Ejemplo n.º 1
0
static void *get_device_tree(int *fdt_size)
{
    char *path;
    void *fdt;
    const char *dtb_arg;
    QemuOpts *machine_opts;

    machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
    if (!machine_opts) {
        dtb_arg = BINARY_DEVICE_TREE_FILE;
    } else {
      dtb_arg = qemu_opt_get(machine_opts, "dtb");
      if (!dtb_arg) {
          dtb_arg = BINARY_DEVICE_TREE_FILE;
      }
    }

    fdt = load_device_tree(dtb_arg, fdt_size);
    if (!fdt) {
        path = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE);
        if (path) {
            fdt = load_device_tree(path, fdt_size);
            g_free(path);
        }
    }

    return fdt;
}
Ejemplo n.º 2
0
static int xilinx_load_device_tree(hwaddr addr,
                                      uint32_t ramsize,
                                      hwaddr initrd_base,
                                      hwaddr initrd_size,
                                      const char *kernel_cmdline)
{
    char *path;
    int fdt_size;
    void *fdt = NULL;
    int r;
    const char *dtb_filename;

    dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
    if (dtb_filename) {
        fdt = load_device_tree(dtb_filename, &fdt_size);
        if (!fdt) {
            error_report("Error while loading device tree file '%s'",
                dtb_filename);
        }
    } else {
        /* Try the local "ppc.dtb" override.  */
        fdt = load_device_tree("ppc.dtb", &fdt_size);
        if (!fdt) {
            path = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE);
            if (path) {
                fdt = load_device_tree(path, &fdt_size);
                g_free(path);
            }
        }
    }
    if (!fdt) {
        return 0;
    }

    r = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
                              initrd_base);
    if (r < 0) {
        error_report("couldn't set /chosen/linux,initrd-start");
    }

    r = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
                              (initrd_base + initrd_size));
    if (r < 0) {
        error_report("couldn't set /chosen/linux,initrd-end");
    }

    r = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", kernel_cmdline);
    if (r < 0)
        fprintf(stderr, "couldn't set /chosen/bootargs\n");
    cpu_physical_memory_write(addr, fdt, fdt_size);
    return fdt_size;
}
Ejemplo n.º 3
0
BBIO_err initialize_adc(void)
{
#ifdef BBBVERSION41
    char test_path[49];
#else
    char test_path[40];
#endif
    FILE *fh;
    BBIO_err err;

    if (adc_initialized) {
        return BBIO_OK;
    }

#ifdef BBBVERSION41
    err = load_device_tree("BB-ADC");
    if (err == BBIO_OK) {
        strncat(adc_prefix_dir, "/sys/bus/iio/devices/iio:device0/in_voltage", sizeof(adc_prefix_dir));
        snprintf(test_path, sizeof(test_path), "%s%d_raw", adc_prefix_dir, 1);
        sleep(1);
        fh = fopen(test_path, "r");

        if (!fh) {
            return BBIO_SYSFS;
        }
        fclose(fh);

        adc_initialized = 1;
        return BBIO_OK;
    }
#else
    err = load_device_tree("cape-bone-iio");
    if (err == BBIO_OK) {
        build_path("/sys/devices", "ocp.", ocp_dir, sizeof(ocp_dir));
        build_path(ocp_dir, "helper.", adc_prefix_dir, sizeof(adc_prefix_dir));
        strncat(adc_prefix_dir, "/AIN", sizeof(adc_prefix_dir));
        snprintf(test_path, sizeof(test_path), "%s%d", adc_prefix_dir, 0);
        fh = fopen(test_path, "r");

        if (!fh) {
            return BBIO_SYSFS;
        }
        fclose(fh);

        adc_initialized = 1;
        return BBIO_OK;
    }
#endif

    return BBIO_GEN;
}
Ejemplo n.º 4
0
static int petalogix_load_device_tree(target_phys_addr_t addr,
                                      uint32_t ramsize,
                                      target_phys_addr_t initrd_base,
                                      target_phys_addr_t initrd_size,
                                      const char *kernel_cmdline)
{
#ifdef HAVE_FDT
    void *fdt;
    int r;
#endif
    char *path;
    int fdt_size;

#ifdef HAVE_FDT
    /* Try the local "mb.dtb" override.  */
    fdt = load_device_tree("mb.dtb", &fdt_size);
    if (!fdt) {
        path = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE);
        if (path) {
            fdt = load_device_tree(path, &fdt_size);
            qemu_free(path);
        }
        if (!fdt)
            return 0;
    }

    r = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs", kernel_cmdline);
    if (r < 0)
        fprintf(stderr, "couldn't set /chosen/bootargs\n");
    cpu_physical_memory_write (addr, (void *)fdt, fdt_size);
#else
    /* We lack libfdt so we cannot manipulate the fdt. Just pass on the blob
       to the kernel.  */
    fdt_size = load_image_targphys("mb.dtb", addr, 0x10000);
    if (fdt_size < 0) {
        path = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE);
        if (path) {
            fdt_size = load_image_targphys(path, addr, 0x10000);
	    qemu_free(path);
        }
    }

    if (kernel_cmdline) {
        fprintf(stderr,
                "Warning: missing libfdt, cannot pass cmdline to kernel!\n");
    }
#endif
    return fdt_size;
}
Ejemplo n.º 5
0
static PyObject *
SPI_open(SPI *self, PyObject *args, PyObject *kwds)
{
	int bus, device;
	int bus_path;
	int max_dt_length = 15;
	char device_tree_name[max_dt_length];
	char path[MAXPATH];
	uint8_t tmp8;
	uint32_t tmp32;	
	static char *kwlist[] = {"bus", "device", NULL};
	if (!PyArg_ParseTupleAndKeywords(args, kwds, "ii:open", kwlist, &bus, &device))
		return NULL;
	if (snprintf(device_tree_name, max_dt_length, "BB-SPIDEV%d", bus) >= max_dt_length) {
		PyErr_SetString(PyExc_OverflowError,
			"Bus and/or device number is invalid.");
		return NULL;
	}
	if (load_device_tree(device_tree_name) == -1) {
		PyErr_SetFromErrno(PyExc_IOError);
		return NULL;
	}

	bus_path = get_spi_bus_path_number(bus);
	if (bus_path == -1) {
		PyErr_SetString(PyExc_OverflowError,
			"Unable to find loaded spi bus path.");
		return NULL;
	}

	if (snprintf(path, MAXPATH, "/dev/spidev%d.%d", bus_path, device) >= MAXPATH) {
		PyErr_SetString(PyExc_OverflowError,
			"Bus and/or device number is invalid.");
		return NULL;
	}
	if ((self->fd = open(path, O_RDWR, 0)) == -1) {
		PyErr_SetFromErrno(PyExc_IOError);
		return NULL;
	}
	if (ioctl(self->fd, SPI_IOC_RD_MODE, &tmp8) == -1) {
		PyErr_SetFromErrno(PyExc_IOError);
		return NULL;
	}
	self->mode = tmp8;
	if (ioctl(self->fd, SPI_IOC_RD_BITS_PER_WORD, &tmp8) == -1) {
		PyErr_SetFromErrno(PyExc_IOError);
		return NULL;
	}
	self->bpw = tmp8;
	if (ioctl(self->fd, SPI_IOC_RD_MAX_SPEED_HZ, &tmp32) == -1) {
		PyErr_SetFromErrno(PyExc_IOError);
		return NULL;
	}
	self->msh = tmp32;

	Py_INCREF(Py_None);
	return Py_None;
}
Ejemplo n.º 6
0
int main()
{
	load_device_tree("ADAFRUIT-UART4");
    initialize_struct_T_drone(&g_T_drone_self);
    while(1){
    	communication_with_beaglebone_uart(1, &g_T_drone_self, 0);
    }
	return 0;
}
Ejemplo n.º 7
0
static void *bamboo_load_device_tree(target_phys_addr_t addr,
                                     uint32_t ramsize,
                                     target_phys_addr_t initrd_base,
                                     target_phys_addr_t initrd_size,
                                     const char *kernel_cmdline)
{
    void *fdt = NULL;
#ifdef HAVE_FDT
    uint32_t mem_reg_property[] = { 0, 0, ramsize };
    char *path;
    int fdt_size;
    int pathlen;
    int ret;

    pathlen = snprintf(NULL, 0, "%s/%s", bios_dir, BINARY_DEVICE_TREE_FILE) + 1;
    path = qemu_malloc(pathlen);

    snprintf(path, pathlen, "%s/%s", bios_dir, BINARY_DEVICE_TREE_FILE);

    fdt = load_device_tree(path, &fdt_size);
    free(path);
    if (fdt == NULL)
        goto out;

    /* Manipulate device tree in memory. */

    ret = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
                               sizeof(mem_reg_property));
    if (ret < 0)
        fprintf(stderr, "couldn't set /memory/reg\n");

    ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
                                    initrd_base);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");

    ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
                                    (initrd_base + initrd_size));
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");

    ret = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
                                      kernel_cmdline);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/bootargs\n");

    if (kvm_enabled())
        kvmppc_fdt_update(fdt);

    cpu_physical_memory_write (addr, (void *)fdt, fdt_size);

out:
#endif

    return fdt;
}
Ejemplo n.º 8
0
static int bamboo_load_device_tree(target_phys_addr_t addr,
                                   uint32_t ramsize,
                                   target_phys_addr_t initrd_base,
                                   target_phys_addr_t initrd_size,
                                   const char *kernel_cmdline)
{
    int ret = -1;
#ifdef CONFIG_FDT
    uint32_t mem_reg_property[] = { 0, 0, ramsize };
    char *filename;
    int fdt_size;
    void *fdt;

    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE);
    if (!filename) {
        goto out;
    }
    fdt = load_device_tree(filename, &fdt_size);
    g_free(filename);
    if (fdt == NULL) {
        goto out;
    }

    /* Manipulate device tree in memory. */

    ret = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
                               sizeof(mem_reg_property));
    if (ret < 0)
        fprintf(stderr, "couldn't set /memory/reg\n");

    ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
                                    initrd_base);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");

    ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
                                    (initrd_base + initrd_size));
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");

    ret = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
                                      kernel_cmdline);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/bootargs\n");

    if (kvm_enabled())
        kvmppc_fdt_update(fdt);

    ret = rom_add_blob_fixed(BINARY_DEVICE_TREE_FILE, fdt, fdt_size, addr);
    g_free(fdt);

out:
#endif

    return ret;
}
Ejemplo n.º 9
0
int initialize_pwm(void)
{
    if  (!BBB_G(pwm_initialized) && load_device_tree("am33xx_pwm")) {
        build_path("/sys/devices", "ocp", BBB_G(ocp_dir), sizeof(BBB_G(ocp_dir)));
        BBB_G(pwm_initialized) = 1;
        return 1;
    }

    return 0;   
}
Ejemplo n.º 10
0
int initialize_adc(void)
{
    if (!adc_initialized && load_device_tree("cape-bone-iio")) {
        build_path("/sys/devices", "ocp", ocp_dir, sizeof(ocp_dir));
        build_path(ocp_dir, "helper", adc_prefix_dir, sizeof(adc_prefix_dir));
        strncat(adc_prefix_dir, "/AIN", sizeof(adc_prefix_dir));
        adc_initialized = 1;
        return 1;
    }

    return 0;   
}
Ejemplo n.º 11
0
int main(){	
	load_device_tree("ADAFRUIT-UART4");
	mraa_uart_context bbb;
	bbb = mraa_uart_init_raw("/dev/ttyO4");

	mraa_uart_set_baudrate(bbb, 38400);
	mraa_uart_set_mode(bbb, 8,MRAA_UART_PARITY_NONE , 1);
	char buf[31] = "~4121|p123.324321|n053.989876$";
    buf[30] = '\0';

    while (1) {
        mraa_uart_write(bbb, buf, 30);
        usleep(10000);
    }
    return 0;
}
Ejemplo n.º 12
0
static int microblaze_load_dtb(hwaddr addr,
                               uint32_t ramsize,
                               uint32_t initrd_start,
                               uint32_t initrd_end,
                               const char *kernel_cmdline,
                               const char *dtb_filename)
{
    int fdt_size;
    void *fdt = NULL;
    int r;

    if (dtb_filename) {
        fdt = load_device_tree(dtb_filename, &fdt_size);
    }
    if (!fdt) {
        return 0;
    }

    if (kernel_cmdline) {
        r = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
                                    kernel_cmdline);
        if (r < 0) {
            fprintf(stderr, "couldn't set /chosen/bootargs\n");
        }
    }

    if (initrd_start) {
        qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
                              initrd_start);

        qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
                              initrd_end);
    }

    cpu_physical_memory_write(addr, fdt, fdt_size);
    return fdt_size;
}
Ejemplo n.º 13
0
Archivo: e500.c Proyecto: Annovae/qemu
static int ppce500_load_device_tree(QEMUMachineInitArgs *args,
                                    PPCE500Params *params,
                                    hwaddr addr,
                                    hwaddr initrd_base,
                                    hwaddr initrd_size,
                                    bool dry_run)
{
    CPUPPCState *env = first_cpu->env_ptr;
    int ret = -1;
    uint64_t mem_reg_property[] = { 0, cpu_to_be64(args->ram_size) };
    int fdt_size;
    void *fdt;
    uint8_t hypercall[16];
    uint32_t clock_freq = 400000000;
    uint32_t tb_freq = 400000000;
    int i;
    char compatible_sb[] = "fsl,mpc8544-immr\0simple-bus";
    char soc[128];
    char mpic[128];
    uint32_t mpic_ph;
    uint32_t msi_ph;
    char gutil[128];
    char pci[128];
    char msi[128];
    uint32_t *pci_map = NULL;
    int len;
    uint32_t pci_ranges[14] =
        {
            0x2000000, 0x0, 0xc0000000,
            0x0, 0xc0000000,
            0x0, 0x20000000,

            0x1000000, 0x0, 0x0,
            0x0, 0xe1000000,
            0x0, 0x10000,
        };
    QemuOpts *machine_opts = qemu_get_machine_opts();
    const char *dtb_file = qemu_opt_get(machine_opts, "dtb");
    const char *toplevel_compat = qemu_opt_get(machine_opts, "dt_compatible");

    if (dtb_file) {
        char *filename;
        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, dtb_file);
        if (!filename) {
            goto out;
        }

        fdt = load_device_tree(filename, &fdt_size);
        if (!fdt) {
            goto out;
        }
        goto done;
    }

    fdt = create_device_tree(&fdt_size);
    if (fdt == NULL) {
        goto out;
    }

    /* Manipulate device tree in memory. */
    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 2);
    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 2);

    qemu_fdt_add_subnode(fdt, "/memory");
    qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
    qemu_fdt_setprop(fdt, "/memory", "reg", mem_reg_property,
                     sizeof(mem_reg_property));

    qemu_fdt_add_subnode(fdt, "/chosen");
    if (initrd_size) {
        ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
                                    initrd_base);
        if (ret < 0) {
            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
        }

        ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
                                    (initrd_base + initrd_size));
        if (ret < 0) {
            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
        }
    }

    ret = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
                                      args->kernel_cmdline);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/bootargs\n");

    if (kvm_enabled()) {
        /* Read out host's frequencies */
        clock_freq = kvmppc_get_clockfreq();
        tb_freq = kvmppc_get_tbfreq();

        /* indicate KVM hypercall interface */
        qemu_fdt_add_subnode(fdt, "/hypervisor");
        qemu_fdt_setprop_string(fdt, "/hypervisor", "compatible",
                                "linux,kvm");
        kvmppc_get_hypercall(env, hypercall, sizeof(hypercall));
        qemu_fdt_setprop(fdt, "/hypervisor", "hcall-instructions",
                         hypercall, sizeof(hypercall));
        /* if KVM supports the idle hcall, set property indicating this */
        if (kvmppc_get_hasidle(env)) {
            qemu_fdt_setprop(fdt, "/hypervisor", "has-idle", NULL, 0);
        }
    }

    /* Create CPU nodes */
    qemu_fdt_add_subnode(fdt, "/cpus");
    qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 1);
    qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0);

    /* We need to generate the cpu nodes in reverse order, so Linux can pick
       the first node as boot node and be happy */
    for (i = smp_cpus - 1; i >= 0; i--) {
        CPUState *cpu;
        PowerPCCPU *pcpu;
        char cpu_name[128];
        uint64_t cpu_release_addr = MPC8544_SPIN_BASE + (i * 0x20);

        cpu = qemu_get_cpu(i);
        if (cpu == NULL) {
            continue;
        }
        env = cpu->env_ptr;
        pcpu = POWERPC_CPU(cpu);

        snprintf(cpu_name, sizeof(cpu_name), "/cpus/PowerPC,8544@%x",
                 ppc_get_vcpu_dt_id(pcpu));
        qemu_fdt_add_subnode(fdt, cpu_name);
        qemu_fdt_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq);
        qemu_fdt_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq);
        qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
        qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
                              ppc_get_vcpu_dt_id(pcpu));
        qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-line-size",
                              env->dcache_line_size);
        qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-line-size",
                              env->icache_line_size);
        qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000);
        qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000);
        qemu_fdt_setprop_cell(fdt, cpu_name, "bus-frequency", 0);
        if (cpu->cpu_index) {
            qemu_fdt_setprop_string(fdt, cpu_name, "status", "disabled");
            qemu_fdt_setprop_string(fdt, cpu_name, "enable-method",
                                    "spin-table");
            qemu_fdt_setprop_u64(fdt, cpu_name, "cpu-release-addr",
                                 cpu_release_addr);
        } else {
            qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
        }
    }

    qemu_fdt_add_subnode(fdt, "/aliases");
    /* XXX These should go into their respective devices' code */
    snprintf(soc, sizeof(soc), "/soc@%llx", MPC8544_CCSRBAR_BASE);
    qemu_fdt_add_subnode(fdt, soc);
    qemu_fdt_setprop_string(fdt, soc, "device_type", "soc");
    qemu_fdt_setprop(fdt, soc, "compatible", compatible_sb,
                     sizeof(compatible_sb));
    qemu_fdt_setprop_cell(fdt, soc, "#address-cells", 1);
    qemu_fdt_setprop_cell(fdt, soc, "#size-cells", 1);
    qemu_fdt_setprop_cells(fdt, soc, "ranges", 0x0,
                           MPC8544_CCSRBAR_BASE >> 32, MPC8544_CCSRBAR_BASE,
                           MPC8544_CCSRBAR_SIZE);
    /* XXX should contain a reasonable value */
    qemu_fdt_setprop_cell(fdt, soc, "bus-frequency", 0);

    snprintf(mpic, sizeof(mpic), "%s/pic@%llx", soc, MPC8544_MPIC_REGS_OFFSET);
    qemu_fdt_add_subnode(fdt, mpic);
    qemu_fdt_setprop_string(fdt, mpic, "device_type", "open-pic");
    qemu_fdt_setprop_string(fdt, mpic, "compatible", "fsl,mpic");
    qemu_fdt_setprop_cells(fdt, mpic, "reg", MPC8544_MPIC_REGS_OFFSET,
                           0x40000);
    qemu_fdt_setprop_cell(fdt, mpic, "#address-cells", 0);
    qemu_fdt_setprop_cell(fdt, mpic, "#interrupt-cells", 2);
    mpic_ph = qemu_fdt_alloc_phandle(fdt);
    qemu_fdt_setprop_cell(fdt, mpic, "phandle", mpic_ph);
    qemu_fdt_setprop_cell(fdt, mpic, "linux,phandle", mpic_ph);
    qemu_fdt_setprop(fdt, mpic, "interrupt-controller", NULL, 0);

    /*
     * We have to generate ser1 first, because Linux takes the first
     * device it finds in the dt as serial output device. And we generate
     * devices in reverse order to the dt.
     */
    dt_serial_create(fdt, MPC8544_SERIAL1_REGS_OFFSET,
                     soc, mpic, "serial1", 1, false);
    dt_serial_create(fdt, MPC8544_SERIAL0_REGS_OFFSET,
                     soc, mpic, "serial0", 0, true);

    snprintf(gutil, sizeof(gutil), "%s/global-utilities@%llx", soc,
             MPC8544_UTIL_OFFSET);
    qemu_fdt_add_subnode(fdt, gutil);
    qemu_fdt_setprop_string(fdt, gutil, "compatible", "fsl,mpc8544-guts");
    qemu_fdt_setprop_cells(fdt, gutil, "reg", MPC8544_UTIL_OFFSET, 0x1000);
    qemu_fdt_setprop(fdt, gutil, "fsl,has-rstcr", NULL, 0);

    snprintf(msi, sizeof(msi), "/%s/msi@%llx", soc, MPC8544_MSI_REGS_OFFSET);
    qemu_fdt_add_subnode(fdt, msi);
    qemu_fdt_setprop_string(fdt, msi, "compatible", "fsl,mpic-msi");
    qemu_fdt_setprop_cells(fdt, msi, "reg", MPC8544_MSI_REGS_OFFSET, 0x200);
    msi_ph = qemu_fdt_alloc_phandle(fdt);
    qemu_fdt_setprop_cells(fdt, msi, "msi-available-ranges", 0x0, 0x100);
    qemu_fdt_setprop_phandle(fdt, msi, "interrupt-parent", mpic);
    qemu_fdt_setprop_cells(fdt, msi, "interrupts",
        0xe0, 0x0,
        0xe1, 0x0,
        0xe2, 0x0,
        0xe3, 0x0,
        0xe4, 0x0,
        0xe5, 0x0,
        0xe6, 0x0,
        0xe7, 0x0);
    qemu_fdt_setprop_cell(fdt, msi, "phandle", msi_ph);
    qemu_fdt_setprop_cell(fdt, msi, "linux,phandle", msi_ph);

    snprintf(pci, sizeof(pci), "/pci@%llx", MPC8544_PCI_REGS_BASE);
    qemu_fdt_add_subnode(fdt, pci);
    qemu_fdt_setprop_cell(fdt, pci, "cell-index", 0);
    qemu_fdt_setprop_string(fdt, pci, "compatible", "fsl,mpc8540-pci");
    qemu_fdt_setprop_string(fdt, pci, "device_type", "pci");
    qemu_fdt_setprop_cells(fdt, pci, "interrupt-map-mask", 0xf800, 0x0,
                           0x0, 0x7);
    pci_map = pci_map_create(fdt, qemu_fdt_get_phandle(fdt, mpic),
                             params->pci_first_slot, params->pci_nr_slots,
                             &len);
    qemu_fdt_setprop(fdt, pci, "interrupt-map", pci_map, len);
    qemu_fdt_setprop_phandle(fdt, pci, "interrupt-parent", mpic);
    qemu_fdt_setprop_cells(fdt, pci, "interrupts", 24, 2);
    qemu_fdt_setprop_cells(fdt, pci, "bus-range", 0, 255);
    for (i = 0; i < 14; i++) {
        pci_ranges[i] = cpu_to_be32(pci_ranges[i]);
    }
    qemu_fdt_setprop_cell(fdt, pci, "fsl,msi", msi_ph);
    qemu_fdt_setprop(fdt, pci, "ranges", pci_ranges, sizeof(pci_ranges));
    qemu_fdt_setprop_cells(fdt, pci, "reg", MPC8544_PCI_REGS_BASE >> 32,
                           MPC8544_PCI_REGS_BASE, 0, 0x1000);
    qemu_fdt_setprop_cell(fdt, pci, "clock-frequency", 66666666);
    qemu_fdt_setprop_cell(fdt, pci, "#interrupt-cells", 1);
    qemu_fdt_setprop_cell(fdt, pci, "#size-cells", 2);
    qemu_fdt_setprop_cell(fdt, pci, "#address-cells", 3);
    qemu_fdt_setprop_string(fdt, "/aliases", "pci0", pci);

    params->fixup_devtree(params, fdt);

    if (toplevel_compat) {
        qemu_fdt_setprop(fdt, "/", "compatible", toplevel_compat,
                         strlen(toplevel_compat) + 1);
    }

done:
    if (!dry_run) {
        qemu_fdt_dumpdtb(fdt, fdt_size);
        cpu_physical_memory_write(addr, fdt, fdt_size);
    }
    ret = fdt_size;

out:
    g_free(pci_map);

    return ret;
}
Ejemplo n.º 14
0
static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
{
#ifdef TARGET_WORDS_BIGENDIAN
    int be = 1;
#else
    int be = 0;
#endif
    MemoryRegion *system_memory = get_system_memory();
    XtensaCPU *cpu = NULL;
    CPUXtensaState *env = NULL;
    MemoryRegion *system_io;
    DriveInfo *dinfo;
    pflash_t *flash = NULL;
    QemuOpts *machine_opts = qemu_get_machine_opts();
    const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
    const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
    const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
    const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
    const unsigned system_io_size = 224 * 1024 * 1024;
    int n;

    for (n = 0; n < smp_cpus; n++) {
        cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
        env = &cpu->env;

        env->sregs[PRID] = n;
        qemu_register_reset(xtfpga_reset, cpu);
        /* Need MMU initialized prior to ELF loading,
         * so that ELF gets loaded into virtual addresses
         */
        cpu_reset(CPU(cpu));
    }

    if (env) {
        XtensaMemory sysram = env->config->sysram;

        sysram.location[0].size = machine->ram_size;
        xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
                                     system_memory);
        xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
                                     system_memory);
        xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
                                     system_memory);
        xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
                                     system_memory);
        xtensa_create_memory_regions(&sysram, "xtensa.sysram",
                                     system_memory);
    }

    system_io = g_malloc(sizeof(*system_io));
    memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
                          system_io_size);
    memory_region_add_subregion(system_memory, board->io[0], system_io);
    if (board->io[1]) {
        MemoryRegion *io = g_malloc(sizeof(*io));

        memory_region_init_alias(io, NULL, "xtfpga.io.cached",
                                 system_io, 0, system_io_size);
        memory_region_add_subregion(system_memory, board->io[1], io);
    }
    xtfpga_fpga_init(system_io, 0x0d020000);
    if (nd_table[0].used) {
        xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
                xtensa_get_extint(env, 1), nd_table);
    }

    if (!serial_hds[0]) {
        serial_hds[0] = qemu_chr_new("serial0", "null");
    }

    serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
            115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);

    dinfo = drive_get(IF_PFLASH, 0, 0);
    if (dinfo) {
        flash = xtfpga_flash_init(system_io, board, dinfo, be);
    }

    /* Use presence of kernel file name as 'boot from SRAM' switch. */
    if (kernel_filename) {
        uint32_t entry_point = env->pc;
        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
        uint32_t tagptr = env->config->sysrom.location[0].addr +
            board->sram_size;
        uint32_t cur_tagptr;
        BpMemInfo memory_location = {
            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
            .start = tswap32(env->config->sysram.location[0].addr),
            .end = tswap32(env->config->sysram.location[0].addr +
                           machine->ram_size),
        };
        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
            machine->ram_size : 0x08000000;
        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);

        lowmem_end += env->config->sysram.location[0].addr;
        cur_lowmem += env->config->sysram.location[0].addr;

        xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
                                     system_memory);

        if (kernel_cmdline) {
            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
        }
        if (dtb_filename) {
            bp_size += get_tag_size(sizeof(uint32_t));
        }
        if (initrd_filename) {
            bp_size += get_tag_size(sizeof(BpMemInfo));
        }

        /* Put kernel bootparameters to the end of that SRAM */
        tagptr = (tagptr - bp_size) & ~0xff;
        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
                             sizeof(memory_location), &memory_location);

        if (kernel_cmdline) {
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
        }
#ifdef CONFIG_FDT
        if (dtb_filename) {
            int fdt_size;
            void *fdt = load_device_tree(dtb_filename, &fdt_size);
            uint32_t dtb_addr = tswap32(cur_lowmem);

            if (!fdt) {
                error_report("could not load DTB '%s'", dtb_filename);
                exit(EXIT_FAILURE);
            }

            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
                                 sizeof(dtb_addr), &dtb_addr);
            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
        }
#else
        if (dtb_filename) {
            error_report("could not load DTB '%s': "
                         "FDT support is not configured in QEMU",
                         dtb_filename);
            exit(EXIT_FAILURE);
        }
#endif
        if (initrd_filename) {
            BpMemInfo initrd_location = { 0 };
            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
                                           lowmem_end - cur_lowmem);

            if (initrd_size < 0) {
                initrd_size = load_image_targphys(initrd_filename,
                                                  cur_lowmem,
                                                  lowmem_end - cur_lowmem);
            }
            if (initrd_size < 0) {
                error_report("could not load initrd '%s'", initrd_filename);
                exit(EXIT_FAILURE);
            }
            initrd_location.start = tswap32(cur_lowmem);
            initrd_location.end = tswap32(cur_lowmem + initrd_size);
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
                                 sizeof(initrd_location), &initrd_location);
            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
        }
        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
        env->regs[2] = tagptr;

        uint64_t elf_entry;
        uint64_t elf_lowaddr;
        int success = load_elf(kernel_filename, translate_phys_addr, cpu,
                &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
        if (success > 0) {
            entry_point = elf_entry;
        } else {
            hwaddr ep;
            int is_linux;
            success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
                                  translate_phys_addr, cpu);
            if (success > 0 && is_linux) {
                entry_point = ep;
            } else {
                error_report("could not load kernel '%s'",
                             kernel_filename);
                exit(EXIT_FAILURE);
            }
        }
        if (entry_point != env->pc) {
            uint8_t boot[] = {
#ifdef TARGET_WORDS_BIGENDIAN
                0x60, 0x00, 0x08,       /* j    1f */
                0x00,                   /* .literal_position */
                0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
                0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
                                        /* 1: */
                0x10, 0xff, 0xfe,       /* l32r a0, entry_pc */
                0x12, 0xff, 0xfe,       /* l32r a2, entry_a2 */
                0x0a, 0x00, 0x00,       /* jx   a0 */
#else
                0x06, 0x02, 0x00,       /* j    1f */
                0x00,                   /* .literal_position */
                0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
                0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
                                        /* 1: */
                0x01, 0xfe, 0xff,       /* l32r a0, entry_pc */
                0x21, 0xfe, 0xff,       /* l32r a2, entry_a2 */
                0xa0, 0x00, 0x00,       /* jx   a0 */
#endif
            };
            uint32_t entry_pc = tswap32(entry_point);
            uint32_t entry_a2 = tswap32(tagptr);

            memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
            memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
            cpu_physical_memory_write(env->pc, boot, sizeof(boot));
        }
    } else {
        if (flash) {
            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
            uint32_t size = env->config->sysrom.location[0].size;

            if (board->flash->size - board->flash->boot_base < size) {
                size = board->flash->size - board->flash->boot_base;
            }

            memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
                                     flash_mr, board->flash->boot_base, size);
            memory_region_add_subregion(system_memory,
                                        env->config->sysrom.location[0].addr,
                                        flash_io);
        } else {
            xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
                                         system_memory);
        }
    }
}
Ejemplo n.º 15
0
int pwm_start(const char *key, float duty, float freq, int polarity)
{
    char fragment[18];
    char pwm_test_fragment[20];
    char pwm_test_path[45];
    char period_path[50];
    char duty_path[50];
    char polarity_path[55];
    int period_fd, duty_fd, polarity_fd;
    struct pwm_exp *new_pwm, *pwm;

    if(!BBB_G(pwm_initialized)) {
        initialize_pwm();
    }

    snprintf(fragment, sizeof(fragment), "bone_pwm_%s", key);
    

    if (!load_device_tree(fragment)) {
        //error enabling pin for pwm
        return -1;
    }

    //creates the fragment in order to build the pwm_test_filename, such as "pwm_test_P9_13"
    snprintf(pwm_test_fragment, sizeof(pwm_test_fragment), "pwm_test_%s", key);

    //finds and builds the pwm_test_path, as it can be variable...
    build_path(BBB_G(ocp_dir), pwm_test_fragment, pwm_test_path, sizeof(pwm_test_path));

    //create the path for the period and duty
    snprintf(period_path, sizeof(period_path), "%s/period", pwm_test_path);
    snprintf(duty_path, sizeof(duty_path), "%s/duty", pwm_test_path);
    snprintf(polarity_path, sizeof(polarity_path), "%s/polarity", pwm_test_path);

    //add period and duty fd to pwm list    
    if ((period_fd = open(period_path, O_RDWR)) < 0)
        return -1;


    if ((duty_fd = open(duty_path, O_RDWR)) < 0) {
        //error, close already opened period_fd.
        close(period_fd);
        return -1;
    }

    if ((polarity_fd = open(polarity_path, O_RDWR)) < 0) {
        //error, close already opened period_fd and duty_fd.
        close(period_fd);
        close(duty_fd);
        return -1;
    }    

    // add to list
    new_pwm = malloc(sizeof(struct pwm_exp));
    if (new_pwm == 0) {
        return -1; // out of memory
    }

    strncpy(new_pwm->key, key, KEYLEN);  /* can leave string unterminated */
    new_pwm->key[KEYLEN] = '\0'; /* terminate string */
    new_pwm->period_fd = period_fd;
    new_pwm->duty_fd = duty_fd;
    new_pwm->polarity_fd = polarity_fd;
    new_pwm->next = NULL;

    if (exported_pwms == NULL)
    {
        // create new list
        exported_pwms = new_pwm;
    } else {
        // add to end of existing list
        pwm = exported_pwms;
        while (pwm->next != NULL)
            pwm = pwm->next;
        pwm->next = new_pwm;
    }

    pwm_set_frequency(key, freq);
    pwm_set_polarity(key, polarity);
    pwm_set_duty_cycle(key, duty);

    return 1;
}
Ejemplo n.º 16
0
int load_fit(const struct fit_loader *ldr, const char *filename, void *opaque)
{
    const struct fit_loader_match *match;
    const void *itb, *match_data = NULL;
    const char *def_cfg_name;
    char path[FIT_LOADER_MAX_PATH];
    int itb_size, configs, cfg_off, off, err;
    hwaddr kernel_end;
    int ret;

    itb = load_device_tree(filename, &itb_size);
    if (!itb) {
        return -EINVAL;
    }

    configs = fdt_path_offset(itb, "/configurations");
    if (configs < 0) {
        ret = configs;
        goto out;
    }

    cfg_off = -FDT_ERR_NOTFOUND;

    if (ldr->matches) {
        for (match = ldr->matches; match->compatible; match++) {
            off = fdt_first_subnode(itb, configs);
            while (off >= 0) {
                if (fit_cfg_compatible(itb, off, match->compatible)) {
                    cfg_off = off;
                    match_data = match->data;
                    break;
                }

                off = fdt_next_subnode(itb, off);
            }

            if (cfg_off >= 0) {
                break;
            }
        }
    }

    if (cfg_off < 0) {
        def_cfg_name = fdt_getprop(itb, configs, "default", NULL);
        if (def_cfg_name) {
            snprintf(path, sizeof(path), "/configurations/%s", def_cfg_name);
            cfg_off = fdt_path_offset(itb, path);
        }
    }

    if (cfg_off < 0) {
        /* couldn't find a configuration to use */
        ret = cfg_off;
        goto out;
    }

    err = fit_load_kernel(ldr, itb, cfg_off, opaque, &kernel_end);
    if (err) {
        ret = err;
        goto out;
    }

    err = fit_load_fdt(ldr, itb, cfg_off, opaque, match_data, kernel_end);
    if (err) {
        ret = err;
        goto out;
    }

    ret = 0;
out:
    g_free((void *) itb);
    return ret;
}
Ejemplo n.º 17
0
static int mpc8544_load_device_tree(target_phys_addr_t addr,
                                     uint32_t ramsize,
                                     target_phys_addr_t initrd_base,
                                     target_phys_addr_t initrd_size,
                                     const char *kernel_cmdline)
{
    int ret = -1;
#ifdef CONFIG_FDT
    uint32_t mem_reg_property[] = {0, ramsize};
    char *filename;
    int fdt_size;
    void *fdt;

    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE);
    if (!filename) {
        goto out;
    }
    fdt = load_device_tree(filename, &fdt_size);
    qemu_free(filename);
    if (fdt == NULL) {
        goto out;
    }

    /* Manipulate device tree in memory. */
    ret = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
                               sizeof(mem_reg_property));
    if (ret < 0)
        fprintf(stderr, "couldn't set /memory/reg\n");

    ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
                                    initrd_base);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");

    ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
                                    (initrd_base + initrd_size));
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");

    ret = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
                                      kernel_cmdline);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/bootargs\n");

    if (kvm_enabled()) {
        struct dirent *dirp;
        DIR *dp;
        char buf[128];

        if ((dp = opendir("/proc/device-tree/cpus/")) == NULL) {
            printf("Can't open directory /proc/device-tree/cpus/\n");
            ret = -1;
            goto out;
        }

        buf[0] = '\0';
        while ((dirp = readdir(dp)) != NULL) {
            if (strncmp(dirp->d_name, "PowerPC", 7) == 0) {
                snprintf(buf, 128, "/cpus/%s", dirp->d_name);
                break;
            }
        }
        closedir(dp);
        if (buf[0] == '\0') {
            printf("Unknow host!\n");
            ret = -1;
            goto out;
        }

        mpc8544_copy_soc_cell(fdt, buf, "clock-frequency");
        mpc8544_copy_soc_cell(fdt, buf, "timebase-frequency");
    }

    ret = rom_add_blob_fixed(BINARY_DEVICE_TREE_FILE, fdt, fdt_size, addr);
    qemu_free(fdt);

out:
#endif

    return ret;
}
Ejemplo n.º 18
0
static int bamboo_load_device_tree(hwaddr addr,
                                     uint32_t ramsize,
                                     hwaddr initrd_base,
                                     hwaddr initrd_size,
                                     const char *kernel_cmdline)
{
    int ret = -1;
    uint32_t mem_reg_property[] = { 0, 0, cpu_to_be32(ramsize) };
    char *filename;
    int fdt_size;
    void *fdt;
    uint32_t tb_freq = 400000000;
    uint32_t clock_freq = 400000000;

    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE);
    if (!filename) {
        goto out;
    }
    fdt = load_device_tree(filename, &fdt_size);
    g_free(filename);
    if (fdt == NULL) {
        goto out;
    }

    /* Manipulate device tree in memory. */

    ret = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
                               sizeof(mem_reg_property));
    if (ret < 0)
        fprintf(stderr, "couldn't set /memory/reg\n");

    ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
                                    initrd_base);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");

    ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
                                    (initrd_base + initrd_size));
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");

    ret = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
                                      kernel_cmdline);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/bootargs\n");

    /* Copy data from the host device tree into the guest. Since the guest can
     * directly access the timebase without host involvement, we must expose
     * the correct frequencies. */
    if (kvm_enabled()) {
        tb_freq = kvmppc_get_tbfreq();
        clock_freq = kvmppc_get_clockfreq();
    }

    qemu_devtree_setprop_cell(fdt, "/cpus/cpu@0", "clock-frequency",
                              clock_freq);
    qemu_devtree_setprop_cell(fdt, "/cpus/cpu@0", "timebase-frequency",
                              tb_freq);

    rom_add_blob_fixed(BINARY_DEVICE_TREE_FILE, fdt, fdt_size, addr);
    g_free(fdt);
    return 0;

out:

    return ret;
}
Ejemplo n.º 19
0
int main()
{
	mraa_uart_context gps;
	load_device_tree("ADAFRUIT-UART1");
	gps = mraa_uart_init_raw("/dev/ttyO1");
    mraa_uart_set_baudrate(gps, 9600);
    char buf[1000];
    char search[7];
    gprmc_t readGPS;
   // char *p = buf;
    while(1){//gprmc_t readGPS;
             int i=0;
            mraa_uart_read(gps, search, 1);
            if(search[0] == '$'){
            	for(i=1; i<7;i++){
            		mraa_uart_read(gps, search+i, 1);	
            	}
            if(strstr(search, "$GPRMC,")){
           		for(i=0; i<100;i++){
           			mraa_uart_read(gps, buf+i, 1);
           			if(buf[i] == '\n'){
           				buf[i]='\0';
           				break;
           			}
            		
            	}
            	// printf("%s\n", buf);
            	nmea_parse_gprmc(buf, &readGPS);
            	gps_convert_deg_to_dec(&(readGPS.latitude), readGPS.lat, &(readGPS.longitude), readGPS.lon);
            	printf("%d\n", readGPS.state);
            	printf("%f\n", readGPS.latitude);
            	printf("%f\n", readGPS.longitude);
    	    	
    	    
    	    }
				
				
			
    	 //    mraa_uart_read(gps, buf+1, 1);
	    	// mraa_uart_read(gps, buf+2, 1);
	    	// mraa_uart_read(gps, buf+3, 1);
	    	// mraa_uart_read(gps, buf+4, 1);
	    	// mraa_uart_read(gps, buf+5, 1);
	    	// mraa_uart_read(gps, buf+6, 1);
	    	// mraa_uart_read(gps, buf+7, 1);
	    	// mraa_uart_read(gps, buf+8, 1);
	    	// mraa_uart_read(gps, buf+9, 1);
	    	// mraa_uart_read(gps, buf+10, 1);
	    	// mraa_uart_read(gps, buf+11, 1);
	    	// mraa_uart_read(gps, buf+12, 1);
	    	// mraa_uart_read(gps, buf+13, 1);
	    	// mraa_uart_read(gps, buf+14, 1);
	    	// mraa_uart_read(gps, buf+15, 1);
	    	// mraa_uart_read(gps, buf+16, 1);
	    // printf("%s\n",buf);	
    	 // if(buf[0]=='$')
    	  // {        
    	  //	printf("%s\n", buf);
    	       //buf = strchr(buf, ',')+1; 
    	        //printf("%s\n", buf);
    // }

    	// if (strchr(buf, '$GPRMC')!=NULL){
    	// 	//buf = strchr(buf, ',')+1; 
    	//         //printf("%s\n", buf);
    	// }
    	       //buf = strchr(buf, ',')+1; 
    	        //printf("%s\n", buf);
     
	    	   //mraa_uart_read(gps, buf, 1);
	    	// mraa_uart_read(gps, buf+1, 1);
	    	// mraa_uart_read(gps, buf+2, 1);
	    	// mraa_uart_read(gps, buf+3, 1);
	    	// mraa_uart_read(gps, buf+4, 1);
	    	// mraa_uart_read(gps, buf+5, 1);
	    	// mraa_uart_read(gps, buf+6, 1);
	    	// mraa_uart_read(gps, buf+7, 1);
	    	// mraa_uart_read(gps, buf+8, 1);
	    	// mraa_uart_read(gps, buf+9, 1);
	    	// mraa_uart_read(gps, buf+10, 1);
	    	// mraa_uart_read(gps, buf+11, 1);
	    	// mraa_uart_read(gps, buf+12, 1);
	    	// mraa_uart_read(gps, buf+13, 1);
	    	// mraa_uart_read(gps, buf+14, 1);
	    	// mraa_uart_read(gps, buf+15, 1);
	    	// mraa_uart_read(gps, buf+16, 1);
	    	// mraa_uart_read(gps, buf+17, 1);
    		//int i=0;
    		//for(i = 0; i<100)
    		// if(nmea_get_message_type(buf)==NMEA_GPRMC){
	    	// nmea_parse_gprmc(buf, &readGPS);
	    	// printf("%d\n", readGPS.speed);}
	    // }
	}
}
}
Ejemplo n.º 20
0
static int mpc8544_load_device_tree(CPUPPCState *env,
                                    target_phys_addr_t addr,
                                    uint32_t ramsize,
                                    target_phys_addr_t initrd_base,
                                    target_phys_addr_t initrd_size,
                                    const char *kernel_cmdline)
{
    int ret = -1;
#ifdef CONFIG_FDT
    uint32_t mem_reg_property[] = {0, cpu_to_be32(ramsize)};
    char *filename;
    int fdt_size;
    void *fdt;
    uint8_t hypercall[16];
    uint32_t clock_freq = 400000000;
    uint32_t tb_freq = 400000000;
    int i;

    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE);
    if (!filename) {
        goto out;
    }
    fdt = load_device_tree(filename, &fdt_size);
    g_free(filename);
    if (fdt == NULL) {
        goto out;
    }

    /* Manipulate device tree in memory. */
    ret = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
                               sizeof(mem_reg_property));
    if (ret < 0)
        fprintf(stderr, "couldn't set /memory/reg\n");

    if (initrd_size) {
        ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
                                        initrd_base);
        if (ret < 0) {
            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
        }

        ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
                                        (initrd_base + initrd_size));
        if (ret < 0) {
            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
        }
    }

    ret = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
                                      kernel_cmdline);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/bootargs\n");

    if (kvm_enabled()) {
        /* Read out host's frequencies */
        clock_freq = kvmppc_get_clockfreq();
        tb_freq = kvmppc_get_tbfreq();

        /* indicate KVM hypercall interface */
        qemu_devtree_setprop_string(fdt, "/hypervisor", "compatible",
                                    "linux,kvm");
        kvmppc_get_hypercall(env, hypercall, sizeof(hypercall));
        qemu_devtree_setprop(fdt, "/hypervisor", "hcall-instructions",
                             hypercall, sizeof(hypercall));
    }

    /* We need to generate the cpu nodes in reverse order, so Linux can pick
       the first node as boot node and be happy */
    for (i = smp_cpus - 1; i >= 0; i--) {
        char cpu_name[128];
        uint64_t cpu_release_addr = cpu_to_be64(MPC8544_SPIN_BASE + (i * 0x20));

        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            if (env->cpu_index == i) {
                break;
            }
        }

        if (!env) {
            continue;
        }

        snprintf(cpu_name, sizeof(cpu_name), "/cpus/PowerPC,8544@%x", env->cpu_index);
        qemu_devtree_add_subnode(fdt, cpu_name);
        qemu_devtree_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq);
        qemu_devtree_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq);
        qemu_devtree_setprop_string(fdt, cpu_name, "device_type", "cpu");
        qemu_devtree_setprop_cell(fdt, cpu_name, "reg", env->cpu_index);
        qemu_devtree_setprop_cell(fdt, cpu_name, "d-cache-line-size",
                                  env->dcache_line_size);
        qemu_devtree_setprop_cell(fdt, cpu_name, "i-cache-line-size",
                                  env->icache_line_size);
        qemu_devtree_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000);
        qemu_devtree_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000);
        qemu_devtree_setprop_cell(fdt, cpu_name, "bus-frequency", 0);
        if (env->cpu_index) {
            qemu_devtree_setprop_string(fdt, cpu_name, "status", "disabled");
            qemu_devtree_setprop_string(fdt, cpu_name, "enable-method", "spin-table");
            qemu_devtree_setprop(fdt, cpu_name, "cpu-release-addr",
                                 &cpu_release_addr, sizeof(cpu_release_addr));
        } else {
            qemu_devtree_setprop_string(fdt, cpu_name, "status", "okay");
        }
    }

    ret = rom_add_blob_fixed(BINARY_DEVICE_TREE_FILE, fdt, fdt_size, addr);
    g_free(fdt);

out:
#endif

    return ret;
}
Ejemplo n.º 21
0
static void lx_init(const LxBoardDesc *board, MachineState *machine)
{
#ifdef TARGET_WORDS_BIGENDIAN
    int be = 1;
#else
    int be = 0;
#endif
    MemoryRegion *system_memory = get_system_memory();
    XtensaCPU *cpu = NULL;
    CPUXtensaState *env = NULL;
    MemoryRegion *ram, *rom, *system_io;
    DriveInfo *dinfo;
    pflash_t *flash = NULL;
    QemuOpts *machine_opts = qemu_get_machine_opts();
    const char *cpu_model = machine->cpu_model;
    const char *kernel_filename = qemu_opt_get(machine_opts, "kernel");
    const char *kernel_cmdline = qemu_opt_get(machine_opts, "append");
    const char *dtb_filename = qemu_opt_get(machine_opts, "dtb");
    const char *initrd_filename = qemu_opt_get(machine_opts, "initrd");
    int n;

    if (!cpu_model) {
        cpu_model = XTENSA_DEFAULT_CPU_MODEL;
    }

    for (n = 0; n < smp_cpus; n++) {
        cpu = cpu_xtensa_init(cpu_model);
        if (cpu == NULL) {
            error_report("unable to find CPU definition '%s'",
                         cpu_model);
            exit(EXIT_FAILURE);
        }
        env = &cpu->env;

        env->sregs[PRID] = n;
        qemu_register_reset(lx60_reset, cpu);
        /* Need MMU initialized prior to ELF loading,
         * so that ELF gets loaded into virtual addresses
         */
        cpu_reset(CPU(cpu));
    }

    ram = g_malloc(sizeof(*ram));
    memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size,
                           &error_fatal);
    vmstate_register_ram_global(ram);
    memory_region_add_subregion(system_memory, 0, ram);

    system_io = g_malloc(sizeof(*system_io));
    memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io",
                          224 * 1024 * 1024);
    memory_region_add_subregion(system_memory, 0xf0000000, system_io);
    lx60_fpga_init(system_io, 0x0d020000);
    if (nd_table[0].used) {
        lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
                xtensa_get_extint(env, 1), nd_table);
    }

    if (!serial_hds[0]) {
        serial_hds[0] = qemu_chr_new("serial0", "null", NULL);
    }

    serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0),
            115200, serial_hds[0], DEVICE_NATIVE_ENDIAN);

    dinfo = drive_get(IF_PFLASH, 0, 0);
    if (dinfo) {
        flash = xtfpga_flash_init(system_io, board, dinfo, be);
    }

    /* Use presence of kernel file name as 'boot from SRAM' switch. */
    if (kernel_filename) {
        uint32_t entry_point = env->pc;
        size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
        uint32_t tagptr = 0xfe000000 + board->sram_size;
        uint32_t cur_tagptr;
        BpMemInfo memory_location = {
            .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
            .start = tswap32(0),
            .end = tswap32(machine->ram_size),
        };
        uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
            machine->ram_size : 0x08000000;
        uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);

        rom = g_malloc(sizeof(*rom));
        memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size,
                               &error_fatal);
        vmstate_register_ram_global(rom);
        memory_region_add_subregion(system_memory, 0xfe000000, rom);

        if (kernel_cmdline) {
            bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
        }
        if (dtb_filename) {
            bp_size += get_tag_size(sizeof(uint32_t));
        }
        if (initrd_filename) {
            bp_size += get_tag_size(sizeof(BpMemInfo));
        }

        /* Put kernel bootparameters to the end of that SRAM */
        tagptr = (tagptr - bp_size) & ~0xff;
        cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
        cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
                             sizeof(memory_location), &memory_location);

        if (kernel_cmdline) {
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
                                 strlen(kernel_cmdline) + 1, kernel_cmdline);
        }
        if (dtb_filename) {
            int fdt_size;
            void *fdt = load_device_tree(dtb_filename, &fdt_size);
            uint32_t dtb_addr = tswap32(cur_lowmem);

            if (!fdt) {
                error_report("could not load DTB '%s'", dtb_filename);
                exit(EXIT_FAILURE);
            }

            cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
                                 sizeof(dtb_addr), &dtb_addr);
            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096);
        }
        if (initrd_filename) {
            BpMemInfo initrd_location = { 0 };
            int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
                                           lowmem_end - cur_lowmem);

            if (initrd_size < 0) {
                initrd_size = load_image_targphys(initrd_filename,
                                                  cur_lowmem,
                                                  lowmem_end - cur_lowmem);
            }
            if (initrd_size < 0) {
                error_report("could not load initrd '%s'", initrd_filename);
                exit(EXIT_FAILURE);
            }
            initrd_location.start = tswap32(cur_lowmem);
            initrd_location.end = tswap32(cur_lowmem + initrd_size);
            cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
                                 sizeof(initrd_location), &initrd_location);
            cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096);
        }
        cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
        env->regs[2] = tagptr;

        uint64_t elf_entry;
        uint64_t elf_lowaddr;
        int success = load_elf(kernel_filename, translate_phys_addr, cpu,
                &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0, 0);
        if (success > 0) {
            entry_point = elf_entry;
        } else {
            hwaddr ep;
            int is_linux;
            success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
                                  translate_phys_addr, cpu);
            if (success > 0 && is_linux) {
                entry_point = ep;
            } else {
                error_report("could not load kernel '%s'",
                             kernel_filename);
                exit(EXIT_FAILURE);
            }
        }
        if (entry_point != env->pc) {
            static const uint8_t jx_a0[] = {
#ifdef TARGET_WORDS_BIGENDIAN
                0x0a, 0, 0,
#else
                0xa0, 0, 0,
#endif
            };
            env->regs[0] = entry_point;
            cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0));
        }
    } else {
        if (flash) {
            MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
            MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));

            memory_region_init_alias(flash_io, NULL, "lx60.flash",
                    flash_mr, board->flash_boot_base,
                    board->flash_size - board->flash_boot_base < 0x02000000 ?
                    board->flash_size - board->flash_boot_base : 0x02000000);
            memory_region_add_subregion(system_memory, 0xfe000000,
                    flash_io);
        }
    }
}
Ejemplo n.º 22
0
static int ppce500_load_device_tree(CPUPPCState *env,
                                    PPCE500Params *params,
                                    target_phys_addr_t addr,
                                    target_phys_addr_t initrd_base,
                                    target_phys_addr_t initrd_size)
{
    int ret = -1;
    uint64_t mem_reg_property[] = { 0, cpu_to_be64(params->ram_size) };
    int fdt_size;
    void *fdt;
    uint8_t hypercall[16];
    uint32_t clock_freq = 400000000;
    uint32_t tb_freq = 400000000;
    int i;
    const char *toplevel_compat = NULL; /* user override */
    char compatible_sb[] = "fsl,mpc8544-immr\0simple-bus";
    char soc[128];
    char mpic[128];
    uint32_t mpic_ph;
    char gutil[128];
    char pci[128];
    uint32_t pci_map[7 * 8];
    uint32_t pci_ranges[14] =
        {
            0x2000000, 0x0, 0xc0000000,
            0x0, 0xc0000000,
            0x0, 0x20000000,

            0x1000000, 0x0, 0x0,
            0x0, 0xe1000000,
            0x0, 0x10000,
        };
    QemuOpts *machine_opts;
    const char *dtb_file = NULL;

    machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
    if (machine_opts) {
        dtb_file = qemu_opt_get(machine_opts, "dtb");
        toplevel_compat = qemu_opt_get(machine_opts, "dt_compatible");
    }

    if (dtb_file) {
        char *filename;
        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, dtb_file);
        if (!filename) {
            goto out;
        }

        fdt = load_device_tree(filename, &fdt_size);
        if (!fdt) {
            goto out;
        }
        goto done;
    }

    fdt = create_device_tree(&fdt_size);
    if (fdt == NULL) {
        goto out;
    }

    /* Manipulate device tree in memory. */
    qemu_devtree_setprop_cell(fdt, "/", "#address-cells", 2);
    qemu_devtree_setprop_cell(fdt, "/", "#size-cells", 2);

    qemu_devtree_add_subnode(fdt, "/memory");
    qemu_devtree_setprop_string(fdt, "/memory", "device_type", "memory");
    qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
                         sizeof(mem_reg_property));

    qemu_devtree_add_subnode(fdt, "/chosen");
    if (initrd_size) {
        ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
                                        initrd_base);
        if (ret < 0) {
            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
        }

        ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
                                        (initrd_base + initrd_size));
        if (ret < 0) {
            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
        }
    }

    ret = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
                                      params->kernel_cmdline);
    if (ret < 0)
        fprintf(stderr, "couldn't set /chosen/bootargs\n");

    if (kvm_enabled()) {
        /* Read out host's frequencies */
        clock_freq = kvmppc_get_clockfreq();
        tb_freq = kvmppc_get_tbfreq();

        /* indicate KVM hypercall interface */
        qemu_devtree_add_subnode(fdt, "/hypervisor");
        qemu_devtree_setprop_string(fdt, "/hypervisor", "compatible",
                                    "linux,kvm");
        kvmppc_get_hypercall(env, hypercall, sizeof(hypercall));
        qemu_devtree_setprop(fdt, "/hypervisor", "hcall-instructions",
                             hypercall, sizeof(hypercall));
    }

    /* Create CPU nodes */
    qemu_devtree_add_subnode(fdt, "/cpus");
    qemu_devtree_setprop_cell(fdt, "/cpus", "#address-cells", 1);
    qemu_devtree_setprop_cell(fdt, "/cpus", "#size-cells", 0);

    /* We need to generate the cpu nodes in reverse order, so Linux can pick
       the first node as boot node and be happy */
    for (i = smp_cpus - 1; i >= 0; i--) {
        char cpu_name[128];
        uint64_t cpu_release_addr = MPC8544_SPIN_BASE + (i * 0x20);

        for (env = first_cpu; env != NULL; env = env->next_cpu) {
            if (env->cpu_index == i) {
                break;
            }
        }

        if (!env) {
            continue;
        }

        snprintf(cpu_name, sizeof(cpu_name), "/cpus/PowerPC,8544@%x", env->cpu_index);
        qemu_devtree_add_subnode(fdt, cpu_name);
        qemu_devtree_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq);
        qemu_devtree_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq);
        qemu_devtree_setprop_string(fdt, cpu_name, "device_type", "cpu");
        qemu_devtree_setprop_cell(fdt, cpu_name, "reg", env->cpu_index);
        qemu_devtree_setprop_cell(fdt, cpu_name, "d-cache-line-size",
                                  env->dcache_line_size);
        qemu_devtree_setprop_cell(fdt, cpu_name, "i-cache-line-size",
                                  env->icache_line_size);
        qemu_devtree_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000);
        qemu_devtree_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000);
        qemu_devtree_setprop_cell(fdt, cpu_name, "bus-frequency", 0);
        if (env->cpu_index) {
            qemu_devtree_setprop_string(fdt, cpu_name, "status", "disabled");
            qemu_devtree_setprop_string(fdt, cpu_name, "enable-method", "spin-table");
            qemu_devtree_setprop_u64(fdt, cpu_name, "cpu-release-addr",
                                     cpu_release_addr);
        } else {
            qemu_devtree_setprop_string(fdt, cpu_name, "status", "okay");
        }
    }

    qemu_devtree_add_subnode(fdt, "/aliases");
    /* XXX These should go into their respective devices' code */
    snprintf(soc, sizeof(soc), "/soc@%llx", MPC8544_CCSRBAR_BASE);
    qemu_devtree_add_subnode(fdt, soc);
    qemu_devtree_setprop_string(fdt, soc, "device_type", "soc");
    qemu_devtree_setprop(fdt, soc, "compatible", compatible_sb,
                         sizeof(compatible_sb));
    qemu_devtree_setprop_cell(fdt, soc, "#address-cells", 1);
    qemu_devtree_setprop_cell(fdt, soc, "#size-cells", 1);
    qemu_devtree_setprop_cells(fdt, soc, "ranges", 0x0,
                               MPC8544_CCSRBAR_BASE >> 32, MPC8544_CCSRBAR_BASE,
                               MPC8544_CCSRBAR_SIZE);
    /* XXX should contain a reasonable value */
    qemu_devtree_setprop_cell(fdt, soc, "bus-frequency", 0);

    snprintf(mpic, sizeof(mpic), "%s/pic@%llx", soc,
             MPC8544_MPIC_REGS_BASE - MPC8544_CCSRBAR_BASE);
    qemu_devtree_add_subnode(fdt, mpic);
    qemu_devtree_setprop_string(fdt, mpic, "device_type", "open-pic");
    qemu_devtree_setprop_string(fdt, mpic, "compatible", "chrp,open-pic");
    qemu_devtree_setprop_cells(fdt, mpic, "reg", MPC8544_MPIC_REGS_BASE -
                               MPC8544_CCSRBAR_BASE, 0x40000);
    qemu_devtree_setprop_cell(fdt, mpic, "#address-cells", 0);
    qemu_devtree_setprop_cell(fdt, mpic, "#interrupt-cells", 2);
    mpic_ph = qemu_devtree_alloc_phandle(fdt);
    qemu_devtree_setprop_cell(fdt, mpic, "phandle", mpic_ph);
    qemu_devtree_setprop_cell(fdt, mpic, "linux,phandle", mpic_ph);
    qemu_devtree_setprop(fdt, mpic, "interrupt-controller", NULL, 0);

    /*
     * We have to generate ser1 first, because Linux takes the first
     * device it finds in the dt as serial output device. And we generate
     * devices in reverse order to the dt.
     */
    dt_serial_create(fdt, MPC8544_SERIAL1_REGS_BASE - MPC8544_CCSRBAR_BASE,
                     soc, mpic, "serial1", 1, false);
    dt_serial_create(fdt, MPC8544_SERIAL0_REGS_BASE - MPC8544_CCSRBAR_BASE,
                     soc, mpic, "serial0", 0, true);

    snprintf(gutil, sizeof(gutil), "%s/global-utilities@%llx", soc,
             MPC8544_UTIL_BASE - MPC8544_CCSRBAR_BASE);
    qemu_devtree_add_subnode(fdt, gutil);
    qemu_devtree_setprop_string(fdt, gutil, "compatible", "fsl,mpc8544-guts");
    qemu_devtree_setprop_cells(fdt, gutil, "reg", MPC8544_UTIL_BASE -
                               MPC8544_CCSRBAR_BASE, 0x1000);
    qemu_devtree_setprop(fdt, gutil, "fsl,has-rstcr", NULL, 0);

    snprintf(pci, sizeof(pci), "/pci@%llx", MPC8544_PCI_REGS_BASE);
    qemu_devtree_add_subnode(fdt, pci);
    qemu_devtree_setprop_cell(fdt, pci, "cell-index", 0);
    qemu_devtree_setprop_string(fdt, pci, "compatible", "fsl,mpc8540-pci");
    qemu_devtree_setprop_string(fdt, pci, "device_type", "pci");
    qemu_devtree_setprop_cells(fdt, pci, "interrupt-map-mask", 0xf800, 0x0,
                               0x0, 0x7);
    pci_map_create(fdt, pci_map, qemu_devtree_get_phandle(fdt, mpic));
    qemu_devtree_setprop(fdt, pci, "interrupt-map", pci_map, sizeof(pci_map));
    qemu_devtree_setprop_phandle(fdt, pci, "interrupt-parent", mpic);
    qemu_devtree_setprop_cells(fdt, pci, "interrupts", 24, 2);
    qemu_devtree_setprop_cells(fdt, pci, "bus-range", 0, 255);
    for (i = 0; i < 14; i++) {
        pci_ranges[i] = cpu_to_be32(pci_ranges[i]);
    }
    qemu_devtree_setprop(fdt, pci, "ranges", pci_ranges, sizeof(pci_ranges));
    qemu_devtree_setprop_cells(fdt, pci, "reg", MPC8544_PCI_REGS_BASE >> 32,
                               MPC8544_PCI_REGS_BASE, 0, 0x1000);
    qemu_devtree_setprop_cell(fdt, pci, "clock-frequency", 66666666);
    qemu_devtree_setprop_cell(fdt, pci, "#interrupt-cells", 1);
    qemu_devtree_setprop_cell(fdt, pci, "#size-cells", 2);
    qemu_devtree_setprop_cell(fdt, pci, "#address-cells", 3);
    qemu_devtree_setprop_string(fdt, "/aliases", "pci0", pci);

    params->fixup_devtree(params, fdt);

    if (toplevel_compat) {
        qemu_devtree_setprop(fdt, "/", "compatible", toplevel_compat,
                             strlen(toplevel_compat) + 1);
    }

done:
    qemu_devtree_dumpdtb(fdt, fdt_size);
    ret = rom_add_blob_fixed(BINARY_DEVICE_TREE_FILE, fdt, fdt_size, addr);
    if (ret < 0) {
        goto out;
    }
    g_free(fdt);
    ret = fdt_size;

out:

    return ret;
}
Ejemplo n.º 23
0
BBIO_err initialize_pwm(void)
{
#ifdef BBBVERSION41  // don't load overlay in 4.1+
    if (!pwm_initialized) {
      strncpy(ocp_dir, "/sys/devices/platform/ocp", sizeof(ocp_dir));
#else
    BBIO_err err;
    if  (!pwm_initialized && load_device_tree("am33xx_pwm")) {
        err = build_path("/sys/devices", "ocp", ocp_dir, sizeof(ocp_dir));
        if (err != BBIO_OK)
        {
            return BBIO_SYSFS;
        }
#endif
        pwm_initialized = 1;
        #ifdef DEBUGINFO
        syslog(LOG_DEBUG, "Adafruit_BBIO: initialize_pwm: OK");
        #endif
        return BBIO_OK;
    }
    #ifdef DEBUGINFO
    syslog(LOG_DEBUG, "Adafruit_BBIO: initialize_pwm: OK");
    #endif

    return BBIO_OK;
}

BBIO_err pwm_set_frequency(const char *key, float freq) {
    int len;
    char buffer[20];
    unsigned long period_ns;
    struct pwm_exp *pwm;

    if (freq <= 0.0) {
        #ifdef DEBUGINFO
        syslog(LOG_ERR, "Adafruit_BBIO: pwm_set_frequency: %s freq %f <= 0.0", key, freq);
        #endif
        return BBIO_INVARG;
    }

    pwm = lookup_exported_pwm(key);

    if (pwm == NULL) {
        #ifdef DEBUGINFO
        syslog(LOG_ERR, "Adafruit_BBIO: pwm_set_frequency: %s couldn't find key", key);
        #endif
        return BBIO_GEN;
    }

    period_ns = (unsigned long)(1e9 / freq);

    // If we're going to a shorter period, update the
    // duty cycle first, in order to avoid ever setting
    // the period < duty cycle (which would throw error)
    if (period_ns < pwm->period_ns) {
        pwm->period_ns = period_ns;

        // Update duty ns
        pwm->duty_ns = (unsigned long)(period_ns * (pwm->duty / 100.0));
        len = snprintf(buffer, sizeof(buffer), "%lu", pwm->duty_ns);
        lseek(pwm->duty_fd, 0, SEEK_SET); // Seek to beginning of file
        if (write(pwm->duty_fd, buffer, len) < 0) {
            syslog(LOG_ERR, "Adafruit_BBIO: pwm_set_frequency: %s couldn't write duty: %i-%s",
                   key, errno, strerror(errno));
            return BBIO_SYSFS;
        }

        // Update period ns
        len = snprintf(buffer, sizeof(buffer), "%lu", period_ns);
        lseek(pwm->period_fd, 0, SEEK_SET); // Seek to beginning of file
        if (write(pwm->period_fd, buffer, len) < 0) {
            syslog(LOG_ERR, "Adafruit_BBIO: pwm_set_frequency: %s couldn't write period: %i-%s",
                   key, errno, strerror(errno));
            return BBIO_SYSFS;
        }

    } else if (period_ns > pwm->period_ns) {
        pwm->period_ns = period_ns;
        // Ordinarily update the period first,
        // to avoid the opposite bug - kernel won't
        // let us set duty greater than period

        // Update period ns
        len = snprintf(buffer, sizeof(buffer), "%lu", period_ns);
        lseek(pwm->period_fd, 0, SEEK_SET); // Seek to beginning of file
        if (write(pwm->period_fd, buffer, len) < 0) {
            syslog(LOG_ERR, "Adafruit_BBIO: pwm_set_frequency: %s couldn't write period: %i-%s",
                   key, errno, strerror(errno));
            return BBIO_SYSFS;
        }

        // Update duty ns
        pwm->duty_ns = (unsigned long)(period_ns * (pwm->duty / 100.0));
        len = snprintf(buffer, sizeof(buffer), "%lu", pwm->duty_ns);
        lseek(pwm->duty_fd, 0, SEEK_SET); // Seek to beginning of file
        if (write(pwm->duty_fd, buffer, len) < 0) {
            syslog(LOG_ERR, "Adafruit_BBIO: pwm_set_frequency: %s couldn't write duty: %i-%s",
                   key, errno, strerror(errno));
            return BBIO_SYSFS;
        }
    } // else do nothing

    syslog(LOG_DEBUG, "Adafruit_BBIO: pwm_set_frequency: %s %f OK", key, freq);
    return BBIO_OK;
}
Ejemplo n.º 24
0
static void
microblaze_generic_fdt_init(MachineState *machine)
{
    CPUState *cpu;
    ram_addr_t ram_kernel_base = 0, ram_kernel_size = 0;
    void *fdt = NULL;
    const char *dtb_arg, *hw_dtb_arg;
    QemuOpts *machine_opts;
    int fdt_size;

    /* for memory node */
    char node_path[DT_PATH_LENGTH];
    FDTMachineInfo *fdti;
    MemoryRegion *main_mem;

    /* For DMA node */
    char dma_path[DT_PATH_LENGTH] = { 0 };
    uint32_t memory_phandle;

    /* For Ethernet nodes */
    char **eth_paths;
    char *phy_path;
    char *mdio_path;
    uint32_t n_eth;
    uint32_t prop_val;

    machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
    if (!machine_opts) {
        goto no_dtb_arg;
    }
    dtb_arg = qemu_opt_get(machine_opts, "dtb");
    hw_dtb_arg = qemu_opt_get(machine_opts, "hw-dtb");
    if (!dtb_arg && !hw_dtb_arg) {
        goto no_dtb_arg;
    }

    /* If the user only provided a -dtb, use it as the hw description.  */
    if (!hw_dtb_arg) {
        hw_dtb_arg = dtb_arg;
    }

    fdt = load_device_tree(hw_dtb_arg, &fdt_size);
    if (!fdt) {
        hw_error("Error: Unable to load Device Tree %s\n", hw_dtb_arg);
        return;
    }

    if (IS_PETALINUX_MACHINE) {
        /* Mark the simple-bus as incompatible as it breaks the Microblaze
         * PetaLinux boot
         */
        add_to_compat_table(NULL, "compatible:simple-bus", NULL);
    }

    /* find memory node or add new one if needed */
    while (qemu_fdt_get_node_by_name(fdt, node_path, "memory")) {
        qemu_fdt_add_subnode(fdt, "/memory@0");
        qemu_fdt_setprop_cells(fdt, "/memory@0", "reg", 0, machine->ram_size);
    }

    if (!qemu_fdt_getprop(fdt, "/memory", "compatible", NULL, 0, NULL)) {
        qemu_fdt_setprop_string(fdt, "/memory", "compatible",
                                "qemu:memory-region");
        qemu_fdt_setprop_cells(fdt, "/memory", "qemu,ram", 1);
    }

    if (IS_PETALINUX_MACHINE) {
        /* If using a *-plnx machine, the AXI DMA memory links are not included
         * in the DTB by default. To avoid seg faults, add the links in here if
         * they have not already been added by the user
         */
        qemu_fdt_get_node_by_name(fdt, dma_path, "dma");

        if (strcmp(dma_path, "") != 0) {
            memory_phandle = qemu_fdt_check_phandle(fdt, node_path);

            if (!memory_phandle) {
                memory_phandle = qemu_fdt_alloc_phandle(fdt);

                qemu_fdt_setprop_cells(fdt, "/memory", "linux,phandle",
                                       memory_phandle);
                qemu_fdt_setprop_cells(fdt, "/memory", "phandle",
                                       memory_phandle);
            }

            if (!qemu_fdt_getprop(fdt, dma_path, "sg", NULL, 0, NULL)) {
                qemu_fdt_setprop_phandle(fdt, dma_path, "sg", node_path);
            }

            if (!qemu_fdt_getprop(fdt, dma_path, "s2mm", NULL, 0, NULL)) {
                qemu_fdt_setprop_phandle(fdt, dma_path, "s2mm", node_path);
            }

            if (!qemu_fdt_getprop(fdt, dma_path, "mm2s", NULL, 0, NULL)) {
                qemu_fdt_setprop_phandle(fdt, dma_path, "mm2s", node_path);
            }
        }

        /* Copy phyaddr value from phy node reg property */
        n_eth = qemu_fdt_get_n_nodes_by_name(fdt, &eth_paths, "ethernet");

        while (n_eth--) {
            mdio_path = qemu_fdt_get_child_by_name(fdt, eth_paths[n_eth],
                                                       "mdio");
            if (mdio_path) {
                phy_path = qemu_fdt_get_child_by_name(fdt, mdio_path,
                                                          "phy");
                if (phy_path) {
                    prop_val = qemu_fdt_getprop_cell(fdt, phy_path, "reg", NULL, 0,
                                                     NULL, &error_abort);
                    qemu_fdt_setprop_cell(fdt, eth_paths[n_eth], "xlnx,phyaddr",
                                          prop_val);
                    g_free(phy_path);
                } else {
                    qemu_log_mask(LOG_GUEST_ERROR, "phy not found in %s",
                                  mdio_path);
                }
                g_free(mdio_path);
            }
            g_free(eth_paths[n_eth]);
        }
        g_free(eth_paths);
    }

    /* Instantiate peripherals from the FDT.  */
    fdti = fdt_generic_create_machine(fdt, NULL);
    main_mem = MEMORY_REGION(object_resolve_path(node_path, NULL));

    ram_kernel_base = object_property_get_int(OBJECT(main_mem), "addr", NULL);
    ram_kernel_size = object_property_get_int(OBJECT(main_mem), "size", NULL);

    if (!memory_region_is_mapped(main_mem)) {
        /* If the memory region is not mapped, map it here.
         * It has to be mapped somewhere, so guess that the base address
         * is where the kernel starts
         */
        memory_region_add_subregion(get_system_memory(), ram_kernel_base,
                                    main_mem);

        if (ram_kernel_base && IS_PETALINUX_MACHINE) {
            /* If the memory added is at an offset from zero QEMU will error
             * when an ISR/exception is triggered. Add a small amount of hack
             * RAM to handle this.
             */
            MemoryRegion *hack_ram = g_new(MemoryRegion, 1);
            memory_region_init_ram(hack_ram, NULL, "hack_ram", 0x1000,
                                   &error_abort);
            vmstate_register_ram_global(hack_ram);
            memory_region_add_subregion(get_system_memory(), 0, hack_ram);
        }
    }

    fdt_init_destroy_fdti(fdti);

    fdt_g = fdt;
    microblaze_load_kernel(MICROBLAZE_CPU(first_cpu), ram_kernel_base,
                           ram_kernel_size, machine->initrd_filename, NULL,
                           microblaze_generic_fdt_reset, 0, fdt, fdt_size);

    /* Register FDT to prop mapper for secondary cores.  */
    cpu = CPU_NEXT(first_cpu);
    while (cpu) {
        qemu_register_reset(secondary_cpu_reset, cpu);
        cpu = CPU_NEXT(cpu);
    }

    return;
no_dtb_arg:
    if (!QTEST_RUNNING) {
        hw_error("DTB must be specified for %s machine model\n", MACHINE_NAME);
    }
    return;
}