPwmRate = masterConfig.motor_pwm_rate;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
    pwm_params.idlePulse = PULSE_1MS; // standard PWM for brushless ESC (default, overridden below)
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors
    pwm_params.servoCenterPulse = masterConfig.rxConfig.midrc;

    pwmRxInit(masterConfig.inputFilteringMode);

    pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);

    mixerUsePWMOutputConfiguration(pwmOutputConfiguration);

    failsafe = failsafeInit(&masterConfig.rxConfig);
    beepcodeInit(failsafe);
    rxInit(&masterConfig.rxConfig, failsafe);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &currentProfile->gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        Sonar_init();
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors, failsafe);

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY))
        initTelemetry();
#endif

    previousTime = micros();

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    // Check battery type/voltage
    if (feature(FEATURE_VBAT))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayEnablePageCycling();
#endif
    }
#endif
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialTotalBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

int main(void) {
    init();

    while (1) {
        loop();
        processLoopback();
    }
}
Ejemplo n.º 26
0
void init(void)
{
    uint8_t i;
    drv_pwm_config_t pwm_params;

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;
	
#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(masterConfig.emf_avoidance);
#endif
#ifdef STM32F40_41xxx
    SetSysClock();
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif
	
    systemInit();

    ledInit();

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL));

    mixerInit(masterConfig.mixerMode, masterConfig.customMixer);

    memset(&pwm_params, 0, sizeof(pwm_params));
    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_USART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#ifdef STM32F303xC
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3);
#endif
#if defined(USE_USART2) && defined(STM32F40_41xxx)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#if defined(USE_USART6) && defined(STM32F40_41xxx)
    pwm_params.useUART6 = doesConfigurationUsePort(SERIAL_PORT_USART6);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER)
        && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC;
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);
#ifdef SONAR
    pwm_params.useSonar = feature(FEATURE_SONAR);
#endif

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.extraServos = currentProfile->gimbalConfig.gimbal_flags & GIMBAL_FORWARDAUX;
    pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
#endif

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = masterConfig.motor_pwm_rate;
    pwm_params.idlePulse = PULSE_1MS; // standard PWM for brushless ESC (default, overridden below)
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

    pwmRxInit(masterConfig.inputFilteringMode);

    pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);

    mixerUsePWMOutputConfiguration(pwmOutputConfiguration);

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
        .gpioPeripheral = BEEP_PERIPHERAL,
#ifdef BEEPER_INVERTED
        .gpioMode = Mode_Out_PP,
        .isInverted = true
#else
        .gpioMode = Mode_Out_OD,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
    spiInit(SPI3);
	spiInit(SPI4);
	spiInit(SPI5);
#endif
	
#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
#if defined(ANYFC) || defined(COLIBRI) || defined(REVO) || defined(STM32F4DISCOVERY)
    i2cInit(I2C_DEVICE_INT);
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
#ifdef I2C_DEVICE_EXT
        i2cInit(I2C_DEVICE_EXT);
#endif
    }
#endif
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig, masterConfig.gyro_lpf, masterConfig.acc_hardware, masterConfig.mag_hardware, currentProfile->mag_declination)) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(3);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    LED1_ON;
    LED0_OFF;
    for (i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspInit(&masterConfig.serialConfig);
    cliInit(&masterConfig.serialConfig);

    failsafeInit(&masterConfig.rxConfig);

    rxInit(&masterConfig.rxConfig);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &currentProfile->gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(&masterConfig.batteryConfig);
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors);

    if (feature(FEATURE_LED_STRIP)) {
#ifdef COLIBRI
        if (!doesConfigurationUsePort(SERIAL_PORT_USART1)) {
            ledStripEnable();
        }
#else
        ledStripEnable();
#endif
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init();
    }
#endif
#if defined(SPRACINGF3) || defined(CC3D) || defined(COLIBRI) || defined(REVO)
    m25p16_init();
#endif
    flashfsInit();
#endif

#ifdef BLACKBOX
	//initBlackbox();
#endif

    previousTime = micros();

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    //gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif
	
    // start all timers
    // TODO - not implemented yet
    //timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif
	
    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialTotalBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

#include <stdio.h>
#include "stm32f4xx_rcc.h"
#include "stm32f4xx_gpio.h"
GPIO_InitTypeDef GPIO_InitStruct;

int main(void) {
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOD, ENABLE);

    GPIO_InitStruct.GPIO_Pin = GPIO_Pin_15 | GPIO_Pin_14 | GPIO_Pin_13
        | GPIO_Pin_12;
    GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT;
    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz;
    GPIO_InitStruct.GPIO_OType = GPIO_OType_PP;
    GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL;
    GPIO_Init(GPIOD, &GPIO_InitStruct);

    printf("Hello World!\r\n");
    hello();
    while (1) {
        static int count = 0;
        static int i;

        for (i = 0; i < 10000000; ++i)
            ;
        GPIO_ToggleBits(GPIOD, GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15);
        printf("%d\r\n", ++count);
    }
    
    //init();
    /*
    while (1) {
        //loop();
		int x = 1;//processLoopback();
    }*/
}
Ejemplo n.º 27
0
void init(void)
{
    drv_pwm_config_t pwm_params;

    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

#ifdef STM32F303
    // start fpu
    SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2));
#endif

#ifdef STM32F303xC
    SetSysClock();
#endif
#ifdef STM32F10X
    // Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers
    // Configure the Flash Latency cycles and enable prefetch buffer
    SetSysClock(systemConfig()->emf_avoidance);
#endif
    i2cSetOverclock(systemConfig()->i2c_highspeed);

    systemInit();

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

    // initialize IO (needed for all IO operations)
    IOInitGlobal();

    debugMode = debugConfig()->debug_mode;

#ifdef USE_EXTI
    EXTIInit();
#endif

#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_1) {
        ledInit(false);
    } else {
        ledInit(true);
    }
#else
    ledInit(false);
#endif

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .gpioPeripheral = BEEP_PERIPHERAL,
        .gpioPin = BEEP_PIN,
        .gpioPort = BEEP_GPIO,
#ifdef BEEPER_INVERTED
        .gpioMode = Mode_Out_PP,
        .isInverted = true
#else
        .gpioMode = Mode_Out_OD,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.gpioMode = Mode_Out_PP;
        beeperConfig.isInverted = true;
    }
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef BUTTONS
    buttonsInit();

    if (!isMPUSoftReset()) {
        buttonsHandleColdBootButtonPresses();
    }
#endif

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (rxConfig()->serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(rxConfig());
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    dmaInit();


    serialInit(feature(FEATURE_SOFTSERIAL));

    mixerInit(customMotorMixer(0));
#ifdef USE_SERVOS
    mixerInitServos(customServoMixer(0));
#endif

    memset(&pwm_params, 0, sizeof(pwm_params));

#ifdef SONAR
    const sonarHardware_t *sonarHardware = NULL;
    sonarGPIOConfig_t sonarGPIOConfig;
    if (feature(FEATURE_SONAR)) {
        bool usingCurrentMeterIOPins = (feature(FEATURE_AMPERAGE_METER) && batteryConfig()->amperageMeterSource == AMPERAGE_METER_ADC);
        sonarHardware = sonarGetHardwareConfiguration(usingCurrentMeterIOPins);
        sonarGPIOConfig.triggerGPIO = sonarHardware->trigger_gpio;
        sonarGPIOConfig.triggerPin = sonarHardware->trigger_pin;
        sonarGPIOConfig.echoGPIO = sonarHardware->echo_gpio;
        sonarGPIOConfig.echoPin = sonarHardware->echo_pin;
        pwm_params.sonarGPIOConfig = &sonarGPIOConfig;
    }
#endif

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (mixerConfig()->mixerMode == MIXER_AIRPLANE || mixerConfig()->mixerMode == MIXER_FLYING_WING || mixerConfig()->mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_UART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_UART2);
#endif
#if defined(USE_UART3)
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_UART3);
#endif
#if defined(USE_UART4)
    pwm_params.useUART4 = doesConfigurationUsePort(SERIAL_PORT_UART4);
#endif
#if defined(USE_UART5)
    pwm_params.useUART5 = doesConfigurationUsePort(SERIAL_PORT_UART5);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = (
        feature(FEATURE_AMPERAGE_METER)
        && batteryConfig()->amperageMeterSource == AMPERAGE_METER_ADC
    );
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);
#ifdef SONAR
    pwm_params.useSonar = feature(FEATURE_SONAR);
#endif

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = servoConfig()->servoCenterPulse;
    pwm_params.servoPwmRate = servoConfig()->servo_pwm_rate;
#endif

    pwm_params.useOneshot = feature(FEATURE_ONESHOT125);
    pwm_params.motorPwmRate = motorConfig()->motor_pwm_rate;
    pwm_params.idlePulse = calculateMotorOff();
    if (pwm_params.motorPwmRate > 500)
        pwm_params.idlePulse = 0; // brushed motors

    pwmRxInit();

    // pwmInit() needs to be called as soon as possible for ESC compatibility reasons
    pwmIOConfiguration_t *pwmIOConfiguration = pwmInit(&pwm_params);

    mixerUsePWMIOConfiguration(pwmIOConfiguration);

#ifdef DEBUG_PWM_CONFIGURATION
    debug[2] = pwmIOConfiguration->pwmInputCount;
    debug[3] = pwmIOConfiguration->ppmInputCount;
#endif

    if (!feature(FEATURE_ONESHOT125))
        motorControlEnable = true;

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef INVERTER
    initInverter();
#endif


#ifdef USE_SPI
    spiInit(SPI1);
    spiInit(SPI2);
#ifdef STM32F303xC
#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_2) {
        spiInit(SPI3);
    }
#else
    spiInit(SPI3);
#endif
#endif
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_UART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif

#if defined(SPRACINGF3MINI) && defined(SONAR) && defined(USE_SOFTSERIAL1)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
    }
#endif


#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_UART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE);
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.channelMask = 0;

#ifdef ADC_BATTERY
    adc_params.channelMask = (feature(FEATURE_VBAT) ? ADC_CHANNEL_MASK(ADC_BATTERY) : 0);
#endif
#ifdef ADC_RSSI
    adc_params.channelMask |= (feature(FEATURE_RSSI_ADC) ? ADC_CHANNEL_MASK(ADC_RSSI) : 0);
#endif
#ifdef ADC_AMPERAGE
    adc_params.channelMask |=  (feature(FEATURE_AMPERAGE_METER) ? ADC_CHANNEL_MASK(ADC_AMPERAGE) : 0);
#endif

#ifdef ADC_POWER_12V
    adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_12V);
#endif
#ifdef ADC_POWER_5V
    adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_5V);
#endif
#ifdef ADC_POWER_3V
    adc_params.channelMask |= ADC_CHANNEL_MASK(ADC_POWER_3V);
#endif

#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.channelMask |= (hardwareRevision >= NAZE32_REV5) ? ADC_CHANNEL_MASK(ADC_EXTERNAL) : 0;
#endif

    adcInit(&adc_params);
#endif

    initBoardAlignment();

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit();
    }
#endif

#ifdef NAZE
    if (hardwareRevision < NAZE32_REV5) {
        gyroConfig()->gyro_sync = 0;
    }
#endif

    if (!sensorsAutodetect()) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    flashLedsAndBeep();

    mspInit();
    mspSerialInit();

    const uint16_t pidPeriodUs = US_FROM_HZ(gyro.sampleFrequencyHz);
    pidSetTargetLooptime(pidPeriodUs * gyroConfig()->pid_process_denom);
    pidInitFilters(pidProfile());

#ifdef USE_SERVOS
    mixerInitialiseServoFiltering(targetPidLooptime);
#endif

    imuInit();


#ifdef USE_CLI
    cliInit();
#endif

    failsafeInit();

    rxInit(modeActivationProfile()->modeActivationConditions);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit();
        navigationInit(pidProfile());
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit(sonarHardware);
    }
#endif

#ifdef LED_STRIP
    ledStripInit();

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USB_CABLE_DETECTION
    usbCableDetectInit();
#endif

#ifdef TRANSPONDER
    if (feature(FEATURE_TRANSPONDER)) {
        transponderInit(transponderConfig()->data);
        transponderEnable();
        transponderStartRepeating();
        systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED;
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init();
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init();
#endif

    flashfsInit();
#endif

#ifdef USE_SDCARD
    bool sdcardUseDMA = false;

    sdcardInsertionDetectInit();

#ifdef SDCARD_DMA_CHANNEL_TX

#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
    // Ensure the SPI Tx DMA doesn't overlap with the led strip
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#else
    sdcardUseDMA = true;
#endif

#endif

    sdcard_init(sdcardUseDMA);

    afatfs_init();
#endif

#ifdef BLACKBOX
    initBlackbox();
#endif

    if (mixerConfig()->mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles(CALIBRATING_GYRO_CYCLES);
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif


    if (feature(FEATURE_VBAT)) {
        // Now that everything has powered up the voltage and cell count be determined.

        voltageMeterInit();
        batteryInit();
    }

    if (feature(FEATURE_AMPERAGE_METER)) {
        amperageMeterInit();
    }

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

void configureScheduler(void)
{
    schedulerInit();
    setTaskEnabled(TASK_SYSTEM, true);

    uint16_t gyroPeriodUs = US_FROM_HZ(gyro.sampleFrequencyHz);
    rescheduleTask(TASK_GYRO, gyroPeriodUs);
    setTaskEnabled(TASK_GYRO, true);

    rescheduleTask(TASK_PID, gyroPeriodUs);
    setTaskEnabled(TASK_PID, true);

    if (sensors(SENSOR_ACC)) {
        setTaskEnabled(TASK_ACCEL, true);
    }

    setTaskEnabled(TASK_ATTITUDE, sensors(SENSOR_ACC));
    setTaskEnabled(TASK_SERIAL, true);
#ifdef BEEPER
    setTaskEnabled(TASK_BEEPER, true);
#endif
    setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_AMPERAGE_METER));
    setTaskEnabled(TASK_RX, true);
#ifdef GPS
    setTaskEnabled(TASK_GPS, feature(FEATURE_GPS));
#endif
#ifdef MAG
    setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#if defined(MPU6500_SPI_INSTANCE) && defined(USE_MAG_AK8963)
    // fixme temporary solution for AK6983 via slave I2C on MPU9250
    rescheduleTask(TASK_COMPASS, 1000000 / 40);
#endif
#endif
#ifdef BARO
    setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO));
#endif
#ifdef SONAR
    setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR));
#endif
#if defined(BARO) || defined(SONAR)
    setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR));
#endif
#ifdef DISPLAY
    setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY));
#endif
#ifdef TELEMETRY
    setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY));
#endif
#ifdef LED_STRIP
    setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP));
#endif
#ifdef TRANSPONDER
    setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER));
#endif
}
Ejemplo n.º 28
0
void init(void)
{
    printfSupportInit();

    initEEPROM();

    ensureEEPROMContainsValidData();
    readEEPROM();

    systemState |= SYSTEM_STATE_CONFIG_LOADED;

    systemInit();

    //i2cSetOverclock(masterConfig.i2c_overclock);

    // initialize IO (needed for all IO operations)
    IOInitGlobal();

    debugMode = masterConfig.debug_mode;

#ifdef USE_HARDWARE_REVISION_DETECTION
    detectHardwareRevision();
#endif

    // Latch active features to be used for feature() in the remainder of init().
    latchActiveFeatures();

#ifdef ALIENFLIGHTF3
    ledInit(hardwareRevision == AFF3_REV_1 ? false : true);
#else
    ledInit(false);
#endif
    LED2_ON;

#ifdef USE_EXTI
    EXTIInit();
#endif

#if defined(BUTTONS)
    gpio_config_t buttonAGpioConfig = {
        BUTTON_A_PIN,
        Mode_IPU,
        Speed_2MHz
    };
    gpioInit(BUTTON_A_PORT, &buttonAGpioConfig);

    gpio_config_t buttonBGpioConfig = {
        BUTTON_B_PIN,
        Mode_IPU,
        Speed_2MHz
    };
    gpioInit(BUTTON_B_PORT, &buttonBGpioConfig);

    // Check status of bind plug and exit if not active
    delayMicroseconds(10);  // allow GPIO configuration to settle

    if (!isMPUSoftReset()) {
        uint8_t secondsRemaining = 5;
        bool bothButtonsHeld;
        do {
            bothButtonsHeld = !digitalIn(BUTTON_A_PORT, BUTTON_A_PIN) && !digitalIn(BUTTON_B_PORT, BUTTON_B_PIN);
            if (bothButtonsHeld) {
                if (--secondsRemaining == 0) {
                    resetEEPROM();
                    systemReset();
                }
                delay(1000);
                LED0_TOGGLE;
            }
        } while (bothButtonsHeld);
    }
#endif

#ifdef SPEKTRUM_BIND
    if (feature(FEATURE_RX_SERIAL)) {
        switch (masterConfig.rxConfig.serialrx_provider) {
            case SERIALRX_SPEKTRUM1024:
            case SERIALRX_SPEKTRUM2048:
                // Spektrum satellite binding if enabled on startup.
                // Must be called before that 100ms sleep so that we don't lose satellite's binding window after startup.
                // The rest of Spektrum initialization will happen later - via spektrumInit()
                spektrumBind(&masterConfig.rxConfig);
                break;
        }
    }
#endif

    delay(100);

    timerInit();  // timer must be initialized before any channel is allocated

    dmaInit();

#if defined(AVOID_UART1_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART1 : SERIAL_PORT_NONE);
#elif defined(AVOID_UART2_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART2 : SERIAL_PORT_NONE);
#elif defined(AVOID_UART3_FOR_PWM_PPM)
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL),
            feature(FEATURE_RX_PPM) || feature(FEATURE_RX_PARALLEL_PWM) ? SERIAL_PORT_USART3 : SERIAL_PORT_NONE);
#else
    serialInit(&masterConfig.serialConfig, feature(FEATURE_SOFTSERIAL), SERIAL_PORT_NONE);
#endif

#ifdef USE_SERVOS
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer, masterConfig.customServoMixer);
#else
    mixerInit(masterConfig.mixerMode, masterConfig.customMotorMixer);
#endif

    drv_pwm_config_t pwm_params;
    memset(&pwm_params, 0, sizeof(pwm_params));

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        const sonarHardware_t *sonarHardware = sonarGetHardwareConfiguration(masterConfig.batteryConfig.currentMeterType);
        if (sonarHardware) {
            pwm_params.useSonar = true;
            pwm_params.sonarIOConfig.triggerTag = sonarHardware->triggerTag;
            pwm_params.sonarIOConfig.echoTag = sonarHardware->echoTag;
        }
    }
#endif

    // when using airplane/wing mixer, servo/motor outputs are remapped
    if (masterConfig.mixerMode == MIXER_AIRPLANE || masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_CUSTOM_AIRPLANE)
        pwm_params.airplane = true;
    else
        pwm_params.airplane = false;
#if defined(USE_UART2) && defined(STM32F10X)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#ifdef STM32F303xC
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
    pwm_params.useUART3 = doesConfigurationUsePort(SERIAL_PORT_USART3);
#endif
#if defined(USE_UART2) && defined(STM32F40_41xxx)
    pwm_params.useUART2 = doesConfigurationUsePort(SERIAL_PORT_USART2);
#endif
#if defined(USE_UART6) && defined(STM32F40_41xxx)
    pwm_params.useUART6 = doesConfigurationUsePort(SERIAL_PORT_USART6);
#endif
    pwm_params.useVbat = feature(FEATURE_VBAT);
    pwm_params.useSoftSerial = feature(FEATURE_SOFTSERIAL);
    pwm_params.useParallelPWM = feature(FEATURE_RX_PARALLEL_PWM);
    pwm_params.useRSSIADC = feature(FEATURE_RSSI_ADC);
    pwm_params.useCurrentMeterADC = feature(FEATURE_CURRENT_METER)
        && masterConfig.batteryConfig.currentMeterType == CURRENT_SENSOR_ADC;
    pwm_params.useLEDStrip = feature(FEATURE_LED_STRIP);
    pwm_params.usePPM = feature(FEATURE_RX_PPM);
    pwm_params.useSerialRx = feature(FEATURE_RX_SERIAL);

#ifdef USE_SERVOS
    pwm_params.useServos = isMixerUsingServos();
    pwm_params.useChannelForwarding = feature(FEATURE_CHANNEL_FORWARDING);
    pwm_params.servoCenterPulse = masterConfig.escAndServoConfig.servoCenterPulse;
    pwm_params.servoPwmRate = masterConfig.servo_pwm_rate;
#endif

    bool use_unsyncedPwm = masterConfig.use_unsyncedPwm || masterConfig.motor_pwm_protocol == PWM_TYPE_CONVENTIONAL || masterConfig.motor_pwm_protocol == PWM_TYPE_BRUSHED;

    // Configurator feature abused for enabling Fast PWM
    pwm_params.useFastPwm = (masterConfig.motor_pwm_protocol != PWM_TYPE_CONVENTIONAL && masterConfig.motor_pwm_protocol != PWM_TYPE_BRUSHED);
    pwm_params.pwmProtocolType = masterConfig.motor_pwm_protocol;
    pwm_params.motorPwmRate = use_unsyncedPwm ? masterConfig.motor_pwm_rate : 0;
    pwm_params.idlePulse = masterConfig.escAndServoConfig.mincommand;
    if (feature(FEATURE_3D))
        pwm_params.idlePulse = masterConfig.flight3DConfig.neutral3d;

    if (masterConfig.motor_pwm_protocol == PWM_TYPE_BRUSHED) {
        featureClear(FEATURE_3D);
        pwm_params.idlePulse = 0; // brushed motors
    }
#ifdef CC3D
    pwm_params.useBuzzerP6 = masterConfig.use_buzzer_p6 ? true : false;
#endif
#ifndef SKIP_RX_PWM_PPM
    pwmRxInit(masterConfig.inputFilteringMode);
#endif

    // pwmInit() needs to be called as soon as possible for ESC compatibility reasons
    pwmOutputConfiguration_t *pwmOutputConfiguration = pwmInit(&pwm_params);

    mixerUsePWMOutputConfiguration(pwmOutputConfiguration, use_unsyncedPwm);

    systemState |= SYSTEM_STATE_MOTORS_READY;

#ifdef BEEPER
    beeperConfig_t beeperConfig = {
        .ioTag = IO_TAG(BEEPER),
#ifdef BEEPER_INVERTED
        .isOD = false,
        .isInverted = true
#else
        .isOD = true,
        .isInverted = false
#endif
    };
#ifdef NAZE
    if (hardwareRevision >= NAZE32_REV5) {
        // naze rev4 and below used opendrain to PNP for buzzer. Rev5 and above use PP to NPN.
        beeperConfig.isOD = false;
        beeperConfig.isInverted = true;
    }
#endif
/* temp until PGs are implemented. */
#ifdef BLUEJAYF4
    if (hardwareRevision <= BJF4_REV2) {
        beeperConfig.ioTag = IO_TAG(BEEPER_OPT);
    }
#endif
#ifdef CC3D
    if (masterConfig.use_buzzer_p6 == 1)
        beeperConfig.ioTag = IO_TAG(BEEPER_OPT);
#endif

    beeperInit(&beeperConfig);
#endif

#ifdef INVERTER
    initInverter();
#endif

#ifdef USE_BST
    bstInit(BST_DEVICE);
#endif

#ifdef USE_SPI
#ifdef USE_SPI_DEVICE_1
    spiInit(SPIDEV_1);
#endif
#ifdef USE_SPI_DEVICE_2
    spiInit(SPIDEV_2);
#endif
#ifdef USE_SPI_DEVICE_3
#ifdef ALIENFLIGHTF3
    if (hardwareRevision == AFF3_REV_2) {
        spiInit(SPIDEV_3);
    }
#else
    spiInit(SPIDEV_3);
#endif
#endif
#endif

#ifdef VTX
    vtxInit();
#endif

#ifdef USE_HARDWARE_REVISION_DETECTION
    updateHardwareRevision();
#endif

#if defined(NAZE)
    if (hardwareRevision == NAZE32_SP) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    } else  {
        serialRemovePort(SERIAL_PORT_USART3);
    }
#endif

#if defined(SPRACINGF3) && defined(SONAR) && defined(USE_SOFTSERIAL2)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL2);
    }
#endif

#if defined(SPRACINGF3MINI) || defined(OMNIBUS) || defined(X_RACERSPI)
#if defined(SONAR) && defined(USE_SOFTSERIAL1)
    if (feature(FEATURE_SONAR) && feature(FEATURE_SOFTSERIAL)) {
        serialRemovePort(SERIAL_PORT_SOFTSERIAL1);
    }
#endif
#endif

#ifdef USE_I2C
#if defined(NAZE)
    if (hardwareRevision != NAZE32_SP) {
        i2cInit(I2C_DEVICE);
    } else {
        if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
            i2cInit(I2C_DEVICE);
        }
    }
#elif defined(CC3D)
    if (!doesConfigurationUsePort(SERIAL_PORT_USART3)) {
        i2cInit(I2C_DEVICE);
    }
#else
    i2cInit(I2C_DEVICE);
#endif
#endif

#ifdef USE_ADC
    drv_adc_config_t adc_params;

    adc_params.enableVBat = feature(FEATURE_VBAT);
    adc_params.enableRSSI = feature(FEATURE_RSSI_ADC);
    adc_params.enableCurrentMeter = feature(FEATURE_CURRENT_METER);
    adc_params.enableExternal1 = false;
#ifdef OLIMEXINO
    adc_params.enableExternal1 = true;
#endif
#ifdef NAZE
    // optional ADC5 input on rev.5 hardware
    adc_params.enableExternal1 = (hardwareRevision >= NAZE32_REV5);
#endif

    adcInit(&adc_params);
#endif


    initBoardAlignment(&masterConfig.boardAlignment);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
        displayInit(&masterConfig.rxConfig);
    }
#endif

#ifdef USE_RTC6705
    if (feature(FEATURE_VTX)) {
        rtc6705_soft_spi_init();
        current_vtx_channel = masterConfig.vtx_channel;
        rtc6705_soft_spi_set_channel(vtx_freq[current_vtx_channel]);
        rtc6705_soft_spi_set_rf_power(masterConfig.vtx_power);
    }
#endif

#ifdef OSD
    if (feature(FEATURE_OSD)) {
        osdInit();
    }
#endif

    if (!sensorsAutodetect(&masterConfig.sensorAlignmentConfig,
            masterConfig.acc_hardware,
            masterConfig.mag_hardware,
            masterConfig.baro_hardware,
            masterConfig.mag_declination,
            masterConfig.gyro_lpf,
            masterConfig.gyro_sync_denom)) {
        // if gyro was not detected due to whatever reason, we give up now.
        failureMode(FAILURE_MISSING_ACC);
    }

    systemState |= SYSTEM_STATE_SENSORS_READY;

    LED1_ON;
    LED0_OFF;
    LED2_OFF;

    for (int i = 0; i < 10; i++) {
        LED1_TOGGLE;
        LED0_TOGGLE;
        delay(25);
        if (!(getBeeperOffMask() & (1 << (BEEPER_SYSTEM_INIT - 1)))) BEEP_ON;
        delay(25);
        BEEP_OFF;
    }
    LED0_OFF;
    LED1_OFF;

#ifdef MAG
    if (sensors(SENSOR_MAG))
        compassInit();
#endif

    imuInit();

    mspInit(&masterConfig.serialConfig);

#ifdef USE_CLI
    cliInit(&masterConfig.serialConfig);
#endif

    failsafeInit(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    rxInit(&masterConfig.rxConfig, masterConfig.modeActivationConditions);

#ifdef GPS
    if (feature(FEATURE_GPS)) {
        gpsInit(
            &masterConfig.serialConfig,
            &masterConfig.gpsConfig
        );
        navigationInit(
            &masterConfig.gpsProfile,
            &currentProfile->pidProfile
        );
    }
#endif

#ifdef SONAR
    if (feature(FEATURE_SONAR)) {
        sonarInit();
    }
#endif

#ifdef LED_STRIP
    ledStripInit(masterConfig.ledConfigs, masterConfig.colors, masterConfig.modeColors, &masterConfig.specialColors);

    if (feature(FEATURE_LED_STRIP)) {
        ledStripEnable();
    }
#endif

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        telemetryInit();
    }
#endif

#ifdef USB_CABLE_DETECTION
    usbCableDetectInit();
#endif

#ifdef TRANSPONDER
    if (feature(FEATURE_TRANSPONDER)) {
        transponderInit(masterConfig.transponderData);
        transponderEnable();
        transponderStartRepeating();
        systemState |= SYSTEM_STATE_TRANSPONDER_ENABLED;
    }
#endif

#ifdef USE_FLASHFS
#ifdef NAZE
    if (hardwareRevision == NAZE32_REV5) {
        m25p16_init(IOTAG_NONE);
    }
#elif defined(USE_FLASH_M25P16)
    m25p16_init(IOTAG_NONE);
#endif

    flashfsInit();
#endif

#ifdef USE_SDCARD
    bool sdcardUseDMA = false;

    sdcardInsertionDetectInit();

#ifdef SDCARD_DMA_CHANNEL_TX

#if defined(LED_STRIP) && defined(WS2811_DMA_CHANNEL)
    // Ensure the SPI Tx DMA doesn't overlap with the led strip
#ifdef STM32F4
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_STREAM;
#else
    sdcardUseDMA = !feature(FEATURE_LED_STRIP) || SDCARD_DMA_CHANNEL_TX != WS2811_DMA_CHANNEL;
#endif
#else
    sdcardUseDMA = true;
#endif

#endif

    sdcard_init(sdcardUseDMA);

    afatfs_init();
#endif

    if (masterConfig.gyro_lpf > 0 && masterConfig.gyro_lpf < 7) {
        masterConfig.pid_process_denom = 1; // When gyro set to 1khz always set pid speed 1:1 to sampling speed
        masterConfig.gyro_sync_denom = 1;
    }

    setTargetPidLooptime(gyro.targetLooptime * masterConfig.pid_process_denom); // Initialize pid looptime

#ifdef BLACKBOX
    initBlackbox();
#endif

    if (masterConfig.mixerMode == MIXER_GIMBAL) {
        accSetCalibrationCycles(CALIBRATING_ACC_CYCLES);
    }
    gyroSetCalibrationCycles();
#ifdef BARO
    baroSetCalibrationCycles(CALIBRATING_BARO_CYCLES);
#endif

    // start all timers
    // TODO - not implemented yet
    timerStart();

    ENABLE_STATE(SMALL_ANGLE);
    DISABLE_ARMING_FLAG(PREVENT_ARMING);

#ifdef SOFTSERIAL_LOOPBACK
    // FIXME this is a hack, perhaps add a FUNCTION_LOOPBACK to support it properly
    loopbackPort = (serialPort_t*)&(softSerialPorts[0]);
    if (!loopbackPort->vTable) {
        loopbackPort = openSoftSerial(0, NULL, 19200, SERIAL_NOT_INVERTED);
    }
    serialPrint(loopbackPort, "LOOPBACK\r\n");
#endif

    // Now that everything has powered up the voltage and cell count be determined.

    if (feature(FEATURE_VBAT | FEATURE_CURRENT_METER))
        batteryInit(&masterConfig.batteryConfig);

#ifdef DISPLAY
    if (feature(FEATURE_DISPLAY)) {
#ifdef USE_OLED_GPS_DEBUG_PAGE_ONLY
        displayShowFixedPage(PAGE_GPS);
#else
        displayResetPageCycling();
        displayEnablePageCycling();
#endif
    }
#endif

#ifdef CJMCU
    LED2_ON;
#endif

    // Latch active features AGAIN since some may be modified by init().
    latchActiveFeatures();
    motorControlEnable = true;

    systemState |= SYSTEM_STATE_READY;
}

#ifdef SOFTSERIAL_LOOPBACK
void processLoopback(void) {
    if (loopbackPort) {
        uint8_t bytesWaiting;
        while ((bytesWaiting = serialRxBytesWaiting(loopbackPort))) {
            uint8_t b = serialRead(loopbackPort);
            serialWrite(loopbackPort, b);
        };
    }
}
#else
#define processLoopback()
#endif

void main_init(void)
{
    init();

    /* Setup scheduler */
    schedulerInit();
    rescheduleTask(TASK_GYROPID, gyro.targetLooptime);
    setTaskEnabled(TASK_GYROPID, true);

    if (sensors(SENSOR_ACC)) {
        setTaskEnabled(TASK_ACCEL, true);
        switch (gyro.targetLooptime) {  // Switch statement kept in place to change acc rates in the future
        case 500:
        case 375:
        case 250:
        case 125:
            accTargetLooptime = 1000;
            break;
        default:
        case 1000:
#ifdef STM32F10X
            accTargetLooptime = 1000;
#else
            accTargetLooptime = 1000;
#endif
        }
        rescheduleTask(TASK_ACCEL, accTargetLooptime);
    }

    setTaskEnabled(TASK_ATTITUDE, sensors(SENSOR_ACC));
    setTaskEnabled(TASK_SERIAL, true);
#ifdef BEEPER
    setTaskEnabled(TASK_BEEPER, true);
#endif
    setTaskEnabled(TASK_BATTERY, feature(FEATURE_VBAT) || feature(FEATURE_CURRENT_METER));
    setTaskEnabled(TASK_RX, true);
#ifdef GPS
    setTaskEnabled(TASK_GPS, feature(FEATURE_GPS));
#endif
#ifdef MAG
    setTaskEnabled(TASK_COMPASS, sensors(SENSOR_MAG));
#if defined(USE_SPI) && defined(USE_MAG_AK8963)
    // fixme temporary solution for AK6983 via slave I2C on MPU9250
    rescheduleTask(TASK_COMPASS, 1000000 / 40);
#endif
#endif
#ifdef BARO
    setTaskEnabled(TASK_BARO, sensors(SENSOR_BARO));
#endif
#ifdef SONAR
    setTaskEnabled(TASK_SONAR, sensors(SENSOR_SONAR));
#endif
#if defined(BARO) || defined(SONAR)
    setTaskEnabled(TASK_ALTITUDE, sensors(SENSOR_BARO) || sensors(SENSOR_SONAR));
#endif
#ifdef DISPLAY
    setTaskEnabled(TASK_DISPLAY, feature(FEATURE_DISPLAY));
#endif
#ifdef TELEMETRY
    setTaskEnabled(TASK_TELEMETRY, feature(FEATURE_TELEMETRY));
    // Reschedule telemetry to 500hz for Jeti Exbus
    if (feature(FEATURE_TELEMETRY) || masterConfig.rxConfig.serialrx_provider == SERIALRX_JETIEXBUS) rescheduleTask(TASK_TELEMETRY, 2000);
#endif
#ifdef LED_STRIP
    setTaskEnabled(TASK_LEDSTRIP, feature(FEATURE_LED_STRIP));
#endif
#ifdef TRANSPONDER
    setTaskEnabled(TASK_TRANSPONDER, feature(FEATURE_TRANSPONDER));
#endif
#ifdef OSD
    setTaskEnabled(TASK_OSD, feature(FEATURE_OSD));
#endif
#ifdef USE_BST
    setTaskEnabled(TASK_BST_MASTER_PROCESS, true);
#endif
}
Ejemplo n.º 29
0
void main()
{
  mode = MODE_LEGACY;

  //Init the chip ID
  initId();
  //Init the led and set the leds until the usb is not ready
#ifndef CRPA
  ledInit(CR_LED_RED, CR_LED_GREEN);
#else
  ledInit(CRPA_LED_RED, CRPA_LED_GREEN);
#endif
  ledSet(LED_GREEN | LED_RED, true);

  // Initialise the radio
#ifdef CRPA
    // Enable LNA (PA RX)
    P0DIR &= ~(1<<CRPA_PA_RXEN);
    P0 |= (1<<CRPA_PA_RXEN);
#endif
  radioInit(RADIO_MODE_PTX);
#ifdef PPM_JOYSTICK
  // Initialise the PPM acquisition
  ppmInit();
#endif //PPM_JOYSTICK
  // Initialise and connect the USB
  usbInit();

  //Globally activate the interruptions
  IEN0 |= 0x80;

  //Wait for the USB to be addressed
  while (usbGetState() != ADDRESS);

  //Reset the LEDs
  ledSet(LED_GREEN | LED_RED, false);

  //Wait for the USB to be ready
  while (usbGetState() != CONFIGURED);

  //Activate OUT1
  OUT1BC=0xFF;

  while(1)
  {
    if (mode == MODE_LEGACY)
    {
      // Run legacy mode
      legacyRun();
    }
    else if (mode == MODE_CMD)
    {
      // Run cmd mode
      cmdRun();
    }
    else if (mode == MODE_PRX)
    {
      // Run PRX mode
      prxRun();
    }

    //USB vendor setup handling
    if(usbIsVendorSetup())
      handleUsbVendorSetup();
  }
}
Ejemplo n.º 30
0
int main()
{
	timeInit();
	ledInit();
	traceInit();

	// Enable global interrupts.
	// Needed for RST and ATN interrupt handlers.
	CyGlobalIntEnable;

	// Set interrupt handlers.
	scsiPhyInit();

	configInit(&scsiDev.boardCfg);
	debugInit();

	scsiInit();
	scsiDiskInit();

	// Optional bootup delay
	int delaySeconds = 0;
	while (delaySeconds < scsiDev.boardCfg.startupDelay) {
		// Keep the USB connection working, otherwise it's very hard to revert
		// silly extra-long startup delay settings.
		int i;
		for (i = 0; i < 200; i++) {
			CyDelay(5);
			scsiDev.watchdogTick++;
			configPoll();
		}
		++delaySeconds;
	}

	uint32_t lastSDPoll = getTime_ms();
	sdCheckPresent();

	while (1)
	{
		scsiDev.watchdogTick++;

		scsiPoll();
		scsiDiskPoll();
		configPoll();
		sdPoll();

		if (unlikely(scsiDev.phase == BUS_FREE))
		{
			if (unlikely(elapsedTime_ms(lastSDPoll) > 200))
			{
				lastSDPoll = getTime_ms();
				sdCheckPresent();
			}
			else
			{
				// Wait for our 1ms timer to save some power.
				// There's an interrupt on the SEL signal to ensure we respond
				// quickly to any SCSI commands. The selection abort time is
				// only 250us, and new SCSI-3 controllers time-out very
				// not long after that, so we need to ensure we wake up quickly.
				uint8_t interruptState = CyEnterCriticalSection();
				if (!SCSI_ReadFilt(SCSI_Filt_SEL))
				{
					__WFI(); // Will wake on interrupt, regardless of mask
				}
				CyExitCriticalSection(interruptState);
			}
		}
		else if (scsiDev.phase >= 0)
		{
			// don't waste time scanning SD cards while we're doing disk IO
			lastSDPoll = getTime_ms();
		}
	}
	return 0;
}