void M_log_solve_cubic(M_APM rr, int places, M_APM nn) { M_APM tmp0, tmp1, tmp2, tmp3, guess; int ii, maxp, tolerance, local_precision; guess = M_get_stack_var(); tmp0 = M_get_stack_var(); tmp1 = M_get_stack_var(); tmp2 = M_get_stack_var(); tmp3 = M_get_stack_var(); M_get_log_guess(guess, nn); tolerance = -(places + 4); maxp = places + 16; local_precision = 18; /* Use the following iteration to solve for log : exp(X) - N X = X - 2 * ------------ n+1 exp(X) + N this is a cubically convergent algorithm (each iteration yields 3X more digits) */ ii = 0; while (TRUE) { m_apm_exp(tmp1, local_precision, guess); m_apm_subtract(tmp3, tmp1, nn); m_apm_add(tmp2, tmp1, nn); m_apm_divide(tmp1, local_precision, tmp3, tmp2); m_apm_multiply(tmp0, MM_Two, tmp1); m_apm_subtract(tmp3, guess, tmp0); if (ii != 0) { if (((3 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0)) break; } m_apm_round(guess, local_precision, tmp3); local_precision *= 3; if (local_precision > maxp) local_precision = maxp; ii = 1; } m_apm_round(rr, places, tmp3); M_restore_stack(5); }
/* * find log(N) * * if places < 360 * solve with cubically convergent algorithm above * * else * * let 'X' be 'close' to the solution (we use ~110 decimal places) * * let Y = N * exp(-X) - 1 * * then * * log(N) = X + log(1 + Y) * * since 'Y' will be small, we can use the efficient log_near_1 algorithm. * */ void M_log_basic_iteration(M_APM rr, int places, M_APM nn) { M_APM tmp0, tmp1, tmp2, tmpX; if (places < 360) { M_log_solve_cubic(rr, places, nn); } else { tmp0 = M_get_stack_var(); tmp1 = M_get_stack_var(); tmp2 = M_get_stack_var(); tmpX = M_get_stack_var(); M_log_solve_cubic(tmpX, 110, nn); m_apm_negate(tmp0, tmpX); m_apm_exp(tmp1, (places + 8), tmp0); m_apm_multiply(tmp2, tmp1, nn); m_apm_subtract(tmp1, tmp2, MM_One); M_log_near_1(tmp0, (places - 104), tmp1); m_apm_add(tmp1, tmpX, tmp0); m_apm_round(rr, places, tmp1); M_restore_stack(4); } }
/* * cosh(x) == 0.5 * [ exp(x) + exp(-x) ] */ void m_apm_cosh(M_APM rr, int places, M_APM aa) { M_APM tmp1, tmp2, tmp3; int local_precision; tmp1 = M_get_stack_var(); tmp2 = M_get_stack_var(); tmp3 = M_get_stack_var(); local_precision = places + 4; m_apm_exp(tmp1, local_precision, aa); m_apm_reciprocal(tmp2, local_precision, tmp1); m_apm_add(tmp3, tmp1, tmp2); m_apm_multiply(tmp1, tmp3, MM_0_5); m_apm_round(rr, places, tmp1); M_restore_stack(3); }
/* * tanh(x) == [ exp(x) - exp(-x) ] / [ exp(x) + exp(-x) ] */ void m_apm_tanh(M_APM rr, int places, M_APM aa) { M_APM tmp1, tmp2, tmp3, tmp4; int local_precision; tmp1 = M_get_stack_var(); tmp2 = M_get_stack_var(); tmp3 = M_get_stack_var(); tmp4 = M_get_stack_var(); local_precision = places + 4; m_apm_exp(tmp1, local_precision, aa); m_apm_reciprocal(tmp2, local_precision, tmp1); m_apm_subtract(tmp3, tmp1, tmp2); m_apm_add(tmp4, tmp1, tmp2); m_apm_divide(tmp1, local_precision, tmp3, tmp4); m_apm_round(rr, places, tmp1); M_restore_stack(4); }
void m_apm_exp_mt(M_APM rr, int places, M_APM aa) { m_apm_enter(); m_apm_exp(rr,places,aa); m_apm_leave(); }
/* Calculate the POW function by calling EXP : Y A X = e where A = Y * log(X) */ void m_apm_pow(M_APM rr, int places, M_APM xx, M_APM yy) { int iflag, pflag; char sbuf[64]; M_APM tmp8, tmp9; /* if yy == 0, return 1 */ if (yy->m_apm_sign == 0) { m_apm_copy(rr, MM_One); return; } /* if xx == 0, return 0 */ if (xx->m_apm_sign == 0) { M_set_to_zero(rr); return; } if (M_size_flag == 0) /* init locals on first call */ { M_size_flag = M_get_sizeof_int(); M_last_log_digits = 0; M_last_xx_input = m_apm_init(); M_last_xx_log = m_apm_init(); } /* * if 'yy' is a small enough integer, call the more * efficient _integer_pow function. */ if (m_apm_is_integer(yy)) { iflag = FALSE; if (M_size_flag == 2) /* 16 bit compilers */ { if (yy->m_apm_exponent <= 4) iflag = TRUE; } else /* >= 32 bit compilers */ { if (yy->m_apm_exponent <= 7) iflag = TRUE; } if (iflag) { m_apm_to_integer_string(sbuf, yy); m_apm_integer_pow(rr, places, xx, atoi(sbuf)); return; } } tmp8 = M_get_stack_var(); tmp9 = M_get_stack_var(); /* * If parameter 'X' is the same this call as it * was the previous call, re-use the saved log * calculation from last time. */ pflag = FALSE; if (M_last_log_digits >= places) { if (m_apm_compare(xx, M_last_xx_input) == 0) pflag = TRUE; } if (pflag) { m_apm_round(tmp9, (places + 8), M_last_xx_log); } else { m_apm_log(tmp9, (places + 8), xx); M_last_log_digits = places + 2; /* save the 'X' input value and the log calculation */ m_apm_copy(M_last_xx_input, xx); m_apm_copy(M_last_xx_log, tmp9); } m_apm_multiply(tmp8, tmp9, yy); m_apm_exp(rr, places, tmp8); M_restore_stack(2); /* restore the 2 locals we used here */ }