Ejemplo n.º 1
0
void	M_log_solve_cubic(M_APM rr, int places, M_APM nn)
{
M_APM   tmp0, tmp1, tmp2, tmp3, guess;
int	ii, maxp, tolerance, local_precision;

guess = M_get_stack_var();
tmp0  = M_get_stack_var();
tmp1  = M_get_stack_var();
tmp2  = M_get_stack_var();
tmp3  = M_get_stack_var();

M_get_log_guess(guess, nn);

tolerance       = -(places + 4);
maxp            = places + 16;
local_precision = 18;

/*    Use the following iteration to solve for log :

                        exp(X) - N 
      X     =  X - 2 * ------------
       n+1              exp(X) + N 

   
      this is a cubically convergent algorithm 
      (each iteration yields 3X more digits)
*/

ii = 0;

while (TRUE)
  {
   m_apm_exp(tmp1, local_precision, guess);

   m_apm_subtract(tmp3, tmp1, nn);
   m_apm_add(tmp2, tmp1, nn);

   m_apm_divide(tmp1, local_precision, tmp3, tmp2);
   m_apm_multiply(tmp0, MM_Two, tmp1);
   m_apm_subtract(tmp3, guess, tmp0);

   if (ii != 0)
     {
      if (((3 * tmp0->m_apm_exponent) < tolerance) || (tmp0->m_apm_sign == 0))
        break;
     }

   m_apm_round(guess, local_precision, tmp3);

   local_precision *= 3;

   if (local_precision > maxp)
     local_precision = maxp;

   ii = 1;
  }

m_apm_round(rr, places, tmp3);
M_restore_stack(5);
}
Ejemplo n.º 2
0
/*
 *      find log(N)
 *
 *      if places < 360
 *         solve with cubically convergent algorithm above
 *
 *      else
 *
 *      let 'X' be 'close' to the solution   (we use ~110 decimal places)
 *
 *      let Y = N * exp(-X) - 1
 *
 *	then
 *
 *	log(N) = X + log(1 + Y)
 *
 *      since 'Y' will be small, we can use the efficient log_near_1 algorithm.
 *
 */
void	M_log_basic_iteration(M_APM rr, int places, M_APM nn)
{
M_APM   tmp0, tmp1, tmp2, tmpX;

if (places < 360)
  {
   M_log_solve_cubic(rr, places, nn);
  }
else
  {
   tmp0 = M_get_stack_var();
   tmp1 = M_get_stack_var();
   tmp2 = M_get_stack_var();
   tmpX = M_get_stack_var();
   
   M_log_solve_cubic(tmpX, 110, nn);
   
   m_apm_negate(tmp0, tmpX);
   m_apm_exp(tmp1, (places + 8), tmp0);
   m_apm_multiply(tmp2, tmp1, nn);
   m_apm_subtract(tmp1, tmp2, MM_One);
   
   M_log_near_1(tmp0, (places - 104), tmp1);
   
   m_apm_add(tmp1, tmpX, tmp0);
   m_apm_round(rr, places, tmp1);
   
   M_restore_stack(4);
  }
}
Ejemplo n.º 3
0
/*
 *      cosh(x) == 0.5 * [ exp(x) + exp(-x) ]
 */
void	m_apm_cosh(M_APM rr, int places, M_APM aa)
{
M_APM	tmp1, tmp2, tmp3;
int     local_precision;

tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();

local_precision = places + 4;

m_apm_exp(tmp1, local_precision, aa);
m_apm_reciprocal(tmp2, local_precision, tmp1);
m_apm_add(tmp3, tmp1, tmp2);
m_apm_multiply(tmp1, tmp3, MM_0_5);
m_apm_round(rr, places, tmp1);

M_restore_stack(3);
}
Ejemplo n.º 4
0
/*
 *      tanh(x) == [ exp(x) - exp(-x) ]  /  [ exp(x) + exp(-x) ]
 */
void	m_apm_tanh(M_APM rr, int places, M_APM aa)
{
M_APM	tmp1, tmp2, tmp3, tmp4;
int     local_precision;

tmp1 = M_get_stack_var();
tmp2 = M_get_stack_var();
tmp3 = M_get_stack_var();
tmp4 = M_get_stack_var();

local_precision = places + 4;

m_apm_exp(tmp1, local_precision, aa);
m_apm_reciprocal(tmp2, local_precision, tmp1);
m_apm_subtract(tmp3, tmp1, tmp2);
m_apm_add(tmp4, tmp1, tmp2);
m_apm_divide(tmp1, local_precision, tmp3, tmp4);
m_apm_round(rr, places, tmp1);

M_restore_stack(4);
}
Ejemplo n.º 5
0
void	m_apm_exp_mt(M_APM rr, int places, M_APM aa)
{
	m_apm_enter();
	m_apm_exp(rr,places,aa);
	m_apm_leave();
}
Ejemplo n.º 6
0
/*
	Calculate the POW function by calling EXP :

                  Y      A                 
                 X   =  e    where A = Y * log(X)
*/
void	m_apm_pow(M_APM rr, int places, M_APM xx, M_APM yy)
{
int	iflag, pflag;
char    sbuf[64];
M_APM   tmp8, tmp9;

/* if yy == 0, return 1 */

if (yy->m_apm_sign == 0)
  {
   m_apm_copy(rr, MM_One);
   return;
  }

/* if xx == 0, return 0 */

if (xx->m_apm_sign == 0)
  {
   M_set_to_zero(rr);
   return;
  }

if (M_size_flag == 0)       /* init locals on first call */
  {
   M_size_flag       = M_get_sizeof_int();
   M_last_log_digits = 0;
   M_last_xx_input   = m_apm_init();
   M_last_xx_log     = m_apm_init();
  }

/*
 *  if 'yy' is a small enough integer, call the more
 *  efficient _integer_pow function.
 */

if (m_apm_is_integer(yy))
  {
   iflag = FALSE;

   if (M_size_flag == 2)            /* 16 bit compilers */
     {
      if (yy->m_apm_exponent <= 4)
        iflag = TRUE;
     }
   else                             /* >= 32 bit compilers */
     {
      if (yy->m_apm_exponent <= 7)
        iflag = TRUE;
     }

   if (iflag)
     {
      m_apm_to_integer_string(sbuf, yy);
      m_apm_integer_pow(rr, places, xx, atoi(sbuf));
      return;
     }
  }

tmp8 = M_get_stack_var();
tmp9 = M_get_stack_var();

/*
 *    If parameter 'X' is the same this call as it 
 *    was the previous call, re-use the saved log 
 *    calculation from last time.
 */

pflag = FALSE;

if (M_last_log_digits >= places)
  {
   if (m_apm_compare(xx, M_last_xx_input) == 0)
     pflag = TRUE;
  }

if (pflag)
  {
   m_apm_round(tmp9, (places + 8), M_last_xx_log);
  }
else
  {
   m_apm_log(tmp9, (places + 8), xx);

   M_last_log_digits = places + 2;

   /* save the 'X' input value and the log calculation */

   m_apm_copy(M_last_xx_input, xx);
   m_apm_copy(M_last_xx_log, tmp9);
  }

m_apm_multiply(tmp8, tmp9, yy);
m_apm_exp(rr, places, tmp8);
M_restore_stack(2);                    /* restore the 2 locals we used here */
}