Ejemplo n.º 1
0
/**
    Purpose
    -------
    DGEQRF computes a QR factorization of a DOUBLE PRECISION M-by-N matrix A:
    A = Q * R. This version does not require work space on the GPU
    passed as input. GPU memory is allocated in the routine.

    This uses 2 queues to overlap communication and computation.

    Arguments
    ---------
    @param[in]
    m       INTEGER
            The number of rows of the matrix A.  M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A.  N >= 0.

    @param[in,out]
    A       DOUBLE PRECISION array, dimension (LDA,N)
            On entry, the M-by-N matrix A.
            On exit, the elements on and above the diagonal of the array
            contain the min(M,N)-by-N upper trapezoidal matrix R (R is
            upper triangular if m >= n); the elements below the diagonal,
            with the array TAU, represent the orthogonal matrix Q as a
            product of min(m,n) elementary reflectors (see Further
            Details).
    \n
            Higher performance is achieved if A is in pinned memory, e.g.
            allocated using magma_malloc_pinned.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.  LDA >= max(1,M).

    @param[out]
    tau     DOUBLE PRECISION array, dimension (min(M,N))
            The scalar factors of the elementary reflectors (see Further
            Details).

    @param[out]
    work    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.
    \n
            Higher performance is achieved if WORK is in pinned memory, e.g.
            allocated using magma_malloc_pinned.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.  LWORK >= max( N*NB, 2*NB*NB ),
            where NB can be obtained through magma_get_dgeqrf_nb( M, N ).
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
                  or another error occured, such as memory allocation failed.

    Further Details
    ---------------
    The matrix Q is represented as a product of elementary reflectors

        Q = H(1) H(2) . . . H(k), where k = min(m,n).

    Each H(i) has the form

        H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
    and tau in TAU(i).

    @ingroup magma_dgeqrf_comp
    ********************************************************************/
extern "C" magma_int_t
magma_dgeqrf(
    magma_int_t m, magma_int_t n,
    double *A,    magma_int_t lda,
    double *tau,
    double *work, magma_int_t lwork,
    magma_int_t *info )
{
    #define  A(i_,j_)  (A + (i_) + (j_)*lda)
    
    #ifdef HAVE_clBLAS
    #define dA(i_,j_)  dA,    ((i_) + (j_)*ldda + dA_offset)
    #define dT(i_,j_)  dT,    ((i_) + (j_)*nb   + dT_offset)
    #define dwork(i_)  dwork, ((i_)             + dwork_offset)
    #else
    #define dA(i_,j_) (dA    + (i_) + (j_)*ldda)
    #define dT(i_,j_) (dT    + (i_) + (j_)*nb)
    #define dwork(i_) (dwork + (i_))
    #endif
    
    /* Constants */
    const double c_one = MAGMA_D_ONE;
    
    /* Local variables */
    magmaDouble_ptr dA, dT, dwork;
    magma_int_t i, ib, min_mn, ldda, lddwork, old_i, old_ib;
    
    /* Function Body */
    *info = 0;
    magma_int_t nb = magma_get_dgeqrf_nb( m, n );
    
    // need 2*nb*nb to store T and upper triangle of V simultaneously
    magma_int_t lwkopt = max( n*nb, 2*nb*nb );
    work[0] = magma_dmake_lwork( lwkopt );
    bool lquery = (lwork == -1);
    if (m < 0) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (lda < max(1,m)) {
        *info = -4;
    } else if (lwork < max(1, lwkopt) && ! lquery) {
        *info = -7;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery)
        return *info;
    
    min_mn = min( m, n );
    if (min_mn == 0) {
        work[0] = c_one;
        return *info;
    }
    
    // largest N for larfb is n-nb (trailing matrix lacks 1st panel)
    lddwork = magma_roundup( n, 32 ) - nb;
    ldda    = magma_roundup( m, 32 );
    
    magma_int_t ngpu = magma_num_gpus();
    if ( ngpu > 1 ) {
        /* call multiple-GPU interface  */
        return magma_dgeqrf_m( ngpu, m, n, A, lda, tau, work, lwork, info );
    }
    
    // allocate space for dA, dwork, and dT
    if (MAGMA_SUCCESS != magma_dmalloc( &dA, n*ldda + nb*lddwork + nb*nb )) {
        /* alloc failed so call non-GPU-resident version */
        return magma_dgeqrf_ooc( m, n, A, lda, tau, work, lwork, info );
    }
    
    dwork = dA + n*ldda;
    dT    = dA + n*ldda + nb*lddwork;
    
    magma_queue_t queues[2];
    magma_device_t cdev;
    magma_getdevice( &cdev );
    magma_queue_create( cdev, &queues[0] );
    magma_queue_create( cdev, &queues[1] );
    

    //used for timing CPU and GPU
    int iter = 0;
    float cpu_time = 0.0;
    float gpu_time = 0.0;

    int affinity = map_cpu(0);
    if(affinity != 0)
    {
        printf("affinity failed\n");
        return -1;
    }


    magma_set_lapack_numthreads(1);

    // for initial setting, better to be automatic in the future
    // SetGPUFreq(324, 324);
    // system("echo 1200000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed");
    SetGPUFreq(2600, 705);
    system("echo 2500000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed");

    double gpu_iter1_low = 2096.544434;
    double gpu_iter1_high = 478.825226;
    double cpu_iter1_low = 1792.011230;
    double cpu_iter1_high = 1413.732788;

    double gpu_pred_high = gpu_iter1_high;
    double gpu_pred_low = gpu_iter1_low;
    double cpu_pred_high = cpu_iter1_high;
    double cpu_pred_low = cpu_iter1_low;

    double ratio_split_freq = 0;
    double time_until_interrupt = 0;

    cudaEvent_t start_cpu, stop_cpu;
    cudaEvent_t start_gpu, stop_gpu;

    // switches for different modes
    bool timing = false; //for initial setting only, greatly impact performance
    bool dvfs = false; //turn on dvfs energy saving
    bool relax = false; //turn on relax scheme
    bool r2h = false; // turn on race to halt

    //these parameters need to be tuned in future works.
    double dvfs_converage = 0.5;
    double prediction_offset_gpu = 0.65;
    double prediction_offset_cpu = 0.65;


    //for nvprof profiler, brings slight constant performance overhead
    //cudaProfilerStart();

    if ( (nb > 1) && (nb < min_mn) ) {
        /* Use blocked code initially.
           Asynchronously send the matrix to the GPU except the first panel. */
        magma_dsetmatrix_async( m, n-nb,
                                 A(0,nb), lda,
                                dA(0,nb), ldda, queues[0] );
        
        old_i = 0;
        old_ib = nb;
        for (i = 0; i < min_mn-nb; i += nb) {
            ib = min( min_mn-i, nb );
            if (i > 0) {
                /* get i-th panel from device */
                magma_queue_sync( queues[1] );
                magma_dgetmatrix_async( m-i, ib,
                                        dA(i,i), ldda,
                                         A(i,i), lda, queues[0] );
                
                if (timing) {
                    //start gpu timing
                    cudaEventCreate(&start_gpu);
                    cudaEventCreate(&stop_gpu);
                    cudaEventRecord(start_gpu, 0);
                }

                /* Apply H' to A(i:m,i+2*ib:n) from the left */
                magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise,
                                  m-old_i, n-old_i-2*old_ib, old_ib,
                                  dA(old_i, old_i),          ldda, dT(0,0),  nb,
                                  dA(old_i, old_i+2*old_ib), ldda, dwork(0), lddwork, queues[1] );
                


                double ratio_slack_pred = 1.0 - (double)nb/(m-iter*nb);
                cpu_pred_high = cpu_pred_high * ratio_slack_pred;
                cpu_pred_low = cpu_pred_low * ratio_slack_pred;
                gpu_pred_high = gpu_pred_high * ratio_slack_pred * ratio_slack_pred;
                gpu_pred_low = gpu_pred_low * ratio_slack_pred * ratio_slack_pred;

                if (timing) {
                    printf("iter:%d GPU time pred:%f\n", iter, gpu_pred_high);
                    printf("iter:%d CPU time pred:%f\n", iter, cpu_pred_high);
                }


                if (iter < dvfs_converage*(min_mn-nb)/nb) {
                    if (cpu_pred_high > gpu_pred_high) { //slack on GPU
                        ratio_split_freq = (cpu_pred_high - gpu_pred_high) / (gpu_pred_high * ((gpu_iter1_low / gpu_iter1_high) - 1));
                        time_until_interrupt = gpu_pred_low * ratio_split_freq;
                         //printf("iter:%d time_until_interrupt:%f\n", iter, time_until_interrupt);
                        // printf("iter:%d ratio_split_freq:%f\n", iter, ratio_split_freq);
                        if (dvfs) {
                            if ((!relax) || (relax && ratio_split_freq > 0.05)) {
                                if (ratio_split_freq < 1)
                                    dvfs_adjust(time_until_interrupt*prediction_offset_gpu, 'g');
                                else
                                    dvfs_adjust(cpu_pred_high, 'g');
                            }
                        } else if (r2h) {
                            r2h_adjust(gpu_pred_high, cpu_pred_high - gpu_pred_high, 'g');
                        }
                    } else { //slack on CPU
                        ratio_split_freq = (gpu_pred_high - cpu_pred_high) / (cpu_pred_high * ((cpu_iter1_low / cpu_iter1_high) - 1));
                        time_until_interrupt = cpu_pred_low * ratio_split_freq;
                        if (dvfs) {
                            if ((!relax) || (relax && ratio_split_freq > 0.05)) {
                                if (ratio_split_freq < 1)
                                    dvfs_adjust(time_until_interrupt*prediction_offset_cpu, 'c');
                                else
                                    dvfs_adjust(gpu_pred_high, 'c');
                            }
                        } else if (r2h) {
                            r2h_adjust(cpu_pred_high, gpu_pred_high - cpu_pred_high, 'c');
                        }
                    }
                }

                if (timing) {
                    //end gpu timing
                    cudaEventRecord(stop_gpu, 0);
                    cudaEventSynchronize(stop_gpu);
                    cudaEventElapsedTime(&gpu_time, start_gpu, stop_gpu);
                    cudaEventDestroy(start_gpu);
                    cudaEventDestroy(stop_gpu);

                    printf("iter:%d GPU time:%f\n", iter, gpu_time);
                }



                magma_dgetmatrix_async( i, ib,
                                        dA(0,i), ldda,
                                         A(0,i), lda, queues[1] );
                magma_queue_sync( queues[0] );
            }
            
            magma_int_t rows = m-i;

            if (timing) {
                //start cpu timing
                cudaEventCreate(&start_cpu);
                cudaEventCreate(&stop_cpu);
                cudaEventRecord(start_cpu, 0);
            }

            lapackf77_dgeqrf( &rows, &ib, A(i,i), &lda, tau+i, work, &lwork, info );
            
            /* Form the triangular factor of the block reflector
               H = H(i) H(i+1) . . . H(i+ib-1) */
            lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr,
                              &rows, &ib, A(i,i), &lda, tau+i, work, &ib );
            

            if (timing) {
                //end cpu timing
                cudaEventRecord(stop_cpu, 0);
                cudaEventSynchronize(stop_cpu);
                cudaEventElapsedTime(&cpu_time, start_cpu, stop_cpu);
                cudaEventDestroy(start_cpu);
                cudaEventDestroy(stop_cpu);
                printf("iter:%d CPU time:%f\n", iter, cpu_time);
                if (gpu_time < cpu_time) {
                    printf("slack: +\n");
                } else {
                    printf("slack: -\n");
                }
            }

            magma_dpanel_to_q( MagmaUpper, ib, A(i,i), lda, work+ib*ib );
            
            /* put i-th V matrix onto device */
            magma_dsetmatrix_async( rows, ib, A(i,i), lda, dA(i,i), ldda, queues[0] );
            
            /* put T matrix onto device */
            magma_queue_sync( queues[1] );
            magma_dsetmatrix_async( ib, ib, work, ib, dT(0,0), nb, queues[0] );
            magma_queue_sync( queues[0] );
            
            if (i + ib < n) {
                if (i+ib < min_mn-nb) {
                    /* Apply H' to A(i:m,i+ib:i+2*ib) from the left (look-ahead) */
                    magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise,
                                      rows, ib, ib,
                                      dA(i, i   ), ldda, dT(0,0),  nb,
                                      dA(i, i+ib), ldda, dwork(0), lddwork, queues[1] );
                    magma_dq_to_panel( MagmaUpper, ib, A(i,i), lda, work+ib*ib );
                }
                else {
                    /* After last panel, update whole trailing matrix. */
                    /* Apply H' to A(i:m,i+ib:n) from the left */
                    magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise,
                                      rows, n-i-ib, ib,
                                      dA(i, i   ), ldda, dT(0,0),  nb,
                                      dA(i, i+ib), ldda, dwork(0), lddwork, queues[1] );
                    magma_dq_to_panel( MagmaUpper, ib, A(i,i), lda, work+ib*ib );
                }
                
                old_i  = i;
                old_ib = ib;
                
            }
            iter ++;

        }
        //for nvprof profiler.
        //cudaProfilerStop();
    } else {
        i = 0;
    }
    
    /* Use unblocked code to factor the last or only block. */
    if (i < min_mn) {
        ib = n-i;
        if (i != 0) {
            magma_dgetmatrix( m, ib, dA(0,i), ldda, A(0,i), lda, queues[1] );
        }
        magma_int_t rows = m-i;
        lapackf77_dgeqrf( &rows, &ib, A(i,i), &lda, tau+i, work, &lwork, info );
    }
    
    magma_queue_destroy( queues[0] );
    magma_queue_destroy( queues[1] );
    
    magma_free( dA );
    
    return *info;
} /* magma_dgeqrf */
Ejemplo n.º 2
0
/**
    Purpose
    -------
    DORMQR overwrites the general real M-by-N matrix C with

    @verbatim
                              SIDE = MagmaLeft   SIDE = MagmaRight
    TRANS = MagmaNoTrans:     Q * C              C * Q
    TRANS = MagmaTrans:  Q**H * C           C * Q**H
    @endverbatim

    where Q is a real orthogonal matrix defined as the product of k
    elementary reflectors

        Q = H(1) H(2) . . . H(k)

    as returned by DGEQRF. Q is of order M if SIDE = MagmaLeft and of order N
    if SIDE = MagmaRight.

    Arguments
    ---------
    @param[in]
    side    magma_side_t
      -     = MagmaLeft:      apply Q or Q**H from the Left;
      -     = MagmaRight:     apply Q or Q**H from the Right.

    @param[in]
    trans   magma_trans_t
      -     = MagmaNoTrans:    No transpose, apply Q;
      -     = MagmaTrans: Conjugate transpose, apply Q**H.

    @param[in]
    m       INTEGER
            The number of rows of the matrix C. M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix C. N >= 0.

    @param[in]
    k       INTEGER
            The number of elementary reflectors whose product defines
            the matrix Q.
            If SIDE = MagmaLeft,  M >= K >= 0;
            if SIDE = MagmaRight, N >= K >= 0.

    @param[in]
    A       DOUBLE PRECISION array, dimension (LDA,K)
            The i-th column must contain the vector which defines the
            elementary reflector H(i), for i = 1,2,...,k, as returned by
            DGEQRF in the first k columns of its array argument A.
            A is modified by the routine but restored on exit.

    @param[in]
    lda     INTEGER
            The leading dimension of the array A.
            If SIDE = MagmaLeft,  LDA >= max(1,M);
            if SIDE = MagmaRight, LDA >= max(1,N).

    @param[in]
    tau     DOUBLE PRECISION array, dimension (K)
            TAU(i) must contain the scalar factor of the elementary
            reflector H(i), as returned by DGEQRF.

    @param[in,out]
    C       DOUBLE PRECISION array, dimension (LDC,N)
            On entry, the M-by-N matrix C.
            On exit, C is overwritten by Q*C or Q**H * C or C * Q**H or C*Q.

    @param[in]
    ldc     INTEGER
            The leading dimension of the array C. LDC >= max(1,M).

    @param[out]
    work    (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
            On exit, if INFO = 0, WORK[0] returns the optimal LWORK.

    @param[in]
    lwork   INTEGER
            The dimension of the array WORK.
            If SIDE = MagmaLeft,  LWORK >= max(1,N);
            if SIDE = MagmaRight, LWORK >= max(1,M).
            For optimum performance
            if SIDE = MagmaLeft,  LWORK >= N*NB;
            if SIDE = MagmaRight, LWORK >= M*NB,
            where NB is the optimal blocksize.
    \n
            If LWORK = -1, then a workspace query is assumed; the routine
            only calculates the optimal size of the WORK array, returns
            this value as the first entry of the WORK array, and no error
            message related to LWORK is issued by XERBLA.

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value

    @ingroup magma_dgeqrf_comp
    ********************************************************************/
extern "C" magma_int_t
magma_dormqr(
    magma_side_t side, magma_trans_t trans,
    magma_int_t m, magma_int_t n, magma_int_t k,
    double *A,    magma_int_t lda,
    double *tau,
    double *C,    magma_int_t ldc,
    double *work, magma_int_t lwork,
    magma_int_t *info)
{
    #define  A(i_,j_) ( A + (i_) + (j_)*lda)
    #define dC(i_,j_) (dC + (i_) + (j_)*lddc)
    #define dV(i_,j_) (dV + (i_) + (j_)*nq_i)
    #define dT(i_,j_) (dT + (i_) + (j_)*ib)
    #define dwork(i_) (dwork + (i_))
    
    double *T, *T2;
    magma_int_t i, i1, i2, ib, ic, jc, nb, mi, ni, nq, nq_i, nw, step;
    magma_int_t iinfo, ldwork, lwkopt;
    magma_int_t left, notran, lquery;

    *info = 0;
    left   = (side == MagmaLeft);
    notran = (trans == MagmaNoTrans);
    lquery = (lwork == -1);

    /* NQ is the order of Q and NW is the minimum dimension of WORK */
    if (left) {
        nq = m;
        nw = n;
    } else {
        nq = n;
        nw = m;
    }
    
    /* Test the input arguments */
    if (! left && side != MagmaRight) {
        *info = -1;
    } else if (! notran && trans != MagmaTrans) {
        *info = -2;
    } else if (m < 0) {
        *info = -3;
    } else if (n < 0) {
        *info = -4;
    } else if (k < 0 || k > nq) {
        *info = -5;
    } else if (lda < max(1,nq)) {
        *info = -7;
    } else if (ldc < max(1,m)) {
        *info = -10;
    } else if (lwork < max(1,nw) && ! lquery) {
        *info = -12;
    }

    if (*info == 0) {
        nb = magma_get_dgelqf_nb( m, n );
        lwkopt = max(1,nw)*nb;
        work[0] = magma_dmake_lwork( lwkopt );
    }

    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }
    else if (lquery) {
        return *info;
    }

    /* Quick return if possible */
    if (m == 0 || n == 0 || k == 0) {
        work[0] = MAGMA_D_ONE;
        return *info;
    }

    ldwork = nw;

    if (nb >= k) {
        /* Use CPU code */
        lapackf77_dormqr( lapack_side_const(side), lapack_trans_const(trans),
            &m, &n, &k, A, &lda, tau, C, &ldc, work, &lwork, &iinfo);
    }
    else {
        /* Use hybrid CPU-GPU code */
        magma_queue_t queue;
        magma_device_t cdev;
        magma_getdevice( &cdev );
        magma_queue_create( cdev, &queue );
        
        /* Allocate work space on the GPU.
         * nw*nb  for dwork (m or n) by nb
         * nq*nb  for dV    (n or m) by nb
         * nb*nb  for dT
         * lddc*n for dC.
         */
        magma_int_t lddc = magma_roundup( m, 32 );
        magmaDouble_ptr dwork, dV, dT, dC;
        magma_dmalloc( &dwork, (nw + nq + nb)*nb + lddc*n );
        if ( dwork == NULL ) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            return *info;
        }
        dV = dwork + nw*nb;
        dT = dV    + nq*nb;
        dC = dT    + nb*nb;
        
        /* work space on CPU.
         * nb*nb for T
         * nb*nb for T2, used to save and restore diagonal block of panel */
        magma_dmalloc_cpu( &T, 2*nb*nb );
        if ( T == NULL ) {
            magma_free( dwork );
            *info = MAGMA_ERR_HOST_ALLOC;
            return *info;
        }
        T2 = T + nb*nb;
        
        /* Copy matrix C from the CPU to the GPU */
        magma_dsetmatrix( m, n, C, ldc, dC(0,0), lddc, queue );
        
        if ( (left && ! notran) ||  (! left && notran) ) {
            i1 = 0;
            i2 = k;
            step = nb;
        } else {
            i1 = ((k - 1) / nb) * nb;
            i2 = 0;
            step = -nb;
        }

        // silence "uninitialized" warnings
        mi = 0;
        ni = 0;
        
        if (left) {
            ni = n;
            jc = 0;
        } else {
            mi = m;
            ic = 0;
        }
        
        for (i = i1; (step < 0 ? i >= i2 : i < i2); i += step) {
            ib = min(nb, k - i);

            /* Form the triangular factor of the block reflector
               H = H(i) H(i+1) . . . H(i+ib-1) */
            nq_i = nq - i;
            lapackf77_dlarft( "Forward", "Columnwise", &nq_i, &ib,
                              A(i,i), &lda, &tau[i], T, &ib );

            /* 1) set upper triangle of panel in A to identity,
               2) copy the panel from A to the GPU, and
               3) restore A                                      */
            magma_dpanel_to_q( MagmaUpper, ib, A(i,i), lda, T2 );
            magma_dsetmatrix( nq_i,  ib, A(i,i), lda, dV(0,0), nq_i, queue );
            magma_dq_to_panel( MagmaUpper, ib, A(i,i), lda, T2 );

            if (left) {
                /* H or H**H is applied to C(i:m,1:n) */
                mi = m - i;
                ic = i;
            }
            else {
                /* H or H**H is applied to C(1:m,i:n) */
                ni = n - i;
                jc = i;
            }

            /* Apply H or H**H; First copy T to the GPU */
            magma_dsetmatrix( ib, ib, T, ib, dT(0,0), ib, queue );
            magma_dlarfb_gpu( side, trans, MagmaForward, MagmaColumnwise,
                              mi, ni, ib,
                              dV(0,0), nq_i,
                              dT(0,0), ib,
                              dC(ic,jc), lddc,
                              dwork(0), ldwork, queue );
        }
        magma_dgetmatrix( m, n, dC(0,0), lddc, C, ldc, queue );

        magma_queue_destroy( queue );
        
        magma_free( dwork );
        magma_free_cpu( T );
    }
    work[0] = magma_dmake_lwork( lwkopt );

    return *info;
} /* magma_dormqr */
Ejemplo n.º 3
0
/**
    Purpose
    -------
    DGEQRF computes a QR factorization of a real M-by-N matrix A:
    A = Q * R. This is a GPU interface of the routine.

    Arguments
    ---------
    @param[in]
    ngpu    INTEGER
            Number of GPUs to use. ngpu > 0.

    @param[in]
    m       INTEGER
            The number of rows of the matrix A.  M >= 0.

    @param[in]
    n       INTEGER
            The number of columns of the matrix A.  N >= 0.

    @param[in,out]
    dlA     DOUBLE PRECISION array of pointers on the GPU, dimension (ngpu).
            On entry, the M-by-N matrix A distributed over GPUs
            (d_lA[d] points to the local matrix on d-th GPU).
            It uses 1D block column cyclic format with the block size of nb,
            and each local matrix is stored by column.
            On exit, the elements on and above the diagonal of the array
            contain the min(M,N)-by-N upper trapezoidal matrix R (R is
            upper triangular if m >= n); the elements below the diagonal,
            with the array TAU, represent the orthogonal matrix Q as a
            product of min(m,n) elementary reflectors (see Further
            Details).

    @param[in]
    ldda    INTEGER
            The leading dimension of the array dA.  LDDA >= max(1,M).
            To benefit from coalescent memory accesses LDDA must be
            divisible by 16.

    @param[out]
    tau     DOUBLE PRECISION array, dimension (min(M,N))
            The scalar factors of the elementary reflectors (see Further
            Details).

    @param[out]
    info    INTEGER
      -     = 0:  successful exit
      -     < 0:  if INFO = -i, the i-th argument had an illegal value
                  or another error occured, such as memory allocation failed.

    Further Details
    ---------------
    The matrix Q is represented as a product of elementary reflectors

       Q = H(1) H(2) . . . H(k), where k = min(m,n).

    Each H(i) has the form

       H(i) = I - tau * v * v'

    where tau is a real scalar, and v is a real vector with
    v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
    and tau in TAU(i).

    @ingroup magma_dgeqrf_comp
    ********************************************************************/
extern "C" magma_int_t
magma_dgeqrf2_mgpu(
    magma_int_t ngpu,
    magma_int_t m, magma_int_t n,
    magmaDouble_ptr dlA[], magma_int_t ldda,
    double *tau,
    magma_int_t *info )
{
    #define dlA(dev, i, j)   (dlA[dev] + (i) + (j)*(ldda))
    #define hpanel(i)        (hpanel + (i))

    // set to NULL to make cleanup easy: free(NULL) does nothing.
    double *dwork[MagmaMaxGPUs]={NULL}, *dpanel[MagmaMaxGPUs]={NULL};
    double *hwork=NULL, *hpanel=NULL;
    magma_queue_t queues[MagmaMaxGPUs][2]={{NULL}};
    magma_event_t panel_event[MagmaMaxGPUs]={NULL};

    magma_int_t i, j, min_mn, dev, ldhpanel, lddwork, rows;
    magma_int_t ib, nb;
    magma_int_t lhwork, lwork;
    magma_int_t panel_dev, i_local, i_nb_local, n_local[MagmaMaxGPUs], la_dev, dpanel_offset;

    *info = 0;
    if (m < 0) {
        *info = -1;
    } else if (n < 0) {
        *info = -2;
    } else if (ldda < max(1,m)) {
        *info = -4;
    }
    if (*info != 0) {
        magma_xerbla( __func__, -(*info) );
        return *info;
    }

    min_mn = min(m,n);
    if (min_mn == 0)
        return *info;

    magma_device_t orig_dev;
    magma_getdevice( &orig_dev );

    nb = magma_get_dgeqrf_nb( m, n );

    /* dwork is (n*nb) --- for T (nb*nb) and dlarfb work ((n-nb)*nb) ---
     *        + dpanel (ldda*nb), on each GPU.
     * I think dlarfb work could be smaller, max(n_local[:]).
     * Oddly, T and dlarfb work get stacked on top of each other, both with lddwork=n.
     * on GPU that owns panel, set dpanel = dlA(dev,i,i_local).
     * on other GPUs,          set dpanel = dwork[dev] + dpanel_offset. */
    lddwork = n;
    dpanel_offset = lddwork*nb;
    for( dev=0; dev < ngpu; dev++ ) {
        magma_setdevice( dev );
        if ( MAGMA_SUCCESS != magma_dmalloc( &(dwork[dev]), (lddwork + ldda)*nb )) {
            *info = MAGMA_ERR_DEVICE_ALLOC;
            goto CLEANUP;
        }
    }

    /* hwork is MAX( workspace for dgeqrf (n*nb), two copies of T (2*nb*nb) )
     *        + hpanel (m*nb).
     * for last block, need 2*n*nb total. */
    ldhpanel = m;
    lhwork = max( n*nb, 2*nb*nb );
    lwork = max( lhwork + ldhpanel*nb, 2*n*nb );
    if ( MAGMA_SUCCESS != magma_dmalloc_pinned( &hwork, lwork )) {
        *info = MAGMA_ERR_HOST_ALLOC;
        goto CLEANUP;
    }
    hpanel = hwork + lhwork;

    /* Set the number of local n for each GPU */
    for( dev=0; dev < ngpu; dev++ ) {
        n_local[dev] = ((n/nb)/ngpu)*nb;
        if (dev < (n/nb) % ngpu)
            n_local[dev] += nb;
        else if (dev == (n/nb) % ngpu)
            n_local[dev] += n % nb;
    }

    for( dev=0; dev < ngpu; dev++ ) {
        magma_setdevice( dev );
        magma_queue_create( dev, &queues[dev][0] );
        magma_queue_create( dev, &queues[dev][1] );
        magma_event_create( &panel_event[dev] );
    }

    if ( nb < min_mn ) {
        /* Use blocked code initially */
        // Note: as written, ib cannot be < nb.
        for( i = 0; i < min_mn-nb; i += nb ) {
            /* Set the GPU number that holds the current panel */
            panel_dev = (i/nb) % ngpu;
            
            /* Set the local index where the current panel is (j == i) */
            i_local = i/(nb*ngpu)*nb;
            
            ib = min(min_mn-i, nb);
            rows = m-i;
            
            /* Send current panel to the CPU, after panel_event indicates it has been updated */
            magma_setdevice( panel_dev );
            magma_queue_wait_event( queues[panel_dev][1], panel_event[panel_dev] );
            magma_dgetmatrix_async( rows, ib,
                                    dlA(panel_dev, i, i_local), ldda,
                                    hpanel(i),                  ldhpanel, 
                                    queues[panel_dev][1] );
            magma_queue_sync( queues[panel_dev][1] );

            // Factor panel
            lapackf77_dgeqrf( &rows, &ib, hpanel(i), &ldhpanel, tau+i,
                              hwork, &lhwork, info );
            if ( *info != 0 ) {
                fprintf( stderr, "error %d\n", (int) *info );
            }

            // Form the triangular factor of the block reflector
            // H = H(i) H(i+1) . . . H(i+ib-1)
            lapackf77_dlarft( MagmaForwardStr, MagmaColumnwiseStr,
                              &rows, &ib,
                              hpanel(i), &ldhpanel, tau+i, hwork, &ib );

            magma_dpanel_to_q( MagmaUpper, ib, hpanel(i), ldhpanel, hwork + ib*ib );
            // Send the current panel back to the GPUs
            for( dev=0; dev < ngpu; dev++ ) {
                magma_setdevice( dev );
                if (dev == panel_dev)
                    dpanel[dev] = dlA(dev, i, i_local);
                else
                    dpanel[dev] = dwork[dev] + dpanel_offset;
                magma_dsetmatrix_async( rows, ib,
                                        hpanel(i),   ldhpanel,
                                        dpanel[dev], ldda, 
                                        queues[dev][0] );
            }
            for( dev=0; dev < ngpu; dev++ ) {
                magma_setdevice( dev );
                magma_queue_sync( queues[dev][0] );
            }

            // TODO: if magma_dpanel_to_q copied whole block, wouldn't need to restore
            // -- just send the copy to the GPUs.
            // TODO: also, could zero out the lower triangle and use Azzam's larfb w/ gemm.
            
            /* Restore the panel */
            magma_dq_to_panel( MagmaUpper, ib, hpanel(i), ldhpanel, hwork + ib*ib );

            if (i + ib < n) {
                /* Send the T matrix to the GPU. */
                for( dev=0; dev < ngpu; dev++ ) {
                    magma_setdevice( dev );
                    magma_dsetmatrix_async( ib, ib,
                                            hwork,      ib,
                                            dwork[dev], lddwork, 
                                            queues[dev][0] );
                }
                
                la_dev = (panel_dev+1) % ngpu;
                for( dev=0; dev < ngpu; dev++ ) {
                    magma_setdevice( dev );
                    if (dev == la_dev && i+nb < min_mn-nb) {
                        // If not last panel,
                        // for look-ahead panel, apply H' to A(i:m,i+ib:i+2*ib)
                        i_nb_local = (i+nb)/(nb*ngpu)*nb;
                        magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise,
                                          rows, ib, ib,
                                          dpanel[dev],             ldda,       // V
                                          dwork[dev],              lddwork,    // T
                                          dlA(dev, i, i_nb_local), ldda,       // C
                                          dwork[dev]+ib,           lddwork,    // work
                                          queues[dev][0] );  
                        magma_event_record( panel_event[dev], queues[dev][0] );
                        // for trailing matrix, apply H' to A(i:m,i+2*ib:n)
                        magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise,
                                          rows, n_local[dev]-(i_nb_local+ib), ib,
                                          dpanel[dev],                ldda,       // V
                                          dwork[dev],                 lddwork,    // T
                                          dlA(dev, i, i_nb_local+ib), ldda,       // C
                                          dwork[dev]+ib,              lddwork,    // work
                                          queues[dev][0] ); 
                    }
                    else {
                        // for trailing matrix, apply H' to A(i:m,i+ib:n)
                        i_nb_local = i_local;
                        if (dev <= panel_dev) {
                            i_nb_local += ib;
                        }
                        magma_dlarfb_gpu( MagmaLeft, MagmaConjTrans, MagmaForward, MagmaColumnwise,
                                          rows, n_local[dev]-i_nb_local, ib,
                                          dpanel[dev],             ldda,       // V
                                          dwork[dev],              lddwork,    // T
                                          dlA(dev, i, i_nb_local), ldda,       // C
                                          dwork[dev]+ib,           lddwork,    // work
                                          queues[dev][0] );
                    }
                }
                // Restore top of panel (after larfb is done)
                magma_setdevice( panel_dev );
                magma_dsetmatrix_async( ib, ib,
                                        hpanel(i),                  ldhpanel,
                                        dlA(panel_dev, i, i_local), ldda, 
                                        queues[panel_dev][0] );
            }
        }
    }
    else {
        i = 0;
    }
    
    /* Use unblocked code to factor the last or only block row. */
    if (i < min_mn) {
        rows = m-i;
        for( j=i; j < n; j += nb ) {
            panel_dev = (j/nb) % ngpu;
            i_local = j/(nb*ngpu)*nb;
            ib = min( n-j, nb );
            magma_setdevice( panel_dev );
            magma_dgetmatrix( rows, ib,
                              dlA(panel_dev, i, i_local), ldda,
                              hwork + (j-i)*rows,         rows,
                              queues[panel_dev][0] );
        }

        // needs lwork >= 2*n*nb:
        // needs (m-i)*(n-i) for last block row, bounded by nb*n.
        // needs (n-i)*nb    for dgeqrf work,    bounded by n*nb.
        ib = n-i;  // total columns in block row
        lhwork = lwork - ib*rows;
        lapackf77_dgeqrf( &rows, &ib, hwork, &rows, tau+i, hwork + ib*rows, &lhwork, info );
        if ( *info != 0 ) {
            fprintf( stderr, "error %d\n", (int) *info );
        }
        
        for( j=i; j < n; j += nb ) {
            panel_dev = (j/nb) % ngpu;
            i_local = j/(nb*ngpu)*nb;
            ib = min( n-j, nb );
            magma_setdevice( panel_dev );
            magma_dsetmatrix( rows, ib,
                              hwork + (j-i)*rows,         rows,
                              dlA(panel_dev, i, i_local), ldda,
                              queues[panel_dev][0] );
        }
    }

CLEANUP:
    // free(NULL) does nothing.
    for( dev=0; dev < ngpu; dev++ ) {
        magma_setdevice( dev );
        magma_queue_destroy( queues[dev][0]   );
        magma_queue_destroy( queues[dev][1]   );
        magma_event_destroy( panel_event[dev] );
        magma_free( dwork[dev] );
    }
    magma_free_pinned( hwork );
    magma_setdevice( orig_dev );

    return *info;
} /* magma_dgeqrf2_mgpu */