Ejemplo n.º 1
0
Point closest_pt_seg(Point a, Point b, Point p) {
  double along;

  if (lng2(b-a) < EPS) return a;
  along = dot(b-a,p-a)/lng2(b-a);
  if (along < 0) along = 0;
  if (along > 1) along = 1;
  return (b-a)*along + a;
}
Ejemplo n.º 2
0
/* given two lines in 3D space, find distance of closest approach */
double line_line_dist(Point a, Point b, Point c, Point d) {
  Point perp = cross(b-a,d-c);

  if (lng2(perp) < EPS)  /* parallel */
    perp = cross(b-a,cross(b-a,c-a));
  if (lng2(perp) < EPS) return 0; /* coincident */

  return fabs(dot(a-c,perp))/lng(perp);
}
Ejemplo n.º 3
0
int sphere_iline_isect(Point c, double r, Point a, Point b, 
                      Point *p, Point *q) {
  Point vec, mid = closest_pt_iline(a,b,c);

  if (lng2(c-mid) > r*r) return 0;
  vec = (a-b)*sqrt((r*r - lng2(c-mid))/lng2(a-b));
  *p = mid + vec;
  *q = mid - vec;
  return 1;
}
Ejemplo n.º 4
0
int bounce(Point ori, Point dir, Point a, Point b, 
           Point *np, Point *ndir) {
  Point tmp;
  int res;

  res = intersect_iline(ori, ori+dir, a, b, &tmp);
  if (res == -1) return -1;
  if (res != 1 || dot(tmp-ori,dir) < 0 ||
      fabs(lng(a-tmp) + lng(b-tmp) - lng(a-b)) > EPS)
        return 0;
  *np = tmp;
  if (lng2(a-tmp) < EPS || lng2(b-tmp) < EPS) return -2;
  *ndir = reflect(a,b,tmp+dir) - tmp;
  return 1;
}
Ejemplo n.º 5
0
Point closest_pt_plane(Point a, Point b, Point c, Point p) {
  Point norm;

  norm = cross(b-a,c-a);
  assert(lng2(norm) > EPS);  // collinearity
  return closest_pt_plane(norm,a,p);
}
Ejemplo n.º 6
0
/* this is the same as line_line_dist, but it also returns
   the points of closest approach */
double closest_approach(Point a, Point b, Point c, Point d,
                        Point *p, Point *q) {
  double s = dot(d-c,b-a), t = dot(a-c,d-c);
  double num, den, tmp;

  den = lng2(b-a)*lng2(d-c) - s*s;
  num = t*s - dot(a-c,b-a)*lng2(d-c);
  if (fabs(den) < EPS) { /* parallel */
    *p = a;
    *q = (d-c)*t/lng2(d-c) + c;
    if (fabs(s) < EPS) *q = a;  /* coincident */
  } else {  /* skew */
    tmp = num/den;
    *p = a + (b-a)*tmp;
    *q = c + (d-c)*(t + s*tmp)/lng2(d-c);
  }
  return lng(*p-*q);
}
Ejemplo n.º 7
0
Point to_plane(Point a, Point b, Point c, Point p) {
  Point norm, ydir, xdir, res;

  norm = cross(b-a,c-a);
  assert(lng2(norm) > EPS);  // collinearity
  xdir = (b-a)/lng(b-a); // create orthonormal vectors
  ydir = cross(norm,xdir);
  ydir = ydir/lng(ydir);
  res.x = dot(p-a,xdir);
  res.y = dot(p-a,ydir);
  res.z = 0;
  return res;
}
Ejemplo n.º 8
0
void main()
{
	FCPartitionDesc dbl("dbl","dbl");
	FCPartitionDesc lng("lng","lng");
	FCPartitionDesc charp("charp","charp");
	FCPartitionDesc date("date","date");
	FCPartitionDesc dblx("dblx","dblx");
	FCPartitionDesc lngx("lngx","lngx");
	FCPartitionDesc charpx("charpx","charpx");
	FCPartitionDesc datex("datex","datex");

   PDFriend::MakeADouble(dbl);
	PDFriend::MakeACharPtr(charp);
	PDFriend::MakeALong(lng);
	PDFriend::MakeAColDate(date);


	// test copy constructor..
	FCPartitionDesc dbl2(dbl);
	FCPartitionDesc lng2(lng);
	FCPartitionDesc charp2(charp);
	FCPartitionDesc date2(date);

	dblx = dbl;
	lngx = lng;
	charpx = charp;
	datex = date;


   cout << "dbl----" << endl << dbl ;
   cout << "lng----" << endl << lng ;
   cout << "charp--" << endl << charp ;
   cout << "date---" << endl << date << endl;
   cout << "dbl2----" << endl << dbl2 ;
   cout << "lng2----" << endl << lng2 ;
   cout << "charp2--" << endl << charp2 ;
   cout << "date2---" << endl << date2 << endl;
   cout << "dblx----" << endl << dblx ;
   cout << "lngx----" << endl << lngx ;
   cout << "charpx--" << endl << charpx ;
   cout << "date2x--" << endl << datex << endl;


   cout << dbl.GetDouble() << endl;
   cout << charp.GetCharPtr() << endl;
   cout << lng.GetLong() << endl;
   cout  << date.GetColDate().nMonth   << "/" 
         << date.GetColDate().nDay     << "/"
         << date.GetColDate().nYear    << endl;

}
Ejemplo n.º 9
0
/* Given a plane and a line ab, determine if the two intersect,
   and if so, find the single point of intersection */
int plane_iline_isect(Point norm, Point ori, Point a, Point b, Point *p) {
  double along, den = dot(norm,b-a);

  if (fabs(den) < EPS) { /* parallel */
    if (lng2(cross(ori-a,b-a)) < EPS) return -1; /* coincident */
    return 0;  /* non-intersecting */
  }
  along = dot(norm,ori-a)/den;

  /* if you want to intersect a plane with a finite segment,
     check that (along <= 1 && along => 0) */

  *p = a + along*(b-a);
  return 1;
}
Ejemplo n.º 10
0
Point closest_pt_iline(Point a, Point b, Point p) {
  double along = dot(b-a,p-a)/lng2(b-a);
  return (b-a)*along + a;
}
Ejemplo n.º 11
0
/* is the point p on the infinite line ab? */
int on_iline(Point a, Point b, Point p) {
  return (lng2(p-closest_pt_iline(a,b,p)) < EPS);
}
Ejemplo n.º 12
0
Point closest_pt_plane(Point norm, Point a, Point p) {
  Point res = cross(cross(norm,p-a),norm);
  if (lng2(res) < EPS) return a;
  return res*dot(res,p-a)/lng2(res);
}