Ejemplo n.º 1
0
void BX_CPU_C::protected_mode_int(Bit8u vector, unsigned soft_int, bx_bool push_error, Bit16u error_code)
{
  bx_descriptor_t gate_descriptor, cs_descriptor;
  bx_selector_t cs_selector;

  Bit16u raw_tss_selector;
  bx_selector_t   tss_selector;
  bx_descriptor_t tss_descriptor;

  Bit16u gate_dest_selector;
  Bit32u gate_dest_offset;

  // interrupt vector must be within IDT table limits,
  // else #GP(vector*8 + 2 + EXT)
  if ((vector*8 + 7) > BX_CPU_THIS_PTR idtr.limit) {
    BX_ERROR(("interrupt(): vector must be within IDT table limits, IDT.limit = 0x%x", BX_CPU_THIS_PTR idtr.limit));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  Bit64u desctmp = system_read_qword(BX_CPU_THIS_PTR idtr.base + vector*8);

  Bit32u dword1 = GET32L(desctmp);
  Bit32u dword2 = GET32H(desctmp);

  parse_descriptor(dword1, dword2, &gate_descriptor);

  if ((gate_descriptor.valid==0) || gate_descriptor.segment) {
    BX_ERROR(("interrupt(): gate descriptor is not valid sys seg (vector=0x%02x)", vector));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // descriptor AR byte must indicate interrupt gate, trap gate,
  // or task gate, else #GP(vector*8 + 2 + EXT)
  switch (gate_descriptor.type) {
  case BX_TASK_GATE:
  case BX_286_INTERRUPT_GATE:
  case BX_286_TRAP_GATE:
  case BX_386_INTERRUPT_GATE:
  case BX_386_TRAP_GATE:
    break;
  default:
    BX_ERROR(("interrupt(): gate.type(%u) != {5,6,7,14,15}",
      (unsigned) gate_descriptor.type));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // if software interrupt, then gate descripor DPL must be >= CPL,
  // else #GP(vector * 8 + 2 + EXT)
  if (soft_int && gate_descriptor.dpl < CPL) {
    BX_ERROR(("interrupt(): soft_int && (gate.dpl < CPL)"));
    exception(BX_GP_EXCEPTION, vector*8 + 2);
  }

  // Gate must be present, else #NP(vector * 8 + 2 + EXT)
  if (! IS_PRESENT(gate_descriptor)) {
    BX_ERROR(("interrupt(): gate not present"));
    exception(BX_NP_EXCEPTION, vector*8 + 2);
  }

  switch (gate_descriptor.type) {
  case BX_TASK_GATE:
    // examine selector to TSS, given in task gate descriptor
    raw_tss_selector = gate_descriptor.u.taskgate.tss_selector;
    parse_selector(raw_tss_selector, &tss_selector);

    // must specify global in the local/global bit,
    //      else #GP(TSS selector)
    if (tss_selector.ti) {
      BX_ERROR(("interrupt(): tss_selector.ti=1 from gate descriptor - #GP(tss_selector)"));
      exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    // index must be within GDT limits, else #TS(TSS selector)
    fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_GP_EXCEPTION);

    parse_descriptor(dword1, dword2, &tss_descriptor);

    // AR byte must specify available TSS,
    //   else #GP(TSS selector)
    if (tss_descriptor.valid==0 || tss_descriptor.segment) {
      BX_ERROR(("interrupt(): TSS selector points to invalid or bad TSS - #GP(tss_selector)"));
      exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    if (tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS &&
        tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS)
    {
      BX_ERROR(("interrupt(): TSS selector points to bad TSS - #GP(tss_selector)"));
      exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    // TSS must be present, else #NP(TSS selector)
    if (! IS_PRESENT(tss_descriptor)) {
      BX_ERROR(("interrupt(): TSS descriptor.p == 0"));
      exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc);
    }

    // switch tasks with nesting to TSS
    task_switch(0, &tss_selector, &tss_descriptor,
                    BX_TASK_FROM_INT, dword1, dword2);

    RSP_SPECULATIVE;

    // if interrupt was caused by fault with error code
    //   stack limits must allow push of 2 more bytes, else #SS(0)
    // push error code onto stack

    if (push_error) {
      if (tss_descriptor.type >= 9) // TSS386
        push_32(error_code);
      else
        push_16(error_code);
    }

    // instruction pointer must be in CS limit, else #GP(0)
    if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
      BX_ERROR(("interrupt(): EIP > CS.limit"));
      exception(BX_GP_EXCEPTION, 0);
    }

    RSP_COMMIT;

    return;

  case BX_286_INTERRUPT_GATE:
  case BX_286_TRAP_GATE:
  case BX_386_INTERRUPT_GATE:
  case BX_386_TRAP_GATE:
    gate_dest_selector = gate_descriptor.u.gate.dest_selector;
    gate_dest_offset   = gate_descriptor.u.gate.dest_offset;

    // examine CS selector and descriptor given in gate descriptor
    // selector must be non-null else #GP(EXT)
    if ((gate_dest_selector & 0xfffc) == 0) {
      BX_ERROR(("int_trap_gate(): selector null"));
      exception(BX_GP_EXCEPTION, 0);
    }

    parse_selector(gate_dest_selector, &cs_selector);

    // selector must be within its descriptor table limits
    // else #GP(selector+EXT)
    fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
    parse_descriptor(dword1, dword2, &cs_descriptor);

    // descriptor AR byte must indicate code seg
    // and code segment descriptor DPL<=CPL, else #GP(selector+EXT)
    if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
        IS_DATA_SEGMENT(cs_descriptor.type) ||
        cs_descriptor.dpl > CPL)
    {
      BX_ERROR(("interrupt(): not accessible or not code segment cs=0x%04x", cs_selector.value));
      exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
    }

    // segment must be present, else #NP(selector + EXT)
    if (! IS_PRESENT(cs_descriptor)) {
      BX_ERROR(("interrupt(): segment not present"));
      exception(BX_NP_EXCEPTION, cs_selector.value & 0xfffc);
    }

    // if code segment is non-conforming and DPL < CPL then
    // INTERRUPT TO INNER PRIVILEGE
    if(IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && cs_descriptor.dpl < CPL)
    {
      Bit16u old_SS, old_CS, SS_for_cpl_x;
      Bit32u ESP_for_cpl_x, old_EIP, old_ESP;
      bx_descriptor_t ss_descriptor;
      bx_selector_t   ss_selector;
      int is_v8086_mode = v8086_mode();

      BX_DEBUG(("interrupt(): INTERRUPT TO INNER PRIVILEGE"));

      // check selector and descriptor for new stack in current TSS
      get_SS_ESP_from_TSS(cs_descriptor.dpl,
                              &SS_for_cpl_x, &ESP_for_cpl_x);

      if (is_v8086_mode && cs_descriptor.dpl != 0) {
        // if code segment DPL != 0 then #GP(new code segment selector)
        BX_ERROR(("interrupt(): code segment DPL(%d) != 0 in v8086 mode", cs_descriptor.dpl));
        exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
      }

      // Selector must be non-null else #TS(EXT)
      if ((SS_for_cpl_x & 0xfffc) == 0) {
        BX_ERROR(("interrupt(): SS selector null"));
        exception(BX_TS_EXCEPTION, 0); /* TS(ext) */
      }

      // selector index must be within its descriptor table limits
      // else #TS(SS selector + EXT)
      parse_selector(SS_for_cpl_x, &ss_selector);
      // fetch 2 dwords of descriptor; call handles out of limits checks
      fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
      parse_descriptor(dword1, dword2, &ss_descriptor);

      // selector rpl must = dpl of code segment,
      // else #TS(SS selector + ext)
      if (ss_selector.rpl != cs_descriptor.dpl) {
        BX_ERROR(("interrupt(): SS.rpl != CS.dpl"));
        exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // stack seg DPL must = DPL of code segment,
      // else #TS(SS selector + ext)
      if (ss_descriptor.dpl != cs_descriptor.dpl) {
        BX_ERROR(("interrupt(): SS.dpl != CS.dpl"));
        exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // descriptor must indicate writable data segment,
      // else #TS(SS selector + EXT)
      if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
           IS_CODE_SEGMENT(ss_descriptor.type) ||
          !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
      {
        BX_ERROR(("interrupt(): SS is not writable data segment"));
        exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // seg must be present, else #SS(SS selector + ext)
      if (! IS_PRESENT(ss_descriptor)) {
        BX_ERROR(("interrupt(): SS not present"));
        exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc);
      }

      // IP must be within CS segment boundaries, else #GP(0)
      if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) {
        BX_ERROR(("interrupt(): gate EIP > CS.limit"));
        exception(BX_GP_EXCEPTION, 0);
      }

      old_ESP = ESP;
      old_SS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
      old_EIP = EIP;
      old_CS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;

      // Prepare new stack segment
      bx_segment_reg_t new_stack;
      new_stack.selector = ss_selector;
      new_stack.cache = ss_descriptor;
      new_stack.selector.rpl = cs_descriptor.dpl;
      // add cpl to the selector value
      new_stack.selector.value = (0xfffc & new_stack.selector.value) |
        new_stack.selector.rpl;

      if (ss_descriptor.u.segment.d_b) {
        Bit32u temp_ESP = ESP_for_cpl_x;

        if (is_v8086_mode)
        {
          if (gate_descriptor.type>=14) { // 386 int/trap gate
            write_new_stack_dword_32(&new_stack, temp_ESP-4,  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_dword_32(&new_stack, temp_ESP-8,  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_dword_32(&new_stack, temp_ESP-12, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_dword_32(&new_stack, temp_ESP-16, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_ESP -= 16;
          }
          else {
            write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_word_32(&new_stack, temp_ESP-6, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_word_32(&new_stack, temp_ESP-8, cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_ESP -= 8;
          }
        }

        if (gate_descriptor.type>=14) { // 386 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_dword_32(&new_stack, temp_ESP-4,  cs_descriptor.dpl, old_SS);
          write_new_stack_dword_32(&new_stack, temp_ESP-8,  cs_descriptor.dpl, old_ESP);
          write_new_stack_dword_32(&new_stack, temp_ESP-12, cs_descriptor.dpl, read_eflags());
          write_new_stack_dword_32(&new_stack, temp_ESP-16, cs_descriptor.dpl, old_CS);
          write_new_stack_dword_32(&new_stack, temp_ESP-20, cs_descriptor.dpl, old_EIP);
          temp_ESP -= 20;

          if (push_error) {
            temp_ESP -= 4;
            write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, error_code);
          }
        }
        else {                          // 286 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_word_32(&new_stack, temp_ESP-2,  cs_descriptor.dpl, old_SS);
          write_new_stack_word_32(&new_stack, temp_ESP-4,  cs_descriptor.dpl, (Bit16u) old_ESP);
          write_new_stack_word_32(&new_stack, temp_ESP-6,  cs_descriptor.dpl, (Bit16u) read_eflags());
          write_new_stack_word_32(&new_stack, temp_ESP-8,  cs_descriptor.dpl, old_CS);
          write_new_stack_word_32(&new_stack, temp_ESP-10, cs_descriptor.dpl, (Bit16u) old_EIP);
          temp_ESP -= 10;

          if (push_error) {
            temp_ESP -= 2;
            write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, error_code);
          }
        }

        ESP = temp_ESP;
      }
      else {
        Bit16u temp_SP = (Bit16u) ESP_for_cpl_x;

        if (is_v8086_mode)
        {
          if (gate_descriptor.type>=14) { // 386 int/trap gate
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4),  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8),  cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-12), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-16), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_SP -= 16;
          }
          else {
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-6), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
            write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl,
                BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
            temp_SP -= 8;
          }
        }

        if (gate_descriptor.type>=14) { // 386 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4),  cs_descriptor.dpl, old_SS);
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8),  cs_descriptor.dpl, old_ESP);
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-12), cs_descriptor.dpl, read_eflags());
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-16), cs_descriptor.dpl, old_CS);
          write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-20), cs_descriptor.dpl, old_EIP);
          temp_SP -= 20;

          if (push_error) {
            temp_SP -= 4;
            write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, error_code);
          }
        }
        else {                          // 286 int/trap gate
          // push long pointer to old stack onto new stack
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2),  cs_descriptor.dpl, old_SS);
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4),  cs_descriptor.dpl, (Bit16u) old_ESP);
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-6),  cs_descriptor.dpl, (Bit16u) read_eflags());
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-8),  cs_descriptor.dpl, old_CS);
          write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-10), cs_descriptor.dpl, (Bit16u) old_EIP);
          temp_SP -= 10;

          if (push_error) {
            temp_SP -= 2;
            write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, error_code);
          }
        }

        SP = temp_SP;
      }

      // load new CS:eIP values from gate
      // set CPL to new code segment DPL
      // set RPL of CS to CPL
      load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);

      // load new SS:eSP values from TSS
      load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);

      if (is_v8086_mode)
      {
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
        BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = 0;
      }
    }
    else
    {
      BX_DEBUG(("interrupt(): INTERRUPT TO SAME PRIVILEGE"));

      if (v8086_mode() && (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) || cs_descriptor.dpl != 0)) {
        // if code segment DPL != 0 then #GP(new code segment selector)
        BX_ERROR(("interrupt(): code segment conforming or DPL(%d) != 0 in v8086 mode", cs_descriptor.dpl));
        exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc);
      }

      // EIP must be in CS limit else #GP(0)
      if (gate_dest_offset > cs_descriptor.u.segment.limit_scaled) {
        BX_ERROR(("interrupt(): IP > CS descriptor limit"));
        exception(BX_GP_EXCEPTION, 0);
      }

      // push flags onto stack
      // push current CS selector onto stack
      // push return offset onto stack
      if (gate_descriptor.type >= 14) { // 386 gate
        push_32(read_eflags());
        push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
        push_32(EIP);
        if (push_error)
          push_32(error_code);
      }
      else { // 286 gate
        push_16((Bit16u) read_eflags());
        push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
        push_16(IP);
        if (push_error)
          push_16(error_code);
      }

      // load CS:IP from gate
      // load CS descriptor
      // set the RPL field of CS to CPL
      load_cs(&cs_selector, &cs_descriptor, CPL);
    }

    EIP = gate_dest_offset;

    // if interrupt gate then set IF to 0
    if (!(gate_descriptor.type & 1)) // even is int-gate
      BX_CPU_THIS_PTR clear_IF();
    BX_CPU_THIS_PTR clear_TF();
    BX_CPU_THIS_PTR clear_NT();
    BX_CPU_THIS_PTR clear_VM();
    BX_CPU_THIS_PTR clear_RF();
    return;

  default:
    BX_PANIC(("bad descriptor type in interrupt()!"));
    break;
  }
}
Ejemplo n.º 2
0
void
RETfar_pm(UINT nbytes)
{
    selector_t cs_sel, ss_sel, temp_sel;
    UINT32 sp;
    UINT32 new_ip, new_sp;
    UINT16 new_cs, new_ss;
    int rv;
    int i;

    VERBOSE(("RETfar_pm: old EIP = %04x:%08x, ESP = %04x:%08x, nbytes = %d", CPU_CS, CPU_PREV_EIP, CPU_SS, CPU_ESP, nbytes));

    if (CPU_STAT_SS32) {
        sp = CPU_ESP;
    } else {
        sp = CPU_SP;
    }
    if (CPU_INST_OP32) {
        STACK_POP_CHECK(CPU_REGS_SREG(CPU_SS_INDEX), &CPU_STAT_SREG(CPU_SS_INDEX), sp, nbytes + 8);
        new_ip = cpu_vmemoryread_d(CPU_SS_INDEX, sp);
        new_cs = cpu_vmemoryread_w(CPU_SS_INDEX, sp + 4);
    } else {
        STACK_POP_CHECK(CPU_REGS_SREG(CPU_SS_INDEX), &CPU_STAT_SREG(CPU_SS_INDEX), sp, nbytes + 4);
        new_ip = cpu_vmemoryread_w(CPU_SS_INDEX, sp);
        new_cs = cpu_vmemoryread_w(CPU_SS_INDEX, sp + 2);
    }

    rv = parse_selector(&cs_sel, new_cs);
    if (rv < 0) {
        VERBOSE(("RETfar_pm: parse_selector (selector = %04x, rv = %d, %s)", cs_sel.selector, rv));
        EXCEPTION(GP_EXCEPTION, cs_sel.idx);
    }

    /* check segment type */
    if (!cs_sel.desc.s) {
        VERBOSE(("RETfar_pm: return to system segment"));
        EXCEPTION(GP_EXCEPTION, cs_sel.idx);
    }
    if (!cs_sel.desc.u.seg.c) {
        VERBOSE(("RETfar_pm: return to data segment"));
        EXCEPTION(GP_EXCEPTION, cs_sel.idx);
    }

    /* check privilege level */
    if (cs_sel.rpl < CPU_STAT_CPL) {
        VERBOSE(("RETfar_pm: RPL(%d) < CPL(%d)", cs_sel.rpl, CPU_STAT_CPL));
        EXCEPTION(GP_EXCEPTION, cs_sel.idx);
    }
    if (!cs_sel.desc.u.seg.ec && (cs_sel.desc.dpl > cs_sel.rpl)) {
        VERBOSE(("RETfar_pm: NON-COMFORMING-CODE-SEGMENT and DPL(%d) > RPL(%d)", cs_sel.desc.dpl, cs_sel.rpl));
        EXCEPTION(GP_EXCEPTION, cs_sel.idx);
    }

    /* not present */
    if (selector_is_not_present(&cs_sel)) {
        VERBOSE(("RETfar_pm: returned code segment is not present"));
        EXCEPTION(NP_EXCEPTION, cs_sel.idx);
    }

    if (cs_sel.rpl == CPU_STAT_CPL) {
        VERBOSE(("RETfar_pm: RETURN-TO-SAME-PRIVILEGE-LEVEL"));

        /* check code segment limit */
        if (new_ip > cs_sel.desc.u.seg.limit) {
            VERBOSE(("RETfar_pm: new_ip is out of range. new_ip = %08x, limit = %08x", new_ip, cs_sel.desc.u.seg.limit));
            EXCEPTION(GP_EXCEPTION, 0);
        }

        VERBOSE(("RETfar_pm: new_ip = %08x, new_cs = %04x", new_ip, cs_sel.selector));

        if (CPU_INST_OP32) {
            nbytes += 8;
        } else {
            nbytes += 4;
        }
        if (CPU_STAT_SS32) {
            CPU_ESP += nbytes;
        } else {
            CPU_SP += (UINT16)nbytes;
        }

        load_cs(cs_sel.selector, &cs_sel.desc, CPU_STAT_CPL);
        SET_EIP(new_ip);
    } else {
        VERBOSE(("RETfar_pm: RETURN-OUTER-PRIVILEGE-LEVEL"));

        if (CPU_INST_OP32) {
            STACK_POP_CHECK(CPU_REGS_SREG(CPU_SS_INDEX), &CPU_STAT_SREG(CPU_SS_INDEX), sp, 8 + 8 + nbytes);
            new_sp = cpu_vmemoryread_d(CPU_SS_INDEX, sp + 8 + nbytes);
            new_ss = cpu_vmemoryread_w(CPU_SS_INDEX, sp + 8 + nbytes + 4);
        } else {
            STACK_POP_CHECK(CPU_REGS_SREG(CPU_SS_INDEX), &CPU_STAT_SREG(CPU_SS_INDEX), sp, 4 + 4 + nbytes);
            new_sp = cpu_vmemoryread_w(CPU_SS_INDEX, sp + 4 + nbytes);
            new_ss = cpu_vmemoryread_w(CPU_SS_INDEX, sp + 4 + nbytes + 2);
        }

        rv = parse_selector(&ss_sel, new_ss);
        if (rv < 0) {
            VERBOSE(("RETfar_pm: parse_selector (selector = %04x, rv = %d, %s)", ss_sel.selector, rv));
            EXCEPTION(GP_EXCEPTION, ss_sel.idx);
        }

        /* check stack segment descriptor */
        if (!ss_sel.desc.s) {
            VERBOSE(("RETfar_pm: stack segment is system segment"));
            EXCEPTION(GP_EXCEPTION, cs_sel.idx);
        }
        if (ss_sel.desc.u.seg.c) {
            VERBOSE(("RETfar_pm: stack segment is code segment"));
            EXCEPTION(GP_EXCEPTION, cs_sel.idx);
        }
        if (!ss_sel.desc.u.seg.wr) {
            VERBOSE(("RETfar_pm: stack segment is read-only data segment"));
            EXCEPTION(GP_EXCEPTION, cs_sel.idx);
        }

        /* check privilege level */
        if (ss_sel.rpl != cs_sel.rpl) {
            VERBOSE(("RETfar_pm: RPL[SS](%d) != RPL[CS](%d)", ss_sel.rpl, cs_sel.rpl));
            EXCEPTION(GP_EXCEPTION, cs_sel.idx);
        }
        if (ss_sel.desc.dpl != cs_sel.rpl) {
            VERBOSE(("RETfar_pm: DPL[SS](%d) != RPL[CS](%d)", ss_sel.desc.dpl, cs_sel.rpl));
            EXCEPTION(GP_EXCEPTION, cs_sel.idx);
        }

        /* not present */
        if (selector_is_not_present(&ss_sel)) {
            VERBOSE(("RETfar_pm: stack segment is not present"));
            EXCEPTION(SS_EXCEPTION, ss_sel.idx);
        }

        /* check code segment limit */
        if (new_ip > cs_sel.desc.u.seg.limit) {
            VERBOSE(("RETfar_pm: new_ip is out of range. new_ip = %08x, limit = %08x", new_ip, cs_sel.desc.u.seg.limit));
            EXCEPTION(GP_EXCEPTION, 0);
        }

        VERBOSE(("RETfar_pm: new_ip = %08x, new_cs = %04x", new_ip, cs_sel.selector));
        VERBOSE(("RETfar_pm: new_sp = %08x, new_ss = %04x", new_sp, ss_sel.selector));

        load_cs(cs_sel.selector, &cs_sel.desc, cs_sel.rpl);
        SET_EIP(new_ip);

        load_ss(ss_sel.selector, &ss_sel.desc, cs_sel.rpl);
        if (CPU_STAT_SS32) {
            CPU_ESP = new_sp + nbytes;
        } else {
            CPU_SP = (UINT16)(new_sp + nbytes);
        }

        /* check segment register */
        for (i = 0; i < CPU_SEGREG_NUM; i++) {
            descriptor_t *dp;
            BOOL valid;

            dp = &CPU_STAT_SREG(i);
            if ((!dp->u.seg.c || !dp->u.seg.ec)
                    && (CPU_STAT_SREG(i).dpl < CPU_STAT_CPL)) {
                /* segment register is invalid */
                CPU_REGS_SREG(i) = 0;
                CPU_STAT_SREG_CLEAR(i);
                continue;
            }

            rv = parse_selector(&temp_sel, CPU_REGS_SREG(i));
            if (rv < 0) {
                /* segment register is invalid */
                CPU_REGS_SREG(i) = 0;
                CPU_STAT_SREG_CLEAR(i);
                continue;
            }

            valid = TRUE;
            if (!temp_sel.desc.s) {
                /* system segment */
                valid = FALSE;
            }
            if (temp_sel.desc.u.seg.c && !temp_sel.desc.u.seg.wr) {
                /* execute-only code segment */
                valid = FALSE;
            }
            if (!temp_sel.desc.u.seg.c || !temp_sel.desc.u.seg.ec) {
                if (CPU_STAT_CPL > temp_sel.desc.dpl) {
                    valid = FALSE;
                }
            }

            if (!valid) {
                /* segment register is invalid */
                CPU_REGS_SREG(i) = 0;
                CPU_STAT_SREG(i).valid = 0;
            }
        }
    }

    VERBOSE(("RETfar_pm: new EIP = %04x:%08x, ESP = %04x:%08x", CPU_CS, CPU_EIP, CPU_SS, CPU_ESP));
}
Ejemplo n.º 3
0
BX_CPU_C::return_protected(bxInstruction_c *i, Bit16u pop_bytes)
{
  Bit16u raw_cs_selector, raw_ss_selector;
  bx_selector_t cs_selector, ss_selector;
  bx_descriptor_t cs_descriptor, ss_descriptor;
  Bit32u stack_param_offset;
  bx_address return_RIP, return_RSP, temp_RSP;
  Bit32u dword1, dword2;

  /* + 6+N*2: SS      | +12+N*4:     SS | +24+N*8      SS */
  /* + 4+N*2: SP      | + 8+N*4:    ESP | +16+N*8     RSP */
  /*          parm N  | +        parm N | +        parm N */
  /*          parm 3  | +        parm 3 | +        parm 3 */
  /*          parm 2  | +        parm 2 | +        parm 2 */
  /* + 4:     parm 1  | + 8:     parm 1 | +16:     parm 1 */
  /* + 2:     CS      | + 4:         CS | + 8:         CS */
  /* + 0:     IP      | + 0:        EIP | + 0:        RIP */

#if BX_SUPPORT_X86_64
  if (StackAddrSize64()) temp_RSP = RSP;
  else
#endif
  {
    if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_RSP = ESP;
    else temp_RSP = SP;
  }

#if BX_SUPPORT_X86_64
  if (i->os64L()) {
    raw_cs_selector = (Bit16u) read_virtual_qword_64(BX_SEG_REG_SS, temp_RSP + 8);
    return_RIP      =          read_virtual_qword_64(BX_SEG_REG_SS, temp_RSP);
    stack_param_offset = 16;
  }
  else
#endif
  if (i->os32L()) {
    raw_cs_selector = (Bit16u) read_virtual_dword(BX_SEG_REG_SS, temp_RSP + 4);
    return_RIP      =          read_virtual_dword(BX_SEG_REG_SS, temp_RSP);
    stack_param_offset = 8;
  }
  else {
    raw_cs_selector = read_virtual_word(BX_SEG_REG_SS, temp_RSP + 2);
    return_RIP      = read_virtual_word(BX_SEG_REG_SS, temp_RSP);
    stack_param_offset = 4;
  }

  // selector must be non-null else #GP(0)
  if ((raw_cs_selector & 0xfffc) == 0) {
    BX_ERROR(("return_protected: CS selector null"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  parse_selector(raw_cs_selector, &cs_selector);

  // selector index must be within its descriptor table limits,
  // else #GP(selector)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);

  // descriptor AR byte must indicate code segment, else #GP(selector)
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // return selector RPL must be >= CPL, else #GP(return selector)
  if (cs_selector.rpl < CPL) {
    BX_ERROR(("return_protected: CS.rpl < CPL"));
    exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
  }

  // check code-segment descriptor
  check_cs(&cs_descriptor, raw_cs_selector, 0, cs_selector.rpl);

  // if return selector RPL == CPL then
  // RETURN TO SAME PRIVILEGE LEVEL
  if (cs_selector.rpl == CPL)
  {
    BX_DEBUG(("return_protected: return to SAME PRIVILEGE LEVEL"));

    branch_far64(&cs_selector, &cs_descriptor, return_RIP, CPL);

#if BX_SUPPORT_X86_64
    if (StackAddrSize64())
      RSP += stack_param_offset + pop_bytes;
    else
#endif
    {
      if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
        RSP = ESP + stack_param_offset + pop_bytes;
      else
         SP += stack_param_offset + pop_bytes;
    }
    return;
  }
  /* RETURN TO OUTER PRIVILEGE LEVEL */
  else {
    /* + 6+N*2: SS      | +12+N*4:     SS | +24+N*8      SS */
    /* + 4+N*2: SP      | + 8+N*4:    ESP | +16+N*8     RSP */
    /*          parm N  | +        parm N | +        parm N */
    /*          parm 3  | +        parm 3 | +        parm 3 */
    /*          parm 2  | +        parm 2 | +        parm 2 */
    /* + 4:     parm 1  | + 8:     parm 1 | +16:     parm 1 */
    /* + 2:     CS      | + 4:         CS | + 8:         CS */
    /* + 0:     IP      | + 0:        EIP | + 0:        RIP */

    BX_DEBUG(("return_protected: return to OUTER PRIVILEGE LEVEL"));

#if BX_SUPPORT_X86_64
    if (i->os64L()) {
      raw_ss_selector = read_virtual_word_64 (BX_SEG_REG_SS, temp_RSP + 24 + pop_bytes);
      return_RSP      = read_virtual_qword_64(BX_SEG_REG_SS, temp_RSP + 16 + pop_bytes);
    }
    else
#endif
    if (i->os32L()) {
      raw_ss_selector = read_virtual_word (BX_SEG_REG_SS, temp_RSP + 12 + pop_bytes);
      return_RSP      = read_virtual_dword(BX_SEG_REG_SS, temp_RSP +  8 + pop_bytes);
    }
    else {
      raw_ss_selector = read_virtual_word(BX_SEG_REG_SS, temp_RSP + 6 + pop_bytes);
      return_RSP      = read_virtual_word(BX_SEG_REG_SS, temp_RSP + 4 + pop_bytes);
    }

    /* selector index must be within its descriptor table limits,
     * else #GP(selector) */
    parse_selector(raw_ss_selector, &ss_selector);

    if ((raw_ss_selector & 0xfffc) == 0) {
      if (long_mode()) {
        if (! IS_LONG64_SEGMENT(cs_descriptor) || (cs_selector.rpl == 3)) {
          BX_ERROR(("return_protected: SS selector null"));
          exception(BX_GP_EXCEPTION, 0, 0);
        }
      }
      else // not in long or compatibility mode
      {
        BX_ERROR(("return_protected: SS selector null"));
        exception(BX_GP_EXCEPTION, 0, 0);
      }
    }

    fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
    parse_descriptor(dword1, dword2, &ss_descriptor);

    /* selector RPL must = RPL of the return CS selector,
     * else #GP(selector) */
    if (ss_selector.rpl != cs_selector.rpl) {
      BX_ERROR(("return_protected: ss.rpl != cs.rpl"));
      exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
    }

    /* descriptor AR byte must indicate a writable data segment,
     * else #GP(selector) */
    if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
         IS_CODE_SEGMENT(ss_descriptor.type) ||
        !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
    {
      BX_ERROR(("return_protected: SS.AR byte not writable data"));
      exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
    }

    /* descriptor dpl must = RPL of the return CS selector,
     * else #GP(selector) */
    if (ss_descriptor.dpl != cs_selector.rpl) {
      BX_ERROR(("return_protected: SS.dpl != cs.rpl"));
      exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
    }

    /* segment must be present else #SS(selector) */
    if (! IS_PRESENT(ss_descriptor)) {
      BX_ERROR(("return_protected: ss.present == 0"));
      exception(BX_SS_EXCEPTION, raw_ss_selector & 0xfffc, 0);
    }

    branch_far64(&cs_selector, &cs_descriptor, return_RIP, cs_selector.rpl);

    /* load SS:SP from stack */
    /* load SS-cache with return SS descriptor */
    load_ss(&ss_selector, &ss_descriptor, cs_selector.rpl);

#if BX_SUPPORT_X86_64
    if (StackAddrSize64())
      RSP = return_RSP + pop_bytes;
    else
#endif
    if (ss_descriptor.u.segment.d_b)
      RSP = (Bit32u) return_RSP + pop_bytes;
    else
      SP  = (Bit16u) return_RSP + pop_bytes;

    /* check ES, DS, FS, GS for validity */
    validate_seg_regs();
  }
}
Ejemplo n.º 4
0
/*---
 * IRET_pm: OUTER-PRIVILEGE
 */
static void
IRET_pm_protected_mode_return_outer_privilege(const selector_t *cs_sel, UINT32 new_ip, UINT32 new_flags)
{
    descriptor_t *dp;
    selector_t ss_sel;
    UINT32 mask;
    UINT32 sp;
    UINT32 new_sp;
    UINT16 new_ss;
    int rv;
    int i;

    VERBOSE(("IRET_pm: RETURN-OUTER-PRIVILEGE-LEVEL"));

    if (CPU_STAT_SS32) {
        sp = CPU_ESP;
    } else {
        sp = CPU_SP;
    }
    if (CPU_INST_OP32) {
        STACK_POP_CHECK(CPU_REGS_SREG(CPU_SS_INDEX), &CPU_STAT_SREG(CPU_SS_INDEX), sp, 20);
        new_sp = cpu_vmemoryread_d(CPU_SS_INDEX, sp + 12);
        new_ss = cpu_vmemoryread_w(CPU_SS_INDEX, sp + 16);
    } else {
        STACK_POP_CHECK(CPU_REGS_SREG(CPU_SS_INDEX), &CPU_STAT_SREG(CPU_SS_INDEX), sp, 10);
        new_sp = cpu_vmemoryread_w(CPU_SS_INDEX, sp + 6);
        new_ss = cpu_vmemoryread_w(CPU_SS_INDEX, sp + 8);
    }
    VERBOSE(("IRET_pm: new_sp = 0x%08x, new_ss = 0x%04x", new_sp, new_ss));

    rv = parse_selector(&ss_sel, new_ss);
    if (rv < 0) {
        VERBOSE(("IRET_pm: parse_selector (selector = %04x, rv = %d)", ss_sel.selector, rv));
        EXCEPTION(GP_EXCEPTION, ss_sel.idx);
    }

    /* check privilege level */
    if (ss_sel.rpl != cs_sel->rpl) {
        VERBOSE(("IRET_pm: RPL[SS](%d) != RPL[CS](%d)", ss_sel.rpl, cs_sel->rpl));
        EXCEPTION(GP_EXCEPTION, ss_sel.idx);
    }
    if (ss_sel.desc.dpl != cs_sel->rpl) {
        VERBOSE(("IRET_pm: DPL[SS](%d) != RPL[CS](%d)", ss_sel.desc.dpl, cs_sel->rpl));
        EXCEPTION(GP_EXCEPTION, ss_sel.idx);
    }

    /* check stack segment descriptor */
    if (!ss_sel.desc.s) {
        VERBOSE(("IRET_pm: stack segment is system segment"));
        EXCEPTION(GP_EXCEPTION, ss_sel.idx);
    }
    if (ss_sel.desc.u.seg.c) {
        VERBOSE(("IRET_pm: stack segment is code segment"));
        EXCEPTION(GP_EXCEPTION, ss_sel.idx);
    }
    if (!ss_sel.desc.u.seg.wr) {
        VERBOSE(("IRET_pm: stack segment is read-only data segment"));
        EXCEPTION(GP_EXCEPTION, ss_sel.idx);
    }

    /* not present */
    if (selector_is_not_present(&ss_sel)) {
        VERBOSE(("IRET_pm: stack segment is not present"));
        EXCEPTION(SS_EXCEPTION, ss_sel.idx);
    }

    /* check code segment limit */
    if (new_ip > cs_sel->desc.u.seg.limit) {
        VERBOSE(("IRET_pm: new_ip is out of range. new_ip = %08x, limit = %08x", new_ip, cs_sel->desc.u.seg.limit));
        EXCEPTION(GP_EXCEPTION, 0);
    }

    mask = 0;
    if (CPU_INST_OP32)
        mask |= RF_FLAG;
    if (CPU_STAT_CPL <= CPU_STAT_IOPL)
        mask |= I_FLAG;
    if (CPU_STAT_CPL == 0) {
        mask |= IOPL_FLAG;
        if (CPU_INST_OP32) {
            mask |= VM_FLAG|VIF_FLAG|VIP_FLAG;
        }
    }

    /* set new register */
    load_cs(cs_sel->selector, &cs_sel->desc, cs_sel->rpl);
    SET_EIP(new_ip);

    set_eflags(new_flags, mask);

    load_ss(ss_sel.selector, &ss_sel.desc, cs_sel->rpl);
    if (CPU_STAT_SS32) {
        CPU_ESP = new_sp;
    } else {
        CPU_SP = (UINT16)new_sp;
    }

    /* check segment register */
    for (i = 0; i < CPU_SEGREG_NUM; i++) {
        if ((i != CPU_CS_INDEX) && (i != CPU_SS_INDEX)) {
            dp = &CPU_STAT_SREG(i);
            if ((!dp->u.seg.c || !dp->u.seg.ec)
                    && (CPU_STAT_SREG(i).dpl < CPU_STAT_CPL)) {
                /* segment register is invalid */
                CPU_REGS_SREG(i) = 0;
                CPU_STAT_SREG_CLEAR(i);
            }
        }
    }
}
Ejemplo n.º 5
0
/*---
 * CALLfar_pm: call gate (MORE-PRIVILEGE)
 */
static void
CALLfar_pm_call_gate_more_privilege(const selector_t *callgate_sel, selector_t *cs_sel)
{
    UINT32 param[32];	/* copy param */
    selector_t ss_sel;
    UINT32 old_eip, old_esp;
    UINT32 new_esp;
    UINT16 old_cs, old_ss;
    UINT16 new_ss;
    int param_count;
    int i;
    int rv;

    VERBOSE(("CALLfar_pm: MORE-PRIVILEGE"));

    /* save register */
    old_cs = CPU_CS;
    old_ss = CPU_SS;
    old_eip = CPU_EIP;
    old_esp = CPU_ESP;
    if (!CPU_STAT_SS32) {
        old_esp &= 0xffff;
    }

    /* get stack pointer from TSS */
    get_stack_pointer_from_tss(cs_sel->desc.dpl, &new_ss, &new_esp);

    /* parse stack segment descriptor */
    rv = parse_selector(&ss_sel, new_ss);
    if (rv < 0) {
        VERBOSE(("CALLfar_pm: parse_selector (selector = %04x, rv = %d)", new_ss, rv));
        EXCEPTION(TS_EXCEPTION, ss_sel.idx);
    }

    /* check privilege level */
    if (ss_sel.rpl != cs_sel->desc.dpl) {
        VERBOSE(("CALLfar_pm: RPL[SS](%d) != DPL[CS](%d)", ss_sel.rpl, cs_sel->desc.dpl));
        EXCEPTION(TS_EXCEPTION, ss_sel.idx);
    }
    if (ss_sel.desc.dpl != cs_sel->desc.dpl) {
        VERBOSE(("CALLfar_pm: DPL[SS](%d) != DPL[CS](%d)", ss_sel.desc.dpl, cs_sel->desc.dpl));
        EXCEPTION(TS_EXCEPTION, ss_sel.idx);
    }

    /* stack segment must be writable data segment. */
    if (!ss_sel.desc.s) {
        VERBOSE(("CALLfar_pm: stack segment is system segment"));
        EXCEPTION(TS_EXCEPTION, ss_sel.idx);
    }
    if (ss_sel.desc.u.seg.c) {
        VERBOSE(("CALLfar_pm: stack segment is code segment"));
        EXCEPTION(TS_EXCEPTION, ss_sel.idx);
    }
    if (!ss_sel.desc.u.seg.wr) {
        VERBOSE(("CALLfar_pm: stack segment is read-only data segment"));
        EXCEPTION(TS_EXCEPTION, ss_sel.idx);
    }

    /* not present */
    if (selector_is_not_present(&ss_sel)) {
        VERBOSE(("CALLfar_pm: stack segment selector is not present"));
        EXCEPTION(SS_EXCEPTION, ss_sel.idx);
    }

    param_count = callgate_sel->desc.u.gate.count;
    VERBOSE(("CALLfar_pm: param_count = %d", param_count));

    if (callgate_sel->desc.type == CPU_SYSDESC_TYPE_CALL_32) {
        STACK_PUSH_CHECK(ss_sel.idx, &ss_sel.desc, new_esp, 16 + param_count * 4);

        /* dump param */
        for (i = 0; i < param_count; i++) {
            param[i] = cpu_vmemoryread_d(CPU_SS_INDEX, old_esp + i * 4);
            VERBOSE(("CALLfar_pm: get param[%d] = %08x", i, param[i]));
        }

        load_ss(ss_sel.selector, &ss_sel.desc, ss_sel.desc.dpl);
        if (CPU_STAT_SS32) {
            CPU_ESP = new_esp;
        } else {
            CPU_SP = (UINT16)new_esp;
        }

        load_cs(cs_sel->selector, &cs_sel->desc, cs_sel->desc.dpl);
        SET_EIP(callgate_sel->desc.u.gate.offset);

        PUSH0_32(old_ss);
        PUSH0_32(old_esp);

        /* restore param */
        for (i = param_count; i > 0; i--) {
            PUSH0_32(param[i - 1]);
            VERBOSE(("CALLfar_pm: set param[%d] = %08x", i - 1, param[i - 1]));
        }

        PUSH0_32(old_cs);
        PUSH0_32(old_eip);
    } else {
        STACK_PUSH_CHECK(ss_sel.idx, &ss_sel.desc, new_esp, 8 + param_count * 2);

        /* dump param */
        for (i = 0; i < param_count; i++) {
            param[i] = cpu_vmemoryread_w(CPU_SS_INDEX, old_esp + i * 2);
            VERBOSE(("CALLfar_pm: get param[%d] = %04x", i, param[i]));
        }

        load_ss(ss_sel.selector, &ss_sel.desc, ss_sel.desc.dpl);
        if (CPU_STAT_SS32) {
            CPU_ESP = new_esp;
        } else {
            CPU_SP = (UINT16)new_esp;
        }

        load_cs(cs_sel->selector, &cs_sel->desc, cs_sel->desc.dpl);
        SET_EIP(callgate_sel->desc.u.gate.offset);

        PUSH0_16(old_ss);
        PUSH0_16(old_esp);

        /* restore param */
        for (i = param_count; i > 0; i--) {
            PUSH0_16(param[i - 1]);
            VERBOSE(("CALLfar_pm: set param[%d] = %04x", i - 1, param[i - 1]));
        }

        PUSH0_16(old_cs);
        PUSH0_16(old_eip);
    }
}
Ejemplo n.º 6
0
void BX_CPU_C::long_mode_int(Bit8u vector, bx_bool is_INT, bx_bool is_error_code, Bit16u error_code)
{
  // long mode interrupt
  Bit64u tmp1, tmp2;

  bx_descriptor_t gate_descriptor, cs_descriptor;
  bx_selector_t cs_selector;

  // interrupt vector must be within IDT table limits,
  // else #GP(vector number*16 + 2 + EXT)
  if ((vector*16 + 15) > BX_CPU_THIS_PTR idtr.limit) {
    BX_ERROR(("interrupt(long mode): vector must be within IDT table limits, IDT.limit = 0x%x", BX_CPU_THIS_PTR idtr.limit));
    exception(BX_GP_EXCEPTION, vector*16 + 2, 0);
  }

  access_read_linear(BX_CPU_THIS_PTR idtr.base + vector*16,     8, 0, BX_READ, &tmp1);
  access_read_linear(BX_CPU_THIS_PTR idtr.base + vector*16 + 8, 8, 0, BX_READ, &tmp2);

  if (tmp2 & BX_CONST64(0x00001F0000000000)) {
    BX_ERROR(("interrupt(long mode): IDT entry extended attributes DWORD4 TYPE != 0"));
    exception(BX_GP_EXCEPTION, vector*16 + 2, 0);
  }

  Bit32u dword1 = GET32L(tmp1);
  Bit32u dword2 = GET32H(tmp1);
  Bit32u dword3 = GET32L(tmp2);

  parse_descriptor(dword1, dword2, &gate_descriptor);

  if ((gate_descriptor.valid==0) || gate_descriptor.segment)
  {
    BX_ERROR(("interrupt(long mode): gate descriptor is not valid sys seg"));
    exception(BX_GP_EXCEPTION, vector*16 + 2, 0);
  }

  // descriptor AR byte must indicate interrupt gate, trap gate,
  // or task gate, else #GP(vector*16 + 2 + EXT)
  if (gate_descriptor.type != BX_386_INTERRUPT_GATE &&
      gate_descriptor.type != BX_386_TRAP_GATE)
  {
    BX_ERROR(("interrupt(long mode): unsupported gate type %u",
        (unsigned) gate_descriptor.type));
    exception(BX_GP_EXCEPTION, vector*16 + 2, 0);
  }

  // if software interrupt, then gate descripor DPL must be >= CPL,
  // else #GP(vector * 16 + 2 + EXT)
  if (is_INT && (gate_descriptor.dpl < CPL))
  {
    BX_ERROR(("interrupt(long mode): is_INT && (dpl < CPL)"));
    exception(BX_GP_EXCEPTION, vector*16 + 2, 0);
  }

  // Gate must be present, else #NP(vector * 16 + 2 + EXT)
  if (! IS_PRESENT(gate_descriptor)) {
    BX_ERROR(("interrupt(long mode): p == 0"));
    exception(BX_NP_EXCEPTION, vector*16 + 2, 0);
  }

  Bit16u gate_dest_selector = gate_descriptor.u.gate.dest_selector;
  Bit64u gate_dest_offset   = ((Bit64u)dword3 << 32) |
                       gate_descriptor.u.gate.dest_offset;

  unsigned ist = gate_descriptor.u.gate.param_count & 0x7;

  // examine CS selector and descriptor given in gate descriptor
  // selector must be non-null else #GP(EXT)
  if ((gate_dest_selector & 0xfffc) == 0) {
    BX_ERROR(("int_trap_gate(long mode): selector null"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  parse_selector(gate_dest_selector, &cs_selector);

  // selector must be within its descriptor table limits
  // else #GP(selector+EXT)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // descriptor AR byte must indicate code seg
  // and code segment descriptor DPL<=CPL, else #GP(selector+EXT)
  if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
      IS_DATA_SEGMENT(cs_descriptor.type) ||
      cs_descriptor.dpl>CPL)
  {
    BX_ERROR(("interrupt(long mode): not accessable or not code segment"));
    exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0);
  }

  // check that it's a 64 bit segment
  if (! IS_LONG64_SEGMENT(cs_descriptor) || cs_descriptor.u.segment.d_b)
  {
    BX_ERROR(("interrupt(long mode): must be 64 bit segment"));
    exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0);
  }

  // segment must be present, else #NP(selector + EXT)
  if (! IS_PRESENT(cs_descriptor)) {
    BX_ERROR(("interrupt(long mode): segment not present"));
    exception(BX_NP_EXCEPTION, cs_selector.value & 0xfffc, 0);
  }

  // if code segment is non-conforming and DPL < CPL then
  // INTERRUPT TO INNER PRIVILEGE:
  if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && cs_descriptor.dpl<CPL)
  {
    Bit64u RSP_for_cpl_x;

    BX_DEBUG(("interrupt(long mode): INTERRUPT TO INNER PRIVILEGE"));

    // check selector and descriptor for new stack in current TSS
    if (ist != 0) {
      BX_DEBUG(("interrupt(long mode): trap to IST, vector = %d", ist));
      get_RSP_from_TSS(ist+3, &RSP_for_cpl_x);
    }
    else {
      get_RSP_from_TSS(cs_descriptor.dpl, &RSP_for_cpl_x);
    }

    RSP_for_cpl_x &= BX_CONST64(0xfffffffffffffff0);

    Bit64u old_CS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
    Bit64u old_RIP = RIP;
    Bit64u old_SS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
    Bit64u old_RSP = RSP;

    if (! IsCanonical(RSP_for_cpl_x)) {
      // #SS(selector) when changing priviledge level
      BX_ERROR(("interrupt(long mode): canonical address failure %08x%08x",
         GET32H(RSP_for_cpl_x), GET32L(RSP_for_cpl_x)));
      exception(BX_SS_EXCEPTION, old_SS & 0xfffc, 0);
    }

    // push old stack long pointer onto new stack
    write_new_stack_qword_64(RSP_for_cpl_x -  8, cs_descriptor.dpl, old_SS);
    write_new_stack_qword_64(RSP_for_cpl_x - 16, cs_descriptor.dpl, old_RSP);
    write_new_stack_qword_64(RSP_for_cpl_x - 24, cs_descriptor.dpl, read_eflags());
    // push long pointer to return address onto new stack
    write_new_stack_qword_64(RSP_for_cpl_x - 32, cs_descriptor.dpl, old_CS);
    write_new_stack_qword_64(RSP_for_cpl_x - 40, cs_descriptor.dpl, old_RIP);
    RSP_for_cpl_x -= 40;

    if (is_error_code) {
      RSP_for_cpl_x -= 8;
      write_new_stack_qword_64(RSP_for_cpl_x, cs_descriptor.dpl, error_code);
    }

    bx_selector_t ss_selector;
    bx_descriptor_t ss_descriptor;

    // set up a null descriptor
    parse_selector(0, &ss_selector);
    parse_descriptor(0, 0, &ss_descriptor);

    // load CS:RIP (guaranteed to be in 64 bit mode)
    branch_far64(&cs_selector, &cs_descriptor, gate_dest_offset, cs_descriptor.dpl);

    // set up null SS descriptor
    load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);
    RSP = RSP_for_cpl_x;

    // if INTERRUPT GATE set IF to 0
    if (!(gate_descriptor.type & 1)) // even is int-gate
      BX_CPU_THIS_PTR clear_IF();
    BX_CPU_THIS_PTR clear_TF();
    BX_CPU_THIS_PTR clear_VM();
    BX_CPU_THIS_PTR clear_RF();
    BX_CPU_THIS_PTR clear_NT();
    return;
  }

  // if code segment is conforming OR code segment DPL = CPL then
  // INTERRUPT TO SAME PRIVILEGE LEVEL:
  if (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) || cs_descriptor.dpl==CPL)
  {
    BX_DEBUG(("interrupt(long mode): INTERRUPT TO SAME PRIVILEGE"));

    Bit64u old_RSP = RSP;

    // check selector and descriptor for new stack in current TSS
    if (ist > 0) {
      BX_DEBUG(("interrupt(long mode): trap to IST, vector = %d", ist));
      get_RSP_from_TSS(ist+3, &RSP);
    }

    // align stack
    RSP &= BX_CONST64(0xfffffffffffffff0);

    // push flags onto stack
    // push current CS selector onto stack
    // push return offset onto stack
    write_new_stack_qword_64(RSP - 8,  cs_descriptor.dpl,
         BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
    write_new_stack_qword_64(RSP - 16, cs_descriptor.dpl, old_RSP);
    write_new_stack_qword_64(RSP - 24, cs_descriptor.dpl, read_eflags());
    write_new_stack_qword_64(RSP - 32,  cs_descriptor.dpl,
         BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
    write_new_stack_qword_64(RSP - 40, cs_descriptor.dpl, RIP);
    RSP -= 40;

    if (is_error_code) {
      RSP -= 8;
      write_new_stack_qword_64(RSP, cs_descriptor.dpl, error_code);
    }

    // set the RPL field of CS to CPL
    branch_far64(&cs_selector, &cs_descriptor, gate_dest_offset, CPL);

    // if interrupt gate then set IF to 0
    if (!(gate_descriptor.type & 1)) // even is int-gate
      BX_CPU_THIS_PTR clear_IF();
    BX_CPU_THIS_PTR clear_TF();
    BX_CPU_THIS_PTR clear_VM();
    BX_CPU_THIS_PTR clear_RF();
    BX_CPU_THIS_PTR clear_NT();
    return;
  }

  // else #GP(CS selector + ext)
  BX_ERROR(("interrupt(long mode): bad descriptor type=%u, descriptor.dpl=%u, CPL=%u",
    (unsigned) cs_descriptor.type, (unsigned) cs_descriptor.dpl, (unsigned) CPL));
  BX_ERROR(("cs.segment = %u", (unsigned) cs_descriptor.segment));
  exception(BX_GP_EXCEPTION, cs_selector.value & 0xfffc, 0);
}
Ejemplo n.º 7
0
BX_CPU_C::call_gate64(bx_selector_t *gate_selector)
{
  bx_selector_t cs_selector;
  Bit32u dword1, dword2, dword3;
  bx_descriptor_t cs_descriptor;
  bx_descriptor_t gate_descriptor;

  // examine code segment selector in call gate descriptor
  BX_DEBUG(("call_gate64: CALL 64bit call gate"));

  fetch_raw_descriptor_64(gate_selector, &dword1, &dword2, &dword3, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &gate_descriptor);

  Bit16u dest_selector = gate_descriptor.u.gate.dest_selector;
  // selector must not be null else #GP(0)
  if ((dest_selector & 0xfffc) == 0) {
    BX_ERROR(("call_gate64: selector in gate null"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  parse_selector(dest_selector, &cs_selector);
  // selector must be within its descriptor table limits,
  //   else #GP(code segment selector)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // find the RIP in the gate_descriptor
  Bit64u new_RIP = gate_descriptor.u.gate.dest_offset;
  new_RIP |= ((Bit64u)dword3 << 32);

  // AR byte of selected descriptor must indicate code segment,
  //   else #GP(code segment selector)
  // DPL of selected descriptor must be <= CPL,
  // else #GP(code segment selector)
  if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
      IS_DATA_SEGMENT(cs_descriptor.type) ||
      cs_descriptor.dpl > CPL)
  {
    BX_ERROR(("call_gate64: selected descriptor is not code"));
    exception(BX_GP_EXCEPTION, dest_selector & 0xfffc, 0);
  }

  // In long mode, only 64-bit call gates are allowed, and they must point
  // to 64-bit code segments, else #GP(selector)
  if (! IS_LONG64_SEGMENT(cs_descriptor) || cs_descriptor.u.segment.d_b)
  {
    BX_ERROR(("call_gate64: not 64-bit code segment in call gate 64"));
    exception(BX_GP_EXCEPTION, dest_selector & 0xfffc, 0);
  }

  // code segment must be present else #NP(selector)
  if (! IS_PRESENT(cs_descriptor)) {
    BX_ERROR(("call_gate64: code segment not present !"));
    exception(BX_NP_EXCEPTION, dest_selector & 0xfffc, 0);
  }

  Bit64u old_CS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
  Bit64u old_RIP = RIP;

  // CALL GATE TO MORE PRIVILEGE
  // if non-conforming code segment and DPL < CPL then
  if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL))
  {
    Bit64u RSP_for_cpl_x;

    BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL"));

    // get new RSP for new privilege level from TSS
    get_RSP_from_TSS(cs_descriptor.dpl, &RSP_for_cpl_x);

    Bit64u old_SS  = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
    Bit64u old_RSP = RSP;

    if (! IsCanonical(RSP_for_cpl_x)) {
      // #SS(selector) when changing priviledge level
      BX_ERROR(("call_gate64: canonical address failure %08x%08x",
         GET32H(RSP_for_cpl_x), GET32L(RSP_for_cpl_x)));
      exception(BX_SS_EXCEPTION, old_SS & 0xfffc, 0);
    }

    // push old stack long pointer onto new stack
    write_new_stack_qword_64(RSP_for_cpl_x -  8, cs_descriptor.dpl, old_SS);
    write_new_stack_qword_64(RSP_for_cpl_x - 16, cs_descriptor.dpl, old_RSP);
    // push long pointer to return address onto new stack
    write_new_stack_qword_64(RSP_for_cpl_x - 24, cs_descriptor.dpl, old_CS);
    write_new_stack_qword_64(RSP_for_cpl_x - 32, cs_descriptor.dpl, old_RIP);
    RSP_for_cpl_x -= 32;

    // prepare new stack null SS selector
    bx_selector_t ss_selector;
    bx_descriptor_t ss_descriptor;

    // set up a null descriptor
    parse_selector(0, &ss_selector);
    parse_descriptor(0, 0, &ss_descriptor);

    // load CS:RIP (guaranteed to be in 64 bit mode)
    branch_far64(&cs_selector, &cs_descriptor, new_RIP, cs_descriptor.dpl);

    // set up null SS descriptor
    load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);
    RSP = RSP_for_cpl_x;
  }
  else
  {
    BX_DEBUG(("CALL GATE TO SAME PRIVILEGE"));

    // push to 64-bit stack, switch to long64 guaranteed
    write_new_stack_qword_64(RSP -  8, CPL, old_CS);
    write_new_stack_qword_64(RSP - 16, CPL, old_RIP);
    RSP -= 16;

    // load CS:RIP (guaranteed to be in 64 bit mode)
    branch_far64(&cs_selector, &cs_descriptor, new_RIP, CPL);
  }
}
Ejemplo n.º 8
0
BX_CPU_C::call_protected(bxInstruction_c *i, Bit16u cs_raw, bx_address disp)
{
  bx_selector_t cs_selector;
  Bit32u dword1, dword2;
  bx_descriptor_t cs_descriptor;

  /* new cs selector must not be null, else #GP(0) */
  if ((cs_raw & 0xfffc) == 0) {
    BX_ERROR(("call_protected: CS selector null"));
    exception(BX_GP_EXCEPTION, 0, 0);
  }

  parse_selector(cs_raw, &cs_selector);
  // check new CS selector index within its descriptor limits,
  // else #GP(new CS selector)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // examine AR byte of selected descriptor for various legal values
  if (cs_descriptor.valid==0) {
    BX_ERROR(("call_protected: invalid CS descriptor"));
    exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
  }

  if (cs_descriptor.segment)   // normal segment
  {
    check_cs(&cs_descriptor, cs_raw, BX_SELECTOR_RPL(cs_raw), CPL);

#if BX_SUPPORT_X86_64
    if (i->os64L()) {
      // push return address onto stack (CS padded to 64bits)
      push_64((Bit64u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_64(RIP);
    }
    else
#endif
    if (i->os32L()) {
      // push return address onto stack (CS padded to 32bits)
      push_32((Bit32u) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_32(EIP);
    }
    else {
      // push return address onto stack
      push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_16(IP);
    }

    // load code segment descriptor into CS cache
    // load CS with new code segment selector
    // set RPL of CS to CPL
    branch_far64(&cs_selector, &cs_descriptor, disp, CPL);

    return;
  }
  else { // gate & special segment
    bx_descriptor_t  gate_descriptor = cs_descriptor;
    bx_selector_t    gate_selector = cs_selector;
    Bit32u new_EIP;
    Bit16u dest_selector;
    Bit16u          raw_tss_selector;
    bx_selector_t   tss_selector;
    bx_descriptor_t tss_descriptor;
    Bit32u temp_eIP;

    // descriptor DPL must be >= CPL else #GP(gate selector)
    if (gate_descriptor.dpl < CPL) {
      BX_ERROR(("call_protected: descriptor.dpl < CPL"));
      exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }

    // descriptor DPL must be >= gate selector RPL else #GP(gate selector)
    if (gate_descriptor.dpl < gate_selector.rpl) {
      BX_ERROR(("call_protected: descriptor.dpl < selector.rpl"));
      exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }

#if BX_SUPPORT_X86_64
    if (long_mode()) {
      // call gate type is higher priority than non-present bit check
      if (gate_descriptor.type != BX_386_CALL_GATE) {
        BX_ERROR(("call_protected: gate type %u unsupported in long mode", (unsigned) gate_descriptor.type));
        exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
      }
    }
    else
#endif
    {
      switch (gate_descriptor.type) {
        case BX_SYS_SEGMENT_AVAIL_286_TSS:
        case BX_SYS_SEGMENT_AVAIL_386_TSS:
        case BX_TASK_GATE:
        case BX_286_CALL_GATE:
        case BX_386_CALL_GATE:
          break;
        default:
          BX_ERROR(("call_protected(): gate.type(%u) unsupported", (unsigned) gate_descriptor.type));
          exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
      }
    }

    // gate descriptor must be present else #NP(gate selector)
    if (! IS_PRESENT(gate_descriptor)) {
      BX_ERROR(("call_protected: gate not present"));
      exception(BX_NP_EXCEPTION, cs_raw & 0xfffc, 0);
    }

#if BX_SUPPORT_X86_64
    if (long_mode()) {
      call_gate64(&gate_selector);
      return;
    }
#endif

    switch (gate_descriptor.type) {
      case BX_SYS_SEGMENT_AVAIL_286_TSS:
      case BX_SYS_SEGMENT_AVAIL_386_TSS:

        if (gate_descriptor.type==BX_SYS_SEGMENT_AVAIL_286_TSS)
          BX_DEBUG(("call_protected: 16bit available TSS"));
        else
          BX_DEBUG(("call_protected: 32bit available TSS"));

        // SWITCH_TASKS _without_ nesting to TSS
        task_switch(&gate_selector, &gate_descriptor,
          BX_TASK_FROM_CALL_OR_INT, dword1, dword2);

        // EIP must be in code seg limit, else #GP(0)
        if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
          BX_ERROR(("call_protected: EIP not within CS limits"));
          exception(BX_GP_EXCEPTION, 0, 0);
        }
        return;

      case BX_TASK_GATE:
        // examine selector to TSS, given in Task Gate descriptor
        // must specify global in the local/global bit else #TS(TSS selector)
        raw_tss_selector = gate_descriptor.u.taskgate.tss_selector;
        parse_selector(raw_tss_selector, &tss_selector);

        if (tss_selector.ti) {
          BX_ERROR(("call_protected: tss_selector.ti=1"));
          exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }

        // index must be within GDT limits else #TS(TSS selector)
        fetch_raw_descriptor(&tss_selector, &dword1, &dword2, BX_GP_EXCEPTION);

        parse_descriptor(dword1, dword2, &tss_descriptor);

        // descriptor AR byte must specify available TSS
        //   else #GP(TSS selector)
        if (tss_descriptor.valid==0 || tss_descriptor.segment) {
          BX_ERROR(("call_protected: TSS selector points to bad TSS"));
          exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }
        if (tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_286_TSS &&
            tss_descriptor.type!=BX_SYS_SEGMENT_AVAIL_386_TSS)
        {
          BX_ERROR(("call_protected: TSS selector points to bad TSS"));
          exception(BX_GP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }

        // task state segment must be present, else #NP(tss selector)
        if (! IS_PRESENT(tss_descriptor)) {
          BX_ERROR(("call_protected: task descriptor.p == 0"));
          exception(BX_NP_EXCEPTION, raw_tss_selector & 0xfffc, 0);
        }

        // SWITCH_TASKS without nesting to TSS
        task_switch(&tss_selector, &tss_descriptor,
                    BX_TASK_FROM_CALL_OR_INT, dword1, dword2);

        // EIP must be within code segment limit, else #TS(0)
        if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b)
          temp_eIP = EIP;
        else
          temp_eIP =  IP;

        if (temp_eIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled)
        {
          BX_ERROR(("call_protected: EIP > CS.limit"));
          exception(BX_GP_EXCEPTION, 0, 0);
        }
        return;

      case BX_286_CALL_GATE:
      case BX_386_CALL_GATE:
        // examine code segment selector in call gate descriptor
        BX_DEBUG(("call_protected: call gate"));
        dest_selector = gate_descriptor.u.gate.dest_selector;
        new_EIP       = gate_descriptor.u.gate.dest_offset;

        // selector must not be null else #GP(0)
        if ((dest_selector & 0xfffc) == 0) {
          BX_ERROR(("call_protected: selector in gate null"));
          exception(BX_GP_EXCEPTION, 0, 0);
        }

        parse_selector(dest_selector, &cs_selector);
        // selector must be within its descriptor table limits,
        //   else #GP(code segment selector)
        fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
        parse_descriptor(dword1, dword2, &cs_descriptor);

        // AR byte of selected descriptor must indicate code segment,
        //   else #GP(code segment selector)
        // DPL of selected descriptor must be <= CPL,
        // else #GP(code segment selector)
        if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
            IS_DATA_SEGMENT(cs_descriptor.type) ||
            cs_descriptor.dpl > CPL)
        {
          BX_ERROR(("call_protected: selected descriptor is not code"));
          exception(BX_GP_EXCEPTION, dest_selector & 0xfffc, 0);
        }

        // code segment must be present else #NP(selector)
        if (! IS_PRESENT(cs_descriptor)) {
          BX_ERROR(("call_protected: code segment not present !"));
          exception(BX_NP_EXCEPTION, dest_selector & 0xfffc, 0);
        }

        // CALL GATE TO MORE PRIVILEGE
        // if non-conforming code segment and DPL < CPL then
        if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL))
        {
          Bit16u SS_for_cpl_x;
          Bit32u ESP_for_cpl_x;
          bx_selector_t   ss_selector;
          bx_descriptor_t ss_descriptor;
          Bit16u   return_SS, return_CS;
          Bit32u   return_ESP, return_EIP;
          Bit16u   parameter_word[32];
          Bit32u   parameter_dword[32];

          BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL"));

          // get new SS selector for new privilege level from TSS
          get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x);

          // check selector & descriptor for new SS:
          // selector must not be null, else #TS(0)
          if ((SS_for_cpl_x & 0xfffc) == 0) {
            BX_ERROR(("call_protected: new SS null"));
            exception(BX_TS_EXCEPTION, 0, 0);
          }

          // selector index must be within its descriptor table limits,
          //   else #TS(SS selector)
          parse_selector(SS_for_cpl_x, &ss_selector);
          fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
          parse_descriptor(dword1, dword2, &ss_descriptor);

          // selector's RPL must equal DPL of code segment,
          //   else #TS(SS selector)
          if (ss_selector.rpl != cs_descriptor.dpl) {
            BX_ERROR(("call_protected: SS selector.rpl != CS descr.dpl"));
            exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // stack segment DPL must equal DPL of code segment,
          //   else #TS(SS selector)
          if (ss_descriptor.dpl != cs_descriptor.dpl) {
            BX_ERROR(("call_protected: SS descr.rpl != CS descr.dpl"));
            exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // descriptor must indicate writable data segment,
          //   else #TS(SS selector)
          if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
               IS_CODE_SEGMENT(ss_descriptor.type) ||
              !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
          {
            BX_ERROR(("call_protected: ss descriptor is not writable data seg"));
            exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // segment must be present, else #SS(SS selector)
          if (! IS_PRESENT(ss_descriptor)) {
            BX_ERROR(("call_protected: ss descriptor not present"));
            exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc, 0);
          }

          // get word count from call gate, mask to 5 bits
          unsigned param_count = gate_descriptor.u.gate.param_count & 0x1f;

          // save return SS:eSP to be pushed on new stack
          return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
          if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
            return_ESP = ESP;
          else
            return_ESP =  SP;

          // save return CS:eIP to be pushed on new stack
          return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
          if (cs_descriptor.u.segment.d_b)
            return_EIP = EIP;
          else
            return_EIP = IP;

          if (gate_descriptor.type==BX_286_CALL_GATE) {
            for (unsigned i=0; i<param_count; i++) {
              parameter_word[i] = read_virtual_word(BX_SEG_REG_SS, return_ESP + i*2);
            }
          }
          else {
            for (unsigned i=0; i<param_count; i++) {
              parameter_dword[i] = read_virtual_dword(BX_SEG_REG_SS, return_ESP + i*4);
            }
          }

          // Prepare new stack segment
          bx_segment_reg_t new_stack;
          new_stack.selector = ss_selector;
          new_stack.cache = ss_descriptor;
          new_stack.selector.rpl = cs_descriptor.dpl;
          // add cpl to the selector value
          new_stack.selector.value = (0xfffc & new_stack.selector.value) |
            new_stack.selector.rpl;

          /* load new SS:SP value from TSS */
          if (ss_descriptor.u.segment.d_b) {
            Bit32u temp_ESP = ESP_for_cpl_x;

            // push pointer of old stack onto new stack
            if (gate_descriptor.type==BX_386_CALL_GATE) {
              write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS);
              write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP);
              temp_ESP -= 8;

              for (unsigned i=param_count; i>0; i--) {
                temp_ESP -= 4;
                write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, parameter_dword[i-1]);
              }
              // push return address onto new stack
              write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS);
              write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP);
              temp_ESP -= 8;
            }
            else {
              write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS);
              write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP);
              temp_ESP -= 4;

              for (unsigned i=param_count; i>0; i--) {
                temp_ESP -= 2;
                write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, parameter_word[i-1]);
              }
              // push return address onto new stack
              write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS);
              write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP);
              temp_ESP -= 4;
            }

            ESP = temp_ESP;
          }
          else {
            Bit16u temp_SP = (Bit16u) ESP_for_cpl_x;

            // push pointer of old stack onto new stack
            if (gate_descriptor.type==BX_386_CALL_GATE) {
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS);
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP);
              temp_SP -= 8;

              for (unsigned i=param_count; i>0; i--) {
                temp_SP -= 4;
                write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, parameter_dword[i-1]);
              }
              // push return address onto new stack
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS);
              write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP);
              temp_SP -= 8;
            }
            else {
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS);
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP);
              temp_SP -= 4;

              for (unsigned i=param_count; i>0; i--) {
                temp_SP -= 2;
                write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, parameter_word[i-1]);
              }
              // push return address onto new stack
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS);
              write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP);
              temp_SP -= 4;
            }

            SP = temp_SP;
          }

          // new eIP must be in code segment limit else #GP(0)
          if (new_EIP > cs_descriptor.u.segment.limit_scaled) {
            BX_ERROR(("call_protected: EIP not within CS limits"));
            exception(BX_GP_EXCEPTION, 0, 0);
          }

          /* load SS descriptor */
          load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);

          /* load new CS:IP value from gate */
          /* load CS descriptor */
          /* set CPL to stack segment DPL */
          /* set RPL of CS to CPL */
          load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);
          EIP = new_EIP;
        }
        else   // CALL GATE TO SAME PRIVILEGE
        {
          BX_DEBUG(("CALL GATE TO SAME PRIVILEGE"));

          if (gate_descriptor.type == BX_386_CALL_GATE) {
            // call gate 32bit, push return address onto stack
            push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
            push_32(EIP);
          }
          else {
            // call gate 16bit, push return address onto stack
            push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
            push_16(IP);
          }

          // load CS:EIP from gate
          // load code segment descriptor into CS register
          // set RPL of CS to CPL
          branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL);
        }
        return;

      default: // can't get here
        BX_PANIC(("call_protected: gate type %u unsupported", (unsigned) cs_descriptor.type));
        exception(BX_GP_EXCEPTION, cs_raw & 0xfffc, 0);
    }
  }
}
Ejemplo n.º 9
0
void BX_CPP_AttrRegparmN(1) BX_CPU_C::call_gate(bx_descriptor_t *gate_descriptor)
{
  bx_selector_t cs_selector;
  Bit32u dword1, dword2;
  bx_descriptor_t cs_descriptor;

  // examine code segment selector in call gate descriptor
  BX_DEBUG(("call_protected: call gate"));

  Bit16u dest_selector = gate_descriptor->u.gate.dest_selector;
  Bit32u new_EIP       = gate_descriptor->u.gate.dest_offset;

  // selector must not be null else #GP(0)
  if ((dest_selector & 0xfffc) == 0) {
    BX_ERROR(("call_protected: selector in gate null"));
    exception(BX_GP_EXCEPTION, 0);
  }

  parse_selector(dest_selector, &cs_selector);
  // selector must be within its descriptor table limits,
  //   else #GP(code segment selector)
  fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
  parse_descriptor(dword1, dword2, &cs_descriptor);

  // AR byte of selected descriptor must indicate code segment,
  //   else #GP(code segment selector)
  // DPL of selected descriptor must be <= CPL,
  // else #GP(code segment selector)
  if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
      IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl > CPL)
  {
    BX_ERROR(("call_protected: selected descriptor is not code"));
    exception(BX_GP_EXCEPTION, dest_selector & 0xfffc);
  }

  // code segment must be present else #NP(selector)
  if (! IS_PRESENT(cs_descriptor)) {
    BX_ERROR(("call_protected: code segment not present !"));
    exception(BX_NP_EXCEPTION, dest_selector & 0xfffc);
  }

  // CALL GATE TO MORE PRIVILEGE
  // if non-conforming code segment and DPL < CPL then
  if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL))
  {
    Bit16u SS_for_cpl_x;
    Bit32u ESP_for_cpl_x;
    bx_selector_t   ss_selector;
    bx_descriptor_t ss_descriptor;
    Bit16u   return_SS, return_CS;
    Bit32u   return_ESP, return_EIP;

    BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL"));

    // get new SS selector for new privilege level from TSS
    get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x);

    // check selector & descriptor for new SS:
    // selector must not be null, else #TS(0)
    if ((SS_for_cpl_x & 0xfffc) == 0) {
      BX_ERROR(("call_protected: new SS null"));
      exception(BX_TS_EXCEPTION, 0);
    }

    // selector index must be within its descriptor table limits,
    //   else #TS(SS selector)
    parse_selector(SS_for_cpl_x, &ss_selector);
    fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
    parse_descriptor(dword1, dword2, &ss_descriptor);

    // selector's RPL must equal DPL of code segment,
    //   else #TS(SS selector)
    if (ss_selector.rpl != cs_descriptor.dpl) {
      BX_ERROR(("call_protected: SS selector.rpl != CS descr.dpl"));
      exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // stack segment DPL must equal DPL of code segment,
    //   else #TS(SS selector)
    if (ss_descriptor.dpl != cs_descriptor.dpl) {
      BX_ERROR(("call_protected: SS descr.rpl != CS descr.dpl"));
      exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // descriptor must indicate writable data segment,
    //   else #TS(SS selector)
    if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
        IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
    {
      BX_ERROR(("call_protected: ss descriptor is not writable data seg"));
      exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // segment must be present, else #SS(SS selector)
    if (! IS_PRESENT(ss_descriptor)) {
      BX_ERROR(("call_protected: ss descriptor not present"));
      exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc);
    }

    // get word count from call gate, mask to 5 bits
    unsigned param_count = gate_descriptor->u.gate.param_count & 0x1f;

    // save return SS:eSP to be pushed on new stack
    return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
    if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
      return_ESP = ESP;
    else
      return_ESP =  SP;

    // save return CS:eIP to be pushed on new stack
    return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
    if (cs_descriptor.u.segment.d_b)
      return_EIP = EIP;
    else
      return_EIP = IP;

    // Prepare new stack segment
    bx_segment_reg_t new_stack;
    new_stack.selector = ss_selector;
    new_stack.cache = ss_descriptor;
    new_stack.selector.rpl = cs_descriptor.dpl;
    // add cpl to the selector value
    new_stack.selector.value = (0xfffc & new_stack.selector.value) |
    new_stack.selector.rpl;

    /* load new SS:SP value from TSS */
    if (ss_descriptor.u.segment.d_b) {
      Bit32u temp_ESP = ESP_for_cpl_x;

      // push pointer of old stack onto new stack
      if (gate_descriptor->type==BX_386_CALL_GATE) {
        write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS);
        write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP);
        temp_ESP -= 8;

        for (unsigned n=param_count; n>0; n--) {
          temp_ESP -= 4;
          Bit32u param = read_virtual_dword_32(BX_SEG_REG_SS, return_ESP + (n-1)*4);
          write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS);
        write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP);
        temp_ESP -= 8;
      }
      else {
        write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS);
        write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP);
        temp_ESP -= 4;

        for (unsigned n=param_count; n>0; n--) {
          temp_ESP -= 2;
          Bit16u param = read_virtual_word_32(BX_SEG_REG_SS, return_ESP + (n-1)*2);
          write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS);
        write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP);
        temp_ESP -= 4;
      }

      ESP = temp_ESP;
    }
    else {
      Bit16u temp_SP = (Bit16u) ESP_for_cpl_x;

      // push pointer of old stack onto new stack
      if (gate_descriptor->type==BX_386_CALL_GATE) {
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS);
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP);
        temp_SP -= 8;

        for (unsigned n=param_count; n>0; n--) {
          temp_SP -= 4;
          Bit32u param = read_virtual_dword_32(BX_SEG_REG_SS, return_ESP + (n-1)*4);
          write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS);
        write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP);
        temp_SP -= 8;
      }
      else {
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS);
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP);
        temp_SP -= 4;

        for (unsigned n=param_count; n>0; n--) {
          temp_SP -= 2;
          Bit16u param = read_virtual_word_32(BX_SEG_REG_SS, return_ESP + (n-1)*2);
          write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, param);
        }
        // push return address onto new stack
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS);
        write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP);
        temp_SP -= 4;
      }

      SP = temp_SP;
    }

    // new eIP must be in code segment limit else #GP(0)
    if (new_EIP > cs_descriptor.u.segment.limit_scaled) {
      BX_ERROR(("call_protected: EIP not within CS limits"));
      exception(BX_GP_EXCEPTION, 0);
    }

    /* load SS descriptor */
    load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);

    /* load new CS:IP value from gate */
    /* load CS descriptor */
    /* set CPL to stack segment DPL */
    /* set RPL of CS to CPL */
    load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);
    EIP = new_EIP;
  }
  else   // CALL GATE TO SAME PRIVILEGE
  {
    BX_DEBUG(("CALL GATE TO SAME PRIVILEGE"));

    if (gate_descriptor->type == BX_386_CALL_GATE) {
      // call gate 32bit, push return address onto stack
      push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_32(EIP);
    }
    else {
      // call gate 16bit, push return address onto stack
      push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
      push_16(IP);
    }

    // load CS:EIP from gate
    // load code segment descriptor into CS register
    // set RPL of CS to CPL
    branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL);
  }
}
Ejemplo n.º 10
0
static void CPUCALL
interrupt_intr_or_trap(const descriptor_t *gsdp, int intrtype, int errorp, int error_code)
{
    selector_t cs_sel, ss_sel;
    UINT stacksize;
    UINT32 old_flags;
    UINT32 new_flags;
    UINT32 mask;
    UINT32 sp;
    UINT32 new_ip, new_sp;
    UINT32 old_ip, old_sp;
    UINT16 old_cs, old_ss, new_ss;
    BOOL is32bit;
    int exc_errcode;
    int rv;

    new_ip = gsdp->u.gate.offset;
    old_ss = CPU_SS;
    old_cs = CPU_CS;
    old_ip = CPU_EIP;
    old_sp = CPU_ESP;
    old_flags = REAL_EFLAGREG;
    new_flags = REAL_EFLAGREG & ~(T_FLAG|RF_FLAG|NT_FLAG|VM_FLAG);
    mask = T_FLAG|RF_FLAG|NT_FLAG|VM_FLAG;

    switch (gsdp->type) {
    case CPU_SYSDESC_TYPE_INTR_16:
    case CPU_SYSDESC_TYPE_INTR_32:
        VERBOSE(("interrupt: INTERRUPT-GATE"));
        new_flags &= ~I_FLAG;
        mask |= I_FLAG;
        break;

    case CPU_SYSDESC_TYPE_TRAP_16:
    case CPU_SYSDESC_TYPE_TRAP_32:
        VERBOSE(("interrupt: TRAP-GATE"));
        break;

    default:
        ia32_panic("interrupt: gate descriptor type is invalid (type = %d)", gsdp->type);
        break;
    }

    exc_errcode = gsdp->u.gate.selector & ~3;
    if (intrtype == INTR_TYPE_EXTINTR)
        exc_errcode++;

    rv = parse_selector(&cs_sel, gsdp->u.gate.selector);
    if (rv < 0) {
        VERBOSE(("interrupt: parse_selector (selector = %04x, rv = %d)", gsdp->u.gate.selector, rv));
        EXCEPTION(GP_EXCEPTION, exc_errcode);
    }

    /* check segment type */
    if (SEG_IS_SYSTEM(&cs_sel.desc)) {
        VERBOSE(("interrupt: code segment is system segment"));
        EXCEPTION(GP_EXCEPTION, exc_errcode);
    }
    if (SEG_IS_DATA(&cs_sel.desc)) {
        VERBOSE(("interrupt: code segment is data segment"));
        EXCEPTION(GP_EXCEPTION, exc_errcode);
    }

    /* check privilege level */
    if (cs_sel.desc.dpl > CPU_STAT_CPL) {
        VERBOSE(("interrupt: DPL(%d) > CPL(%d)", cs_sel.desc.dpl, CPU_STAT_CPL));
        EXCEPTION(GP_EXCEPTION, exc_errcode);
    }

    /* not present */
    if (selector_is_not_present(&cs_sel)) {
        VERBOSE(("interrupt: selector is not present"));
        EXCEPTION(NP_EXCEPTION, exc_errcode);
    }

    is32bit = gsdp->type & CPU_SYSDESC_TYPE_32BIT;
    if (!SEG_IS_CONFORMING_CODE(&cs_sel.desc) && (cs_sel.desc.dpl < CPU_STAT_CPL)) {
        stacksize = errorp ? 12 : 10;
        if (!CPU_STAT_VM86) {
            VERBOSE(("interrupt: INTER-PRIVILEGE-LEVEL-INTERRUPT"));
        } else {
            /* VM86 */
            VERBOSE(("interrupt: INTERRUPT-FROM-VIRTUAL-8086-MODE"));
            if (cs_sel.desc.dpl != 0) {
                /* 16.3.1.1 */
                VERBOSE(("interrupt: DPL[CS](%d) != 0", cs_sel.desc.dpl));
                EXCEPTION(GP_EXCEPTION, exc_errcode);
            }
            stacksize += 8;
        }
        if (is32bit) {
            stacksize *= 2;
        }

        /* get stack pointer from TSS */
        get_stack_pointer_from_tss(cs_sel.desc.dpl, &new_ss, &new_sp);

        /* parse stack segment descriptor */
        rv = parse_selector(&ss_sel, new_ss);

        /* update exception error code */
        exc_errcode = ss_sel.idx;
        if (intrtype == INTR_TYPE_EXTINTR)
            exc_errcode++;

        if (rv < 0) {
            VERBOSE(("interrupt: parse_selector (selector = %04x, rv = %d)", new_ss, rv));
            EXCEPTION(TS_EXCEPTION, exc_errcode);
        }

        /* check privilege level */
        if (ss_sel.rpl != cs_sel.desc.dpl) {
            VERBOSE(("interrupt: selector RPL[SS](%d) != DPL[CS](%d)", ss_sel.rpl, cs_sel.desc.dpl));
            EXCEPTION(TS_EXCEPTION, exc_errcode);
        }
        if (ss_sel.desc.dpl != cs_sel.desc.dpl) {
            VERBOSE(("interrupt: descriptor DPL[SS](%d) != DPL[CS](%d)", ss_sel.desc.dpl, cs_sel.desc.dpl));
            EXCEPTION(TS_EXCEPTION, exc_errcode);
        }

        /* stack segment must be writable data segment. */
        if (SEG_IS_SYSTEM(&ss_sel.desc)) {
            VERBOSE(("interrupt: stack segment is system segment"));
            EXCEPTION(TS_EXCEPTION, exc_errcode);
        }
        if (SEG_IS_CODE(&ss_sel.desc)) {
            VERBOSE(("interrupt: stack segment is code segment"));
            EXCEPTION(TS_EXCEPTION, exc_errcode);
        }
        if (!SEG_IS_WRITABLE_DATA(&ss_sel.desc)) {
            VERBOSE(("interrupt: stack segment is read-only data segment"));
            EXCEPTION(TS_EXCEPTION, exc_errcode);
        }

        /* not present */
        if (selector_is_not_present(&ss_sel)) {
            VERBOSE(("interrupt: selector is not present"));
            EXCEPTION(SS_EXCEPTION, exc_errcode);
        }

        /* check stack room size */
        cpu_stack_push_check(ss_sel.idx, &ss_sel.desc, new_sp, stacksize, ss_sel.desc.d);

        /* out of range */
        if (new_ip > cs_sel.desc.u.seg.limit) {
            VERBOSE(("interrupt: new_ip is out of range. new_ip = %08x, limit = %08x", new_ip, cs_sel.desc.u.seg.limit));
            EXCEPTION(GP_EXCEPTION, 0);
        }

        load_ss(ss_sel.selector, &ss_sel.desc, cs_sel.desc.dpl);
        CPU_ESP = new_sp;

        load_cs(cs_sel.selector, &cs_sel.desc, cs_sel.desc.dpl);
        CPU_EIP = new_ip;

        if (is32bit) {
            if (CPU_STAT_VM86) {
                PUSH0_32(CPU_GS);
                PUSH0_32(CPU_FS);
                PUSH0_32(CPU_DS);
                PUSH0_32(CPU_ES);

                LOAD_SEGREG(CPU_GS_INDEX, 0);
                CPU_STAT_SREG(CPU_GS_INDEX).valid = 0;
                LOAD_SEGREG(CPU_FS_INDEX, 0);
                CPU_STAT_SREG(CPU_FS_INDEX).valid = 0;
                LOAD_SEGREG(CPU_DS_INDEX, 0);
                CPU_STAT_SREG(CPU_DS_INDEX).valid = 0;
                LOAD_SEGREG(CPU_ES_INDEX, 0);
                CPU_STAT_SREG(CPU_ES_INDEX).valid = 0;
            }
            PUSH0_32(old_ss);
            PUSH0_32(old_sp);
            PUSH0_32(old_flags);
            PUSH0_32(old_cs);
            PUSH0_32(old_ip);
            if (errorp) {
                PUSH0_32(error_code);
            }
        } else {
            if (CPU_STAT_VM86) {
                ia32_panic("interrupt: 16bit gate && VM86");
            }
            PUSH0_16(old_ss);
            PUSH0_16(old_sp);
            PUSH0_16(old_flags);
            PUSH0_16(old_cs);
            PUSH0_16(old_ip);
            if (errorp) {
                PUSH0_16(error_code);
            }
        }
    } else {
        if (CPU_STAT_VM86) {
            VERBOSE(("interrupt: VM86"));
            EXCEPTION(GP_EXCEPTION, exc_errcode);
        }
        if (!SEG_IS_CONFORMING_CODE(&cs_sel.desc) && (cs_sel.desc.dpl != CPU_STAT_CPL)) {
            VERBOSE(("interrupt: %sCONFORMING-CODE-SEGMENT(%d) && DPL[CS](%d) != CPL", SEG_IS_CONFORMING_CODE(&cs_sel.desc) ? "" : "NON-", cs_sel.desc.dpl, CPU_STAT_CPL));
            EXCEPTION(GP_EXCEPTION, exc_errcode);
        }

        VERBOSE(("interrupt: INTRA-PRIVILEGE-LEVEL-INTERRUPT"));

        stacksize = errorp ? 8 : 6;
        if (is32bit) {
            stacksize *= 2;
        }

        /* check stack room size */
        if (CPU_STAT_SS32) {
            sp = CPU_ESP;
        } else {
            sp = CPU_SP;
        }
        /*
         * 17.1
         * コールゲート、割り込みゲート、またはトラップゲートを通じて
         * プログラムの制御を他のコード・セグメントに移行するときは、
         * 移行中に使用されるオペランド・サイズは使用されるゲートの
         * タイプ(16 ビットまたは32 ビット)によって決まる(移行命
         * 令のD フラグ、プリフィックスのいずれにもよらない)。
         */
        SS_PUSH_CHECK1(sp, stacksize, is32bit);

        /* out of range */
        if (new_ip > cs_sel.desc.u.seg.limit) {
            VERBOSE(("interrupt: new_ip is out of range. new_ip = %08x, limit = %08x", new_ip, cs_sel.desc.u.seg.limit));
            EXCEPTION(GP_EXCEPTION, 0);
        }

        load_cs(cs_sel.selector, &cs_sel.desc, CPU_STAT_CPL);
        CPU_EIP = new_ip;

        if (is32bit) {
            PUSH0_32(old_flags);
            PUSH0_32(old_cs);
            PUSH0_32(old_ip);
            if (errorp) {
                PUSH0_32(error_code);
            }
        } else {
            PUSH0_16(old_flags);
            PUSH0_16(old_cs);
            PUSH0_16(old_ip);
            if (errorp) {
                PUSH0_16(error_code);
            }
        }
    }
    set_eflags(new_flags, mask);

    VERBOSE(("interrupt: new EIP = %04x:%08x, ESP = %04x:%08x", CPU_CS, CPU_EIP, CPU_SS, CPU_ESP));
}