Ejemplo n.º 1
0
float cuda_mag_array(float *x_gpu, size_t n) {
	float *temp = calloc(n, sizeof(float));
	cuda_pull_array(x_gpu, temp, n);
	float m = mag_array(temp, n);
	free(temp);
	return m;
}
Ejemplo n.º 2
0
image random_unit_vector_image(int w, int h, int c)
{
    image im = make_image(w, h, c);
    int i;
    for(i = 0; i < im.w*im.h*im.c; ++i){
        im.data[i] = rand_normal();
    }
    float mag = mag_array(im.data, im.w*im.h*im.c);
    scale_array(im.data, im.w*im.h*im.c, 1./mag);
    return im;
}
Ejemplo n.º 3
0
void slerp(float *start, float *end, float s, int n, float *out)
{
    float omega = acos(dot_cpu(n, start, 1, end, 1));
    float so = sin(omega);
    fill_cpu(n, 0, out, 1);
    axpy_cpu(n, sin((1-s)*omega)/so, start, 1, out, 1);
    axpy_cpu(n, sin(s*omega)/so, end, 1, out, 1);

    float mag = mag_array(out, n);
    scale_array(out, n, 1./mag);
}
Ejemplo n.º 4
0
void test_resize(char *filename)
{
    image im = load_image(filename, 0,0, 3);
    float mag = mag_array(im.data, im.w*im.h*im.c);
    printf("L2 Norm: %f\n", mag);
    image gray = grayscale_image(im);

    image sat2 = copy_image(im);
    saturate_image(sat2, 2);

    image sat5 = copy_image(im);
    saturate_image(sat5, .5);

    image exp2 = copy_image(im);
    exposure_image(exp2, 2);

    image exp5 = copy_image(im);
    exposure_image(exp5, .5);

    #ifdef GPU
    image r = resize_image(im, im.w, im.h);
    image black = make_image(im.w*2 + 3, im.h*2 + 3, 9);
    image black2 = make_image(im.w, im.h, 3);

    float *r_gpu = cuda_make_array(r.data, r.w*r.h*r.c);
    float *black_gpu = cuda_make_array(black.data, black.w*black.h*black.c);
    float *black2_gpu = cuda_make_array(black2.data, black2.w*black2.h*black2.c);
    shortcut_gpu(3, r.w, r.h, 1, r_gpu, black.w, black.h, 3, black_gpu);
    //flip_image(r);
    //shortcut_gpu(3, r.w, r.h, 1, r.data, black.w, black.h, 3, black.data);

    shortcut_gpu(3, black.w, black.h, 3, black_gpu, black2.w, black2.h, 1, black2_gpu);
    cuda_pull_array(black_gpu, black.data, black.w*black.h*black.c);
    cuda_pull_array(black2_gpu, black2.data, black2.w*black2.h*black2.c);
    show_image_layers(black, "Black");
    show_image(black2, "Recreate");
    #endif

    show_image(im, "Original");
    show_image(gray, "Gray");
    show_image(sat2, "Saturation-2");
    show_image(sat5, "Saturation-.5");
    show_image(exp2, "Exposure-2");
    show_image(exp5, "Exposure-.5");
#ifdef OPENCV
    cvWaitKey(0);
#endif
}
Ejemplo n.º 5
0
void forward_region_layer(const region_layer l, network_state state)
{
    int i,j,b,t,n;
    int size = l.coords + l.classes + 1;
    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
    #ifndef GPU
    flatten(l.output, l.w*l.h, size*l.n, l.batch, 1);
    #endif
    for (b = 0; b < l.batch; ++b){
        for(i = 0; i < l.h*l.w*l.n; ++i){
            int index = size*i + b*l.outputs;
            l.output[index + 4] = logistic_activate(l.output[index + 4]);
        }
    }


#ifndef GPU
    if (l.softmax_tree){
        for (b = 0; b < l.batch; ++b){
            for(i = 0; i < l.h*l.w*l.n; ++i){
                int index = size*i + b*l.outputs;
                softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
            }
        }
    } else if (l.softmax){
        for (b = 0; b < l.batch; ++b){
            for(i = 0; i < l.h*l.w*l.n; ++i){
                int index = size*i + b*l.outputs;
                softmax(l.output + index + 5, l.classes, 1, l.output + index + 5, 1);
            }
        }
    }
#endif
    if(!state.train) return;
    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
    float avg_iou = 0;
    float recall = 0;
    float avg_cat = 0;
    float avg_obj = 0;
    float avg_anyobj = 0;
    int count = 0;
    int class_count = 0;
    *(l.cost) = 0;
    for (b = 0; b < l.batch; ++b) {
        if(l.softmax_tree){
            int onlyclass_id = 0;
            for(t = 0; t < l.max_boxes; ++t){
                box truth = float_to_box(state.truth + t*5 + b*l.truths);
                if(!truth.x) break; // continue;
                int class_id = state.truth[t*5 + b*l.truths + 4];
                float maxp = 0;
                int maxi = 0;
                if(truth.x > 100000 && truth.y > 100000){
                    for(n = 0; n < l.n*l.w*l.h; ++n){
                        int index = size*n + b*l.outputs + 5;
                        float scale =  l.output[index-1];
                        float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class_id);
                        if(p > maxp){
                            maxp = p;
                            maxi = n;
                        }
                    }
                    int index = size*maxi + b*l.outputs + 5;
                    delta_region_class(l.output, l.delta, index, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
                    ++class_count;
                    onlyclass_id = 1;
                    break;
                }
            }
            if(onlyclass_id) continue;
        }
        for (j = 0; j < l.h; ++j) {
            for (i = 0; i < l.w; ++i) {
                for (n = 0; n < l.n; ++n) {
                    int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
                    box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
                    float best_iou = 0;
                    int best_class_id = -1;
                    for(t = 0; t < l.max_boxes; ++t){
                        box truth = float_to_box(state.truth + t*5 + b*l.truths);
                        int class_id = state.truth[t * 5 + b*l.truths + 4];
                        if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file
                        if(!truth.x) break; // continue;
                        float iou = box_iou(pred, truth);
                        if (iou > best_iou) {
                            best_class_id = state.truth[t*5 + b*l.truths + 4];
                            best_iou = iou;
                        }
                    }
                    avg_anyobj += l.output[index + 4];
                    l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
                    if(l.classfix == -1) l.delta[index + 4] = l.noobject_scale * ((best_iou - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
                    else{
                        if (best_iou > l.thresh) {
                            l.delta[index + 4] = 0;
                            if(l.classfix > 0){
                                delta_region_class(l.output, l.delta, index + 5, best_class_id, l.classes, l.softmax_tree, l.class_scale*(l.classfix == 2 ? l.output[index + 4] : 1), &avg_cat, l.focal_loss);
                                ++class_count;
                            }
                        }
                    }

                    if(*(state.net.seen) < 12800){
                        box truth = {0};
                        truth.x = (i + .5)/l.w;
                        truth.y = (j + .5)/l.h;
                        truth.w = l.biases[2*n];
                        truth.h = l.biases[2*n+1];
                        if(DOABS){
                            truth.w = l.biases[2*n]/l.w;
                            truth.h = l.biases[2*n+1]/l.h;
                        }
                        delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
                    }
                }
            }
        }
        for(t = 0; t < l.max_boxes; ++t){
            box truth = float_to_box(state.truth + t*5 + b*l.truths);
            int class_id = state.truth[t * 5 + b*l.truths + 4];
            if (class_id >= l.classes) {
                printf(" Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes-1);
                getchar();
                continue; // if label contains class_id more than number of classes in the cfg-file
            }

            if(!truth.x) break; // continue;
            float best_iou = 0;
            int best_index = 0;
            int best_n = 0;
            i = (truth.x * l.w);
            j = (truth.y * l.h);
            //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h);
            box truth_shift = truth;
            truth_shift.x = 0;
            truth_shift.y = 0;
            //printf("index %d %d\n",i, j);
            for(n = 0; n < l.n; ++n){
                int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
                box pred = get_region_box(l.output, l.biases, n, index, i, j, l.w, l.h);
                if(l.bias_match){
                    pred.w = l.biases[2*n];
                    pred.h = l.biases[2*n+1];
                    if(DOABS){
                        pred.w = l.biases[2*n]/l.w;
                        pred.h = l.biases[2*n+1]/l.h;
                    }
                }
                //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
                pred.x = 0;
                pred.y = 0;
                float iou = box_iou(pred, truth_shift);
                if (iou > best_iou){
                    best_index = index;
                    best_iou = iou;
                    best_n = n;
                }
            }
            //printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);

            float iou = delta_region_box(truth, l.output, l.biases, best_n, best_index, i, j, l.w, l.h, l.delta, l.coord_scale);
            if(iou > .5) recall += 1;
            avg_iou += iou;

            //l.delta[best_index + 4] = iou - l.output[best_index + 4];
            avg_obj += l.output[best_index + 4];
            l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
            if (l.rescore) {
                l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
            }

            if (l.map) class_id = l.map[class_id];
            delta_region_class(l.output, l.delta, best_index + 5, class_id, l.classes, l.softmax_tree, l.class_scale, &avg_cat, l.focal_loss);
            ++count;
            ++class_count;
        }
    }
    //printf("\n");
    #ifndef GPU
    flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0);
    #endif
    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
}
Ejemplo n.º 6
0
void forward_detection_layer(const detection_layer l, network_state state)
{
    int locations = l.side*l.side;
    int i,j;
    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
    int b;
    if (l.softmax){
        for(b = 0; b < l.batch; ++b){
            int index = b*l.inputs;
            for (i = 0; i < locations; ++i) {
                int offset = i*l.classes;
                softmax_array(l.output + index + offset, l.classes, 1,
                        l.output + index + offset);
            }
        }
    }
    if(state.train){
        float avg_iou = 0;
        float avg_cat = 0;
        float avg_allcat = 0;
        float avg_obj = 0;
        float avg_anyobj = 0;
        int count = 0;
        *(l.cost) = 0;
        int size = l.inputs * l.batch;
        memset(l.delta, 0, size * sizeof(float));
        for (b = 0; b < l.batch; ++b){
            int index = b*l.inputs;
            for (i = 0; i < locations; ++i) {
                int truth_index = (b*locations + i)*(1+l.coords+l.classes);
                int is_obj = state.truth[truth_index];
                for (j = 0; j < l.n; ++j) {
                    int p_index = index + locations*l.classes + i*l.n + j;
                    l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]);
                    *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2);
                    avg_anyobj += l.output[p_index];
                }

                int best_index = -1;
                float best_iou = 0;
                float best_rmse = 20;

                if (!is_obj){
                    continue;
                }

                int class_index = index + i*l.classes;
                for(j = 0; j < l.classes; ++j) {
                    l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]);
                    *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2);
                    if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j];
                    avg_allcat += l.output[class_index+j];
                }

                box truth = float_to_box(state.truth + truth_index + 1 + l.classes);
                truth.x /= l.side;
                truth.y /= l.side;

                for(j = 0; j < l.n; ++j){
                    int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords;
                    box out = float_to_box(l.output + box_index);
                    out.x /= l.side;
                    out.y /= l.side;

                    if (l.sqrt){
                        out.w = out.w*out.w;
                        out.h = out.h*out.h;
                    }

                    float iou  = box_iou(out, truth);
                    //iou = 0;
                    float rmse = box_rmse(out, truth);
                    if(best_iou > 0 || iou > 0){
                        if(iou > best_iou){
                            best_iou = iou;
                            best_index = j;
                        }
                    }else{
                        if(rmse < best_rmse){
                            best_rmse = rmse;
                            best_index = j;
                        }
                    }
                }

                if(l.forced){
                    if(truth.w*truth.h < .1){
                        best_index = 1;
                    }else{
                        best_index = 0;
                    }
                }
                if(l.random && *(state.net.seen) < 64000){
                    best_index = rand()%l.n;
                }

                int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords;
                int tbox_index = truth_index + 1 + l.classes;

                box out = float_to_box(l.output + box_index);
                out.x /= l.side;
                out.y /= l.side;
                if (l.sqrt) {
                    out.w = out.w*out.w;
                    out.h = out.h*out.h;
                }
                float iou  = box_iou(out, truth);

                //printf("%d,", best_index);
                int p_index = index + locations*l.classes + i*l.n + best_index;
                *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2);
                *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2);
                avg_obj += l.output[p_index];
                l.delta[p_index] = l.object_scale * (1.-l.output[p_index]);

                if(l.rescore){
                    l.delta[p_index] = l.object_scale * (iou - l.output[p_index]);
                }

                l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]);
                l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]);
                l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]);
                l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]);
                if(l.sqrt){
                    l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]);
                    l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]);
                }

                *(l.cost) += pow(1-iou, 2);
                avg_iou += iou;
                ++count;
            }
        }

        if(0){
            float *costs = calloc(l.batch*locations*l.n, sizeof(float));
            for (b = 0; b < l.batch; ++b) {
                int index = b*l.inputs;
                for (i = 0; i < locations; ++i) {
                    for (j = 0; j < l.n; ++j) {
                        int p_index = index + locations*l.classes + i*l.n + j;
                        costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index];
                    }
                }
            }
            int indexes[100];
            top_k(costs, l.batch*locations*l.n, 100, indexes);
            float cutoff = costs[indexes[99]];
            for (b = 0; b < l.batch; ++b) {
                int index = b*l.inputs;
                for (i = 0; i < locations; ++i) {
                    for (j = 0; j < l.n; ++j) {
                        int p_index = index + locations*l.classes + i*l.n + j;
                        if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0;
                    }
                }
            }
            free(costs);
        }

        *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
	
        if ( l.b_debug )
        {
            printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count);
        }	

    }
}
Ejemplo n.º 7
0
void train_dcgan(char *cfg, char *weight, char *acfg, char *aweight, int clear, int display, char *train_images, int maxbatch)
{
#ifdef GPU
    char *backup_directory = "/home/kunle12/backup/";
    srand(time(0));
    char *base = basecfg(cfg);
    char *abase = basecfg(acfg);
    printf("%s\n", base);
    network *gnet = load_network(cfg, weight, clear);
    network *anet = load_network(acfg, aweight, clear);
    //float orig_rate = anet->learning_rate;

    int i, j, k;
    layer imlayer = {0};
    for (i = 0; i < gnet->n; ++i) {
        if (gnet->layers[i].out_c == 3) {
            imlayer = gnet->layers[i];
            break;
        }
    }

    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", gnet->learning_rate, gnet->momentum, gnet->decay);
    int imgs = gnet->batch*gnet->subdivisions;
    i = *gnet->seen/imgs;
    data train, buffer;


    list *plist = get_paths(train_images);
    //int N = plist->size;
    char **paths = (char **)list_to_array(plist);

    load_args args= get_base_args(anet);
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.d = &buffer;
    args.type = CLASSIFICATION_DATA;
    args.threads=16;
    args.classes = 1;
    char *ls[2] = {"imagenet", "zzzzzzzz"};
    args.labels = ls;

    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;

    gnet->train = 1;
    anet->train = 1;

    int x_size = gnet->inputs*gnet->batch;
    int y_size = gnet->truths*gnet->batch;
    float *imerror = cuda_make_array(0, y_size);

    //int ay_size = anet->truths*anet->batch;

    float aloss_avg = -1;

    //data generated = copy_data(train);

    if (maxbatch == 0) maxbatch = gnet->max_batches;
    while (get_current_batch(gnet) < maxbatch) {
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;

        //translate_data_rows(train, -.5);
        //scale_data_rows(train, 2);

        load_thread = load_data_in_thread(args);

        printf("Loaded: %lf seconds\n", sec(clock()-time));

        data gen = copy_data(train);
        for (j = 0; j < imgs; ++j) {
            train.y.vals[j][0] = 1;
            gen.y.vals[j][0] = 0;
        }
        time=clock();

        for(j = 0; j < gnet->subdivisions; ++j){
            get_next_batch(train, gnet->batch, j*gnet->batch, gnet->truth, 0);
            int z;
            for(z = 0; z < x_size; ++z){
                gnet->input[z] = rand_normal();
            }
            for(z = 0; z < gnet->batch; ++z){
                float mag = mag_array(gnet->input + z*gnet->inputs, gnet->inputs);
                scale_array(gnet->input + z*gnet->inputs, gnet->inputs, 1./mag);
            }
            /*
               for(z = 0; z < 100; ++z){
               printf("%f, ", gnet->input[z]);
               }
               printf("\n");
               printf("input: %f %f\n", mean_array(gnet->input, x_size), variance_array(gnet->input, x_size));
             */

            //cuda_push_array(gnet->input_gpu, gnet->input, x_size);
            //cuda_push_array(gnet->truth_gpu, gnet->truth, y_size);
            *gnet->seen += gnet->batch;
            forward_network(gnet);

            fill_gpu(imlayer.outputs*imlayer.batch, 0, imerror, 1);
            fill_cpu(anet->truths*anet->batch, 1, anet->truth, 1);
            copy_cpu(anet->inputs*anet->batch, imlayer.output, 1, anet->input, 1);
            anet->delta_gpu = imerror;
            forward_network(anet);
            backward_network(anet);

            //float genaloss = *anet->cost / anet->batch;
            //printf("%f\n", genaloss);

            scal_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1);
            scal_gpu(imlayer.outputs*imlayer.batch, 0, gnet->layers[gnet->n-1].delta_gpu, 1);

            //printf("realness %f\n", cuda_mag_array(imerror, imlayer.outputs*imlayer.batch));
            //printf("features %f\n", cuda_mag_array(gnet->layers[gnet->n-1].delta_gpu, imlayer.outputs*imlayer.batch));

            axpy_gpu(imlayer.outputs*imlayer.batch, 1, imerror, 1, gnet->layers[gnet->n-1].delta_gpu, 1);

            backward_network(gnet);

            /*
               for(k = 0; k < gnet->n; ++k){
               layer l = gnet->layers[k];
               cuda_pull_array(l.output_gpu, l.output, l.outputs*l.batch);
               printf("%d: %f %f\n", k, mean_array(l.output, l.outputs*l.batch), variance_array(l.output, l.outputs*l.batch));
               }
             */

            for(k = 0; k < gnet->batch; ++k){
                int index = j*gnet->batch + k;
                copy_cpu(gnet->outputs, gnet->output + k*gnet->outputs, 1, gen.X.vals[index], 1);
            }
        }
        harmless_update_network_gpu(anet);

        data merge = concat_data(train, gen);
        //randomize_data(merge);
        float aloss = train_network(anet, merge);

        //translate_image(im, 1);
        //scale_image(im, .5);
        //translate_image(im2, 1);
        //scale_image(im2, .5);
#ifdef OPENCV
        if(display){
            image im = float_to_image(anet->w, anet->h, anet->c, gen.X.vals[0]);
            image im2 = float_to_image(anet->w, anet->h, anet->c, train.X.vals[0]);
            show_image(im, "gen", 1);
            show_image(im2, "train", 1);
            save_image(im, "gen");
            save_image(im2, "train");
        }
#endif

        /*
           if(aloss < .1){
           anet->learning_rate = 0;
           } else if (aloss > .3){
           anet->learning_rate = orig_rate;
           }
         */

        update_network_gpu(gnet);

        free_data(merge);
        free_data(train);
        free_data(gen);
        if (aloss_avg < 0) aloss_avg = aloss;
        aloss_avg = aloss_avg*.9 + aloss*.1;

        printf("%d: adv: %f | adv_avg: %f, %f rate, %lf seconds, %d images\n", i, aloss, aloss_avg, get_current_rate(gnet), sec(clock()-time), i*imgs);
        if(i%10000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(gnet, buff);
            sprintf(buff, "%s/%s_%d.weights", backup_directory, abase, i);
            save_weights(anet, buff);
        }
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s.backup", backup_directory, base);
            save_weights(gnet, buff);
            sprintf(buff, "%s/%s.backup", backup_directory, abase);
            save_weights(anet, buff);
        }
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(gnet, buff);
#endif
    free_network(gnet);
    free_network(anet);
}
Ejemplo n.º 8
0
void forward_iseg_layer(const layer l, network net) {

	double time = what_time_is_it_now();
	int i, b, j, k;
	int ids = l.extra;
	memcpy(l.output, net.input, l.outputs * l.batch * sizeof(real_t));
	memset(l.delta, 0, l.outputs * l.batch * sizeof(real_t));

#ifndef GPU
	for (b = 0; b < l.batch; ++b) {
		int index = b * l.outputs;
		activate_array(l.output + index, l.classes * l.w * l.h, LOGISTIC);
	}
#endif

	for (b = 0; b < l.batch; ++b) {
		// a priori, each pixel has no class
		for (i = 0; i < l.classes; ++i) {
			for (k = 0; k < l.w * l.h; ++k) {
				int index = b * l.outputs + i * l.w * l.h + k;
				l.delta[index] = 0 - l.output[index];
			}
		}

		// a priori, embedding should be small magnitude
		for (i = 0; i < ids; ++i) {
			for (k = 0; k < l.w * l.h; ++k) {
				int index = b * l.outputs + (i + l.classes) * l.w * l.h + k;
				l.delta[index] = .1 * (0 - l.output[index]);
			}
		}

		memset(l.counts, 0, 90 * sizeof(int));
		for (i = 0; i < 90; ++i) {
			fill_cpu(ids, 0, l.sums[i], 1);

			int c = net.truth[b * l.truths + i * (l.w * l.h + 1)];
			if (c < 0)
				break;
			// add up metric embeddings for each instance
			for (k = 0; k < l.w * l.h; ++k) {
				int index = b * l.outputs + c * l.w * l.h + k;
				real_t v = net.truth[b * l.truths + i * (l.w * l.h + 1) + 1 + k];
				if (v) {
					l.delta[index] = v - l.output[index];
					axpy_cpu(ids, 1,
							l.output + b * l.outputs + l.classes * l.w * l.h
									+ k, l.w * l.h, l.sums[i], 1);
					++l.counts[i];
				}
			}
		}

		real_t *mse = calloc(90, sizeof(real_t));
		for (i = 0; i < 90; ++i) {
			int c = net.truth[b * l.truths + i * (l.w * l.h + 1)];
			if (c < 0)
				break;
			for (k = 0; k < l.w * l.h; ++k) {
				real_t v = net.truth[b * l.truths + i * (l.w * l.h + 1) + 1 + k];
				if (v) {
					int z;
					real_t sum = 0;
					for (z = 0; z < ids; ++z) {
						int index = b * l.outputs + (l.classes + z) * l.w * l.h
								+ k;
						sum += pow(l.sums[i][z] / l.counts[i] - l.output[index],
								2);
					}
					mse[i] += sum;
				}
			}
			mse[i] /= l.counts[i];
		}

		// Calculate average embedding
		for (i = 0; i < 90; ++i) {
			if (!l.counts[i])
				continue;
			scal_cpu(ids, 1.f / l.counts[i], l.sums[i], 1);
			if (b == 0 && net.gpu_index == 0) {
				printf("%4d, %6.3f, ", l.counts[i], mse[i]);
				for (j = 0; j < ids; ++j) {
					printf("%6.3f,", l.sums[i][j]);
				}
				printf("\n");
			}
		}
		free(mse);

		// Calculate embedding loss
		for (i = 0; i < 90; ++i) {
			if (!l.counts[i])
				continue;
			for (k = 0; k < l.w * l.h; ++k) {
				real_t v = net.truth[b * l.truths + i * (l.w * l.h + 1) + 1 + k];
				if (v) {
					for (j = 0; j < 90; ++j) {
						if (!l.counts[j])
							continue;
						int z;
						for (z = 0; z < ids; ++z) {
							int index = b * l.outputs
									+ (l.classes + z) * l.w * l.h + k;
							real_t diff = l.sums[j][z] - l.output[index];
							if (j == i)
								l.delta[index] += diff < 0 ? -.1 : .1;
							else
								l.delta[index] += -(diff < 0 ? -.1 : .1);
						}
					}
				}
			}
		}

		for (i = 0; i < ids; ++i) {
			for (k = 0; k < l.w * l.h; ++k) {
				int index = b * l.outputs + (i + l.classes) * l.w * l.h + k;
				l.delta[index] *= .01;
			}
		}
	}

	*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
	printf("took %lf sec\n", what_time_is_it_now() - time);
}