Ejemplo n.º 1
0
void lcd_loading_filament(){

  
    lcd_implementation_clear();
      
      lcd.setCursor(0, 0);
     
      lcd.print(MSG_LOADING_FILAMENT);
      lcd.setCursor(0, 2);
      lcd.print(MSG_PLEASE_WAIT);

  
  for(int i = 0; i<20; i++){
    
    lcd.setCursor(i, 3);
    lcd.print(".");
    for(int j = 0;j<10 ; j++){
        manage_heater();
    manage_inactivity(true);
        delay(110);
    
    }
    
     
  }

}
void loop() {
    get_command();
    
    manage_heater();
    
    manage_inactivity(1); //shutdown if not receiving any new commands
}
Ejemplo n.º 3
0
	void TemperatureManager::manageTemperatureControl()
	{
	#ifdef DOGLCD
		updateLUTCache();
	#else
		manage_heater();
	#endif
	}
Ejemplo n.º 4
0
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in 
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
{
  // Calculate the buffer head after we push this byte
  int next_buffer_head = next_block_index(block_buffer_head);

  // If the buffer is full: good! That means we are well ahead of the robot. 
  // Rest here until there is room in the buffer.
  while(block_buffer_tail == next_buffer_head)
  {
    manage_heater(); 
    manage_inactivity(); 
    lcd_update();
  }

  // The target position of the tool in absolute steps
  // Calculate target position in absolute steps
  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  long target[4];
  target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);     
  target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);

  #ifdef PREVENT_DANGEROUS_EXTRUDE
  if(target[E_AXIS]!=position[E_AXIS])
  {
    if(degHotend(active_extruder)<extrude_min_temp)
    {
      position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
      SERIAL_ECHO_START;
      SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
    }
        #ifdef PREVENT_LENGTHY_EXTRUDE
    if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
    {
#ifdef EASY_LOAD
	  if (!allow_lengthy_extrude_once) {
#endif
        position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
        SERIAL_ECHO_START;
        SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
#ifdef EASY_LOAD
	  }
	  allow_lengthy_extrude_once = false;
#endif
    }
    #endif  // PREVENT_LENGTHY_EXTRUDE
  }
  #endif

  // Prepare to set up new block
  block_t *block = &block_buffer[block_buffer_head];

  // Mark block as not busy (Not executed by the stepper interrupt)
  block->busy = false;

  // Number of steps for each axis
#ifndef COREXY
// default non-h-bot planning
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
#else
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
#endif
  block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  block->steps_e *= extrudemultiply;
  block->steps_e /= 100;
  block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));

  // Bail if this is a zero-length block
  if (block->step_event_count <= dropsegments)
  { 
    return; 
  }

  block->fan_speed = fanSpeed;
  #ifdef BARICUDA
  block->valve_pressure = ValvePressure;
  block->e_to_p_pressure = EtoPPressure;
  #endif

  // Compute direction bits for this block 
  block->direction_bits = 0;
#ifndef COREXY
  if (target[X_AXIS] < position[X_AXIS])
  {
    block->direction_bits |= (1<<X_AXIS); 
  }
  if (target[Y_AXIS] < position[Y_AXIS])
  {
    block->direction_bits |= (1<<Y_AXIS); 
  }
#else
  if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  {
    block->direction_bits |= (1<<X_AXIS); 
  }
  if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  {
    block->direction_bits |= (1<<Y_AXIS); 
  }
#endif
  if (target[Z_AXIS] < position[Z_AXIS])
  {
    block->direction_bits |= (1<<Z_AXIS); 
  }
  if (target[E_AXIS] < position[E_AXIS])
  {
    block->direction_bits |= (1<<E_AXIS); 
  }

  block->active_extruder = extruder;

  //enable active axes
  #ifdef COREXY
  if((block->steps_x != 0) || (block->steps_y != 0))
  {
    enable_x();
    enable_y();
  }
  #else
  if(block->steps_x != 0) enable_x();
  if(block->steps_y != 0) enable_y();
  #endif
#ifndef Z_LATE_ENABLE
  if(block->steps_z != 0) enable_z();
#endif

  // Enable all
  if(block->steps_e != 0)
  {
    enable_e0();
    enable_e1();
    enable_e2(); 
  }

  if (block->steps_e == 0)
  {
    if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  }
  else
  {
    if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  } 

  float delta_mm[4];
  #ifndef COREXY
    delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
    delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  #else
    delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
    delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  #endif
  delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
  if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  {
    block->millimeters = fabs(delta_mm[E_AXIS]);
  } 
  else
  {
    block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  }
  float inverse_millimeters = 1.0/block->millimeters;  // Inverse millimeters to remove multiple divides 

    // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  float inverse_second = feed_rate * inverse_millimeters;

  int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);

  // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
#ifdef OLD_SLOWDOWN
  if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
    feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); 
#endif

#ifdef SLOWDOWN
  //  segment time im micro seconds
  unsigned long segment_time = lround(1000000.0/inverse_second);
  if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
  {
    if (segment_time < minsegmenttime)
    { // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
      inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
      #ifdef XY_FREQUENCY_LIMIT
         segment_time = lround(1000000.0/inverse_second);
      #endif
    }
  }
#endif
  //  END OF SLOW DOWN SECTION    


  block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0

  // Calculate and limit speed in mm/sec for each axis
  float current_speed[4];
  float speed_factor = 1.0; //factor <=1 do decrease speed
  for(int i=0; i < 4; i++)
  {
    current_speed[i] = delta_mm[i] * inverse_second;
    if(fabs(current_speed[i]) > max_feedrate[i])
      speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  }

  // Max segement time in us.
#ifdef XY_FREQUENCY_LIMIT
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  // Check and limit the xy direction change frequency
  unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  old_direction_bits = block->direction_bits;
  segment_time = lround((float)segment_time / speed_factor);
  
  if((direction_change & (1<<X_AXIS)) == 0)
  {
    x_segment_time[0] += segment_time;
  }
  else
  {
    x_segment_time[2] = x_segment_time[1];
    x_segment_time[1] = x_segment_time[0];
    x_segment_time[0] = segment_time;
  }
  if((direction_change & (1<<Y_AXIS)) == 0)
  {
    y_segment_time[0] += segment_time;
  }
  else
  {
    y_segment_time[2] = y_segment_time[1];
    y_segment_time[1] = y_segment_time[0];
    y_segment_time[0] = segment_time;
  }
  long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  if(min_xy_segment_time < MAX_FREQ_TIME)
    speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
#endif

  // Correct the speed  
  if( speed_factor < 1.0)
  {
    for(unsigned char i=0; i < 4; i++)
    {
      current_speed[i] *= speed_factor;
    }
    block->nominal_speed *= speed_factor;
    block->nominal_rate *= speed_factor;
  }

  // Compute and limit the acceleration rate for the trapezoid generator.  
  float steps_per_mm = block->step_event_count/block->millimeters;
  if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  {
    block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  }
  else
  {
    block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
    // Limit acceleration per axis
    if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
    if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
    if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
    if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
      block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  }
  block->acceleration = block->acceleration_st / steps_per_mm;
  block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));

#if 0  // Use old jerk for now
  // Compute path unit vector
  double unit_vec[3];

  unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;

  // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  // Let a circle be tangent to both previous and current path line segments, where the junction
  // deviation is defined as the distance from the junction to the closest edge of the circle,
  // colinear with the circle center. The circular segment joining the two paths represents the
  // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  // nonlinearities of both the junction angle and junction velocity.
  double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed

  // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
    // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
    // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
    double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
      - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
      - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;

    // Skip and use default max junction speed for 0 degree acute junction.
    if (cos_theta < 0.95) {
      vmax_junction = min(previous_nominal_speed,block->nominal_speed);
      // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
      if (cos_theta > -0.95) {
        // Compute maximum junction velocity based on maximum acceleration and junction deviation
        double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
        vmax_junction = min(vmax_junction,
        sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
      }
    }
  }
#endif
  // Start with a safe speed
  float vmax_junction = max_xy_jerk/2; 
  float vmax_junction_factor = 1.0; 
  if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) 
    vmax_junction = min(vmax_junction, max_z_jerk/2);
  if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) 
    vmax_junction = min(vmax_junction, max_e_jerk/2);
  vmax_junction = min(vmax_junction, block->nominal_speed);
  float safe_speed = vmax_junction;

  if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
    float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
    //    if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
    vmax_junction = block->nominal_speed;
    //    }
    if (jerk > max_xy_jerk) {
      vmax_junction_factor = (max_xy_jerk/jerk);
    } 
    if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
      vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
    } 
    if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
      vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
    } 
    vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  }
  block->max_entry_speed = vmax_junction;

  // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  block->entry_speed = min(vmax_junction, v_allowable);

  // Initialize planner efficiency flags
  // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  // the current block and next block junction speeds are guaranteed to always be at their maximum
  // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  // the reverse and forward planners, the corresponding block junction speed will always be at the
  // the maximum junction speed and may always be ignored for any speed reduction checks.
  if (block->nominal_speed <= v_allowable) { 
    block->nominal_length_flag = true; 
  }
  else { 
    block->nominal_length_flag = false; 
  }
  block->recalculate_flag = true; // Always calculate trapezoid for new block

  // Update previous path unit_vector and nominal speed
  memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  previous_nominal_speed = block->nominal_speed;


#ifdef ADVANCE
  // Calculate advance rate
  if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
    block->advance_rate = 0;
    block->advance = 0;
  }
  else {
    long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
    float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * 
      (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
    block->advance = advance;
    if(acc_dist == 0) {
      block->advance_rate = 0;
    } 
    else {
      block->advance_rate = advance / (float)acc_dist;
    }
  }
  /*
    SERIAL_ECHO_START;
   SERIAL_ECHOPGM("advance :");
   SERIAL_ECHO(block->advance/256.0);
   SERIAL_ECHOPGM("advance rate :");
   SERIAL_ECHOLN(block->advance_rate/256.0);
   */
#endif // ADVANCE

  calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  safe_speed/block->nominal_speed);

  // Move buffer head
  block_buffer_head = next_buffer_head;

  // Update position
  memcpy(position, target, sizeof(target)); // position[] = target[]

  planner_recalculate();

  st_wake_up();
}
Ejemplo n.º 5
0
void lcd_adjust_z(){
  int enc_dif = 0;
  int cursor_pos = 1;
  int fsm = 0;

  
  
  
   lcd_implementation_clear();
      
      lcd.setCursor(0, 0);
     
      lcd.print(MSG_ADJUSTZ);
      
      lcd.setCursor(1, 1);
     
      lcd.print(MSG_YES);
      
      lcd.setCursor(1, 2);
     
      lcd.print(MSG_NO);
      
      lcd.setCursor(0, 1);
     
      lcd.print(">");
      
     
      enc_dif = encoderDiff;
      
      while(fsm == 0){
        
        manage_heater();
          manage_inactivity(true);
          
          if( abs((enc_dif - encoderDiff))>4 ){
            
            if ( (abs(enc_dif-encoderDiff)) > 1 ){
            if (enc_dif > encoderDiff ){
                  cursor_pos --;
              }
              
              if (enc_dif < encoderDiff  ){
                  cursor_pos ++;
              }
              
              if(cursor_pos >2){
              cursor_pos = 2;
            }
            
            if(cursor_pos <1){
              cursor_pos = 1;
            }
            lcd.setCursor(0, 1);
            lcd.print(" ");
            lcd.setCursor(0, 2);
            lcd.print(" ");
            lcd.setCursor(0, cursor_pos);
            lcd.print(">");
              enc_dif = encoderDiff;
              delay(100);
            }
            
          }
          

          if(lcd_clicked()){
            fsm = cursor_pos;
            if(fsm == 1){
                EEPROM_read_B(4093,&babystepMem[0]);
                EEPROM_read_B(4091,&babystepMem[1]);
                EEPROM_read_B(4089,&babystepMem[2]);
                babystepsTodo[Z_AXIS] = babystepMem[2];
            }else{
                babystepMem[0] = 0;
                babystepMem[1] = 0;
                babystepMem[2] = 0;

                EEPROM_save_B(4093,&babystepMem[0]);
                EEPROM_save_B(4091,&babystepMem[1]);
                EEPROM_save_B(4089,&babystepMem[2]);
            }
            delay(500);
              
          }
          
          
          
        };
      
      
       lcd_implementation_clear();
  lcd_return_to_status();
  
}
Ejemplo n.º 6
0
void lcd_alright(){
  int enc_dif = 0;
  int cursor_pos = 1;

  
  
  
   lcd_implementation_clear();
      
      lcd.setCursor(0, 0);
     
      lcd.print(MSG_CORRECTLY);
      
      lcd.setCursor(1, 1);
     
      lcd.print(MSG_YES);
      
      lcd.setCursor(1, 2);
     
      lcd.print(MSG_NOT_LOADED);
      
      
      lcd.setCursor(1, 3);
      lcd.print(MSG_NOT_COLOR);
      
      
       lcd.setCursor(0, 1);
     
      lcd.print(">");
      
     
      enc_dif = encoderDiff;
      
      while(lcd_change_fil_state == 0){
        
        manage_heater();
          manage_inactivity(true);
          
          if( abs((enc_dif - encoderDiff))>4 ){
            
            if ( (abs(enc_dif-encoderDiff)) > 1 ){
            if (enc_dif > encoderDiff ){
                  cursor_pos --;
              }
              
              if (enc_dif < encoderDiff  ){
                  cursor_pos ++;
              }
              
              if(cursor_pos >3){
              cursor_pos = 3;
            }
            
            if(cursor_pos <1){
              cursor_pos = 1;
            }
            lcd.setCursor(0, 1);
            lcd.print(" ");
            lcd.setCursor(0, 2);
            lcd.print(" ");
            lcd.setCursor(0, 3);
            lcd.print(" ");
            lcd.setCursor(0, cursor_pos);
            lcd.print(">");
              enc_dif = encoderDiff;
              delay(100);
            }
            
          }
          

          if(lcd_clicked()){
            
            lcd_change_fil_state = cursor_pos;
            delay(500);
              
          }
          
          
          
        };
      
      
       lcd_implementation_clear();
  lcd_return_to_status();
  
}
Ejemplo n.º 7
0
  void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
#endif  //ENABLE_AUTO_BED_LEVELING
{
  // Calculate the buffer head after we push this byte
  int next_buffer_head = next_block_index(block_buffer_head);

  // If the buffer is full: good! That means we are well ahead of the robot. 
  // Rest here until there is room in the buffer.
  while(block_buffer_tail == next_buffer_head) {
    manage_heater(); 
    manage_inactivity(); 
    lcd_update();
  }

  #ifdef MESH_BED_LEVELING
    if (mbl.active) z += mbl.get_z(x, y);
  #endif

  #ifdef ENABLE_AUTO_BED_LEVELING
    apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  #endif

  // The target position of the tool in absolute steps
  // Calculate target position in absolute steps
  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  long target[NUM_AXIS];
  target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
  target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
  target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);     
  target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);

  float dx = target[X_AXIS] - position[X_AXIS],
        dy = target[Y_AXIS] - position[Y_AXIS],
        dz = target[Z_AXIS] - position[Z_AXIS],
        de = target[E_AXIS] - position[E_AXIS];

  #ifdef PREVENT_DANGEROUS_EXTRUDE
    if (de) {
      if (degHotend(active_extruder) < extrude_min_temp) {
        position[E_AXIS] = target[E_AXIS]; //behave as if the move really took place, but ignore E part
        SERIAL_ECHO_START;
        SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
      }
      #ifdef PREVENT_LENGTHY_EXTRUDE
        if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
          position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
          SERIAL_ECHO_START;
          SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
        }
      #endif
    }
  #endif

  // Prepare to set up new block
  block_t *block = &block_buffer[block_buffer_head];

  // Mark block as not busy (Not executed by the stepper interrupt)
  block->busy = false;

  // Number of steps for each axis
  #ifdef COREXY
    // corexy planning
    // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
    block->steps[A_AXIS] = labs(dx + dy);
    block->steps[B_AXIS] = labs(dx - dy);
  #else
    // default non-h-bot planning
    block->steps[X_AXIS] = labs(dx);
    block->steps[Y_AXIS] = labs(dy);
  #endif

  block->steps[Z_AXIS] = labs(dz);
  block->steps[E_AXIS] = labs(de);
  block->steps[E_AXIS] *= volumetric_multiplier[active_extruder];
  block->steps[E_AXIS] *= extruder_multiply[active_extruder];
  block->steps[E_AXIS] /= 100;
  block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));

  // Bail if this is a zero-length block
  if (block->step_event_count <= dropsegments) return;

  block->fan_speed = fanSpeed;
  #ifdef BARICUDA
    block->valve_pressure = ValvePressure;
    block->e_to_p_pressure = EtoPPressure;
  #endif

  // Compute direction bits for this block 
  uint8_t db = 0;
  #ifdef COREXY
    if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
    if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
    if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
    if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
  #else
    if (dx < 0) db |= BIT(X_AXIS);
    if (dy < 0) db |= BIT(Y_AXIS); 
  #endif
  if (dz < 0) db |= BIT(Z_AXIS);
  if (de < 0) db |= BIT(E_AXIS); 
  block->direction_bits = db;

  block->active_extruder = extruder;

  //enable active axes
  #ifdef COREXY
    if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
      enable_x();
      enable_y();
    }
  #else
    if (block->steps[X_AXIS]) enable_x();
    if (block->steps[Y_AXIS]) enable_y();
  #endif

  #ifndef Z_LATE_ENABLE
    if (block->steps[Z_AXIS]) enable_z();
  #endif

  // Enable extruder(s)
  if (block->steps[E_AXIS]) {
    if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder

      for (int i=0; i<EXTRUDERS; i++)
        if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
      
      switch(extruder) {
        case 0:
          enable_e0();
          g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
          #if EXTRUDERS > 1
            if (g_uc_extruder_last_move[1] == 0) disable_e1();
            #if EXTRUDERS > 2
              if (g_uc_extruder_last_move[2] == 0) disable_e2();
              #if EXTRUDERS > 3
                if (g_uc_extruder_last_move[3] == 0) disable_e3();
              #endif
            #endif
          #endif
        break;
        #if EXTRUDERS > 1
          case 1:
            enable_e1();
            g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
            if (g_uc_extruder_last_move[0] == 0) disable_e0();
            #if EXTRUDERS > 2
              if (g_uc_extruder_last_move[2] == 0) disable_e2();
              #if EXTRUDERS > 3
                if (g_uc_extruder_last_move[3] == 0) disable_e3();
              #endif
            #endif
          break;
          #if EXTRUDERS > 2
            case 2:
              enable_e2();
              g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
              if (g_uc_extruder_last_move[0] == 0) disable_e0();
              if (g_uc_extruder_last_move[1] == 0) disable_e1();
              #if EXTRUDERS > 3
                if (g_uc_extruder_last_move[3] == 0) disable_e3();
              #endif
            break;
            #if EXTRUDERS > 3
              case 3:
                enable_e3();
                g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2;
                if (g_uc_extruder_last_move[0] == 0) disable_e0();
                if (g_uc_extruder_last_move[1] == 0) disable_e1();
                if (g_uc_extruder_last_move[2] == 0) disable_e2();
              break;
            #endif // EXTRUDERS > 3
          #endif // EXTRUDERS > 2
        #endif // EXTRUDERS > 1
      }
    }
    else { // enable all
      enable_e0();
      enable_e1();
      enable_e2();
      enable_e3();
    }
  }

  if (block->steps[E_AXIS]) {
    if (feed_rate < minimumfeedrate) feed_rate = minimumfeedrate;
  }
  else if (feed_rate < mintravelfeedrate) feed_rate = mintravelfeedrate;

  /**
   * This part of the code calculates the total length of the movement. 
   * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
   * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
   * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
   * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. 
   * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
   */ 
  #ifdef COREXY
    float delta_mm[6];
    delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
    delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
    delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
    delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
  #else
    float delta_mm[4];
    delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
    delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  #endif
  delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extruder_multiply[active_extruder] / 100.0;

  if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
    block->millimeters = fabs(delta_mm[E_AXIS]);
  } 
  else {
    block->millimeters = sqrt(
      #ifdef COREXY
        square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD])
      #else
        square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS])
      #endif
      + square(delta_mm[Z_AXIS])
    );
  }
  float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides 

  // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  float inverse_second = feed_rate * inverse_millimeters;

  int moves_queued = movesplanned();

  // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  #if defined(OLD_SLOWDOWN) || defined(SLOWDOWN)
    bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
    #ifdef OLD_SLOWDOWN
      if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
    #endif
    #ifdef SLOWDOWN
      //  segment time im micro seconds
      unsigned long segment_time = lround(1000000.0/inverse_second);
      if (mq) {
        if (segment_time < minsegmenttime) {
          // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
          inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
          #ifdef XY_FREQUENCY_LIMIT
            segment_time = lround(1000000.0 / inverse_second);
          #endif
        }
      }
    #endif
  #endif

  block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0

  #ifdef FILAMENT_SENSOR
    //FMM update ring buffer used for delay with filament measurements
  
    if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) {  //only for extruder with filament sensor and if ring buffer is initialized

      const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;

      delay_dist += delta_mm[E_AXIS];  // increment counter with next move in e axis
      while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
      while (delay_dist < 0) delay_dist += MMD10;

      delay_index1 = delay_dist / 10.0;  // calculate index
      delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)

      if (delay_index1 != delay_index2) { // moved index
        meas_sample = widthFil_to_size_ratio() - 100;  // Subtract 100 to reduce magnitude - to store in a signed char
        while (delay_index1 != delay_index2) {
          // Increment and loop around buffer
          if (++delay_index2 >= MMD) delay_index2 -= MMD;
          delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
          measurement_delay[delay_index2] = meas_sample;
        }
      }
    }
  #endif

  // Calculate and limit speed in mm/sec for each axis
  float current_speed[NUM_AXIS];
  float speed_factor = 1.0; //factor <=1 do decrease speed
  for (int i = 0; i < NUM_AXIS; i++) {
    current_speed[i] = delta_mm[i] * inverse_second;
    float cs = fabs(current_speed[i]), mf = max_feedrate[i];
    if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  }

  // Max segement time in us.
  #ifdef XY_FREQUENCY_LIMIT
    #define MAX_FREQ_TIME (1000000.0 / XY_FREQUENCY_LIMIT)

    // Check and limit the xy direction change frequency
    unsigned char direction_change = block->direction_bits ^ old_direction_bits;
    old_direction_bits = block->direction_bits;
    segment_time = lround((float)segment_time / speed_factor);
  
    long xs0 = axis_segment_time[X_AXIS][0],
         xs1 = axis_segment_time[X_AXIS][1],
         xs2 = axis_segment_time[X_AXIS][2],
         ys0 = axis_segment_time[Y_AXIS][0],
         ys1 = axis_segment_time[Y_AXIS][1],
         ys2 = axis_segment_time[Y_AXIS][2];

    if ((direction_change & BIT(X_AXIS)) != 0) {
      xs2 = axis_segment_time[X_AXIS][2] = xs1;
      xs1 = axis_segment_time[X_AXIS][1] = xs0;
      xs0 = 0;
    }
    xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;

    if ((direction_change & BIT(Y_AXIS)) != 0) {
      ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
      ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
      ys0 = 0;
    }
    ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;

    long max_x_segment_time = max(xs0, max(xs1, xs2)),
         max_y_segment_time = max(ys0, max(ys1, ys2)),
         min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
    if (min_xy_segment_time < MAX_FREQ_TIME) {
      float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
      speed_factor = min(speed_factor, low_sf);
    }
  #endif // XY_FREQUENCY_LIMIT

  // Correct the speed  
  if (speed_factor < 1.0) {
    for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
    block->nominal_speed *= speed_factor;
    block->nominal_rate *= speed_factor;
  }

  // Compute and limit the acceleration rate for the trapezoid generator.  
  float steps_per_mm = block->step_event_count / block->millimeters;
  long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
  if (bsx == 0 && bsy == 0 && bsz == 0) {
    block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  }
  else if (bse == 0) {
    block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  }
  else {
    block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  }
  // Limit acceleration per axis
  unsigned long acc_st = block->acceleration_st,
                xsteps = axis_steps_per_sqr_second[X_AXIS],
                ysteps = axis_steps_per_sqr_second[Y_AXIS],
                zsteps = axis_steps_per_sqr_second[Z_AXIS],
                esteps = axis_steps_per_sqr_second[E_AXIS];
  if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
  if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
  if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
  if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
 
  block->acceleration_st = acc_st;
  block->acceleration = acc_st / steps_per_mm;
  block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));

  #if 0  // Use old jerk for now
    // Compute path unit vector
    double unit_vec[3];

    unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
    unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
    unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;

    // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
    // Let a circle be tangent to both previous and current path line segments, where the junction
    // deviation is defined as the distance from the junction to the closest edge of the circle,
    // colinear with the circle center. The circular segment joining the two paths represents the
    // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
    // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
    // path width or max_jerk in the previous grbl version. This approach does not actually deviate
    // from path, but used as a robust way to compute cornering speeds, as it takes into account the
    // nonlinearities of both the junction angle and junction velocity.
    double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed

    // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
    if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
      // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
      // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
      double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
        - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
        - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;

      // Skip and use default max junction speed for 0 degree acute junction.
      if (cos_theta < 0.95) {
        vmax_junction = min(previous_nominal_speed,block->nominal_speed);
        // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
        if (cos_theta > -0.95) {
          // Compute maximum junction velocity based on maximum acceleration and junction deviation
          double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
          vmax_junction = min(vmax_junction,
          sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
        }
      }
    }
  #endif

  // Start with a safe speed
  float vmax_junction = max_xy_jerk / 2;
  float vmax_junction_factor = 1.0; 
  float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
  float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
  if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  vmax_junction = min(vmax_junction, block->nominal_speed);
  float safe_speed = vmax_junction;

  if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
    float dx = current_speed[X_AXIS] - previous_speed[X_AXIS],
          dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
          dz = fabs(csz - previous_speed[Z_AXIS]),
          de = fabs(cse - previous_speed[E_AXIS]),
          jerk = sqrt(dx * dx + dy * dy);

    //    if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
    vmax_junction = block->nominal_speed;
    //    }
    if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
    if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz);
    if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de);

    vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  }
  block->max_entry_speed = vmax_junction;

  // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  block->entry_speed = min(vmax_junction, v_allowable);

  // Initialize planner efficiency flags
  // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  // the current block and next block junction speeds are guaranteed to always be at their maximum
  // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  // the reverse and forward planners, the corresponding block junction speed will always be at the
  // the maximum junction speed and may always be ignored for any speed reduction checks.
  block->nominal_length_flag = (block->nominal_speed <= v_allowable); 
  block->recalculate_flag = true; // Always calculate trapezoid for new block

  // Update previous path unit_vector and nominal speed
  for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
  previous_nominal_speed = block->nominal_speed;

  #ifdef ADVANCE
    // Calculate advance rate
    if (!bse || (!bsx && !bsy && !bsz)) {
      block->advance_rate = 0;
      block->advance = 0;
    }
    else {
      long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
      float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
      block->advance = advance;
      block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
    }
    /*
      SERIAL_ECHO_START;
     SERIAL_ECHOPGM("advance :");
     SERIAL_ECHO(block->advance/256.0);
     SERIAL_ECHOPGM("advance rate :");
     SERIAL_ECHOLN(block->advance_rate/256.0);
     */
  #endif // ADVANCE

  calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);

  // Move buffer head
  block_buffer_head = next_buffer_head;

  // Update position
  for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];

  planner_recalculate();

  st_wake_up();

} // plan_buffer_line()
void process_commands() {
    unsigned long codenum; //throw away variable

    if (code_seen('N')) {
        gcode_N = code_value_long();
        if (gcode_N != gcode_LastN+1 && (strstr(cmdbuffer, "M110") == NULL) ) {
            gcode_LastN=0;
            pc.printf("ok");
            //if(gcode_N != gcode_LastN+1 && !code_seen("M110") ) {   //Hmm, compile size is different between using this vs the line above even though it should be the same thing. Keeping old method.
            //pc.printf("Serial Error: Line Number is not Last Line Number+1, Last Line:");
            //pc.printf("%d\n",gcode_LastN);
            //FlushSerialRequestResend();
            return;
        }

        if (code_seen('*')) {
            int checksum = 0;
            int count=0;
            while (cmdbuffer[count] != '*') checksum = checksum^cmdbuffer[count++];

            if ( (int)code_value() != checksum) {
                //pc.printf("Error: checksum mismatch, Last Line:");
                //pc.printf("%d\n",gcode_LastN);
                //FlushSerialRequestResend();
                return;
            }
            //if no errors, continue parsing
        } else {
            //pc.printf("Error: No Checksum with line number, Last Line:");
            //pc.printf("%d\n",gcode_LastN);
            //FlushSerialRequestResend();
            return;
        }

        gcode_LastN = gcode_N;
        //if no errors, continue parsing
    } else { // if we don't receive 'N' but still see '*'
        if (code_seen('*')) {
            //pc.printf("Error: No Line Number with checksum, Last Line:");
            //pc.printf("%d\n",gcode_LastN);
            return;
        }
    }

    //continues parsing only if we don't receive any 'N' or '*' or no errors if we do. :)

    if (code_seen('G')) {
        switch ((int)code_value()) {
            case 0: // G0 -> G1
            case 1: // G1
                reset_timers();//avoid timer overflow after 30 seconds
                get_coordinates(); // For X Y Z E F
                x_steps_to_take = abs(destination_x - current_x)*x_steps_per_unit;
                y_steps_to_take = abs(destination_y - current_y)*y_steps_per_unit;
                z_steps_to_take = abs(destination_z - current_z)*z_steps_per_unit;
                e_steps_to_take = abs(destination_e - current_e)*e_steps_per_unit;
                //printf(" x_steps_to_take:%d\n", x_steps_to_take);


                time_for_move = max(X_TIME_FOR_MOVE,Y_TIME_FOR_MOVE);
                time_for_move = max(time_for_move,Z_TIME_FOR_MOVE);
                time_for_move = max(time_for_move,E_TIME_FOR_MOVE);

                if (x_steps_to_take) x_interval = time_for_move/x_steps_to_take;
                if (y_steps_to_take) y_interval = time_for_move/y_steps_to_take;
                if (z_steps_to_take) z_interval = time_for_move/z_steps_to_take;
                if (e_steps_to_take) e_interval = time_for_move/e_steps_to_take;


                x_steps_remaining = x_steps_to_take;
                y_steps_remaining = y_steps_to_take;
                z_steps_remaining = z_steps_to_take;
                e_steps_remaining = e_steps_to_take;


                if (DEBUGGING) {
                    pc.printf("destination_x: %f\n",destination_x);
                    pc.printf("current_x: %f\n",current_x);
                    pc.printf("x_steps_to_take: %d\n",x_steps_to_take);
                    pc.printf("X_TIME_FOR_MOVE: %f\n",X_TIME_FOR_MOVE);
                    pc.printf("x_interval: %f\n\n",x_interval);

                    pc.printf("destination_y: %f\n",destination_y);
                    pc.printf("current_y: %f\n",current_y);
                    pc.printf("y_steps_to_take: %d\n",y_steps_to_take);
                    pc.printf("Y_TIME_FOR_MOVE: %f\n",Y_TIME_FOR_MOVE);
                    pc.printf("y_interval: %f\n\n",y_interval);

                    pc.printf("destination_z: %f\n",destination_z);
                    pc.printf("current_z: %f\n",current_z);
                    pc.printf("z_steps_to_take: %d\n",z_steps_to_take);
                    pc.printf("Z_TIME_FOR_MOVE: %f\n",Z_TIME_FOR_MOVE);
                    pc.printf("z_interval: %f\n\n",z_interval);

                    pc.printf("destination_e: %f\n",destination_e);
                    pc.printf("current_e: %f\n",current_e);
                    pc.printf("e_steps_to_take: %d\n",e_steps_to_take);
                    pc.printf("E_TIME_FOR_MOVE: %f\n",E_TIME_FOR_MOVE);
                    pc.printf("e_interval: %f\n\n",e_interval);
                }

                linear_move(); // make the move
                ClearToSend();
                return;
            case 4: // G4 dwell
                codenum = 0;
                if (code_seen('P')) codenum = code_value(); // milliseconds to wait
                if (code_seen('S')) codenum = code_value()*1000; // seconds to wait
                previous_millis_heater = millis();  // keep track of when we started waiting
                while ((millis() - previous_millis_heater) < codenum ) manage_heater(); //manage heater until time is up
                break;
            case 90: // G90
                relative_mode = false;
                break;
            case 91: // G91
                relative_mode = true;
                break;
            case 92: // G92
                if (code_seen('X')) current_x = code_value();
                if (code_seen('Y')) current_y = code_value();
                if (code_seen('Z')) current_z = code_value();
                if (code_seen('E')) current_e = code_value();
                break;
           case 93: // G93
                pc.printf("previous_micros:%d\n", previous_micros);
                pc.printf("previous_micros_x:%d\n", previous_micros_x);
                pc.printf("previous_micros_y:%d\n", previous_micros_y);
                pc.printf("previous_micros_z:%d\n", previous_micros_z);
                break;

        }
    }

    if (code_seen('M')) {

        switch ( (int)code_value() ) {
            case 104: // M104 - set hot-end temp
                
                if (code_seen('S'))
                {
                     
                    target_raw = temp2analog(code_value());
                    //pc.printf("target_raw: %d\n ", target_raw);
                }
                break;
        case 140: // M140 - set heated-printbed temp
                if (code_seen('S'))
                {
                     
                    target_raw1 = temp2analog(code_value());
                    //pc.printf("target_raw1: %d\n ", target_raw);
                }
                break;                
                
            case 105: // M105
                pc.printf("ok T:");
                if (TEMP_0_PIN != NC) {
                    pc.printf("%f\n", analog2temp( (p_temp0.read_u16())  ));
                } else {
                    pc.printf("0.0\n");
                }
                if (!code_seen('N')) return; // If M105 is sent from generated gcode, then it needs a response.
                break;
            case 109: // M109 - Wait for heater to reach target.
                if (code_seen('S')) target_raw = temp2analog(code_value());
                previous_millis_heater = millis();
                while (current_raw < target_raw) {
                    if ( (millis()-previous_millis_heater) > 1000 ) { //Print Temp Reading every 1 second while heating up.
                        pc.printf("ok T:");
                        if (TEMP_0_PIN != NC) {
                            pc.printf("%f\n", analog2temp(p_temp0.read_u16()));
                        } else {
                            pc.printf("0.0\n");
                        }
                        previous_millis_heater = millis();
                    }
                    manage_heater();
                }
                break;
            case 106: //M106 Fan On
                p_fan = 1;
                break;
            case 107: //M107 Fan Off
                p_fan = 0;
                break;
            case 80: // M81 - ATX Power On
                //if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,OUTPUT); //GND
                break;
            case 81: // M81 - ATX Power Off
                //if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT); //Floating
                break;
            case 82:
                relative_mode_e = false;
                break;
            case 83:
                relative_mode_e = true;
                break;
            case 84:
                disable_x();
                disable_y();
                disable_z();
                disable_e();
                break;
            case 85: // M85
                code_seen('S');
                max_inactive_time = code_value()*1000;
                break;
            case 86: // M86 If Endstop is Not Activated then Abort Print
                if (code_seen('X')) {
                    if (X_MIN_PIN != NC) {
                        if ( p_X_min == ENDSTOPS_INVERTING ) {
                            kill(3);
                        }
                    }
                }
                if (code_seen('Y')) {
                    if (Y_MIN_PIN != NC) {
                        if ( p_Y_min == ENDSTOPS_INVERTING ) {
                            kill(4);
                        }
                    }
                }
                break;
            case 92: // M92
                if (code_seen('X')) x_steps_per_unit = code_value();
                if (code_seen('Y')) y_steps_per_unit = code_value();
                if (code_seen('Z')) z_steps_per_unit = code_value();
                if (code_seen('E')) e_steps_per_unit = code_value();
                break;
        }

    }

    ClearToSend();
}
void linear_move() { // make linear move with preset speeds and destinations, see G0 and G1
    //Determine direction of movement
    if (destination_x > current_x) {
        p_X_dir = !INVERT_X_DIR;
    } else {
        p_X_dir = INVERT_X_DIR;
    }

    if (destination_y > current_y) {
        p_Y_dir = !INVERT_Y_DIR;
    } else {
        p_Y_dir = INVERT_Y_DIR;
    }

    if (destination_z > current_z) {
        p_Z_dir = !INVERT_Z_DIR;
    } else {
        p_Z_dir = INVERT_Z_DIR;
    }

    if (destination_e > current_e) {
        p_E_dir = !INVERT_E_DIR;
    } else {
        p_E_dir = INVERT_E_DIR;
    }

    //Only enable axis that are moving. If the axis doesn't need to move then it can stay disabled depending on configuration.
    if (x_steps_remaining) enable_x();
    if (y_steps_remaining) enable_y();
    if (z_steps_remaining) enable_z();
    if (e_steps_remaining) enable_e();

    check_x_min_endstop();
    check_y_min_endstop();
    check_z_min_endstop();

    previous_millis_heater = millis();

    while (x_steps_remaining + y_steps_remaining + z_steps_remaining + e_steps_remaining > 0) { // move until no more steps remain
        if (x_steps_remaining>0) {
            if ((micros()-previous_micros_x) >= x_interval) {
                do_x_step();
                x_steps_remaining--;
            }
            check_x_min_endstop();
            led1 = 1;
        } else {
            led1 = 0;
            wait_us(2);
        }

        if (y_steps_remaining>0) {
            if ((micros()-previous_micros_y) >= y_interval) {
                do_y_step();
                y_steps_remaining--;
            }
            check_y_min_endstop();
            led2=1;
        } else {
            led2=0;
            wait_us(2);
        }

        if (z_steps_remaining>0) {
            if ((micros()-previous_micros_z) >= z_interval) {
                do_z_step();
                z_steps_remaining--;
            }
            check_z_min_endstop();
            led3=1;
        } else {
            led3=0;
            wait_us(2);
        }

        if (e_steps_remaining>0) {
            if ((micros()-previous_micros_e) >= e_interval) {
                do_e_step();
                e_steps_remaining--;
                led4=1;
            }
        } else {
            led4=0;
            wait_us(2);
        }

        if ( (millis() - previous_millis_heater) >= 500 ) {
            manage_heater();
            previous_millis_heater = millis();

            manage_inactivity(2);
        }

        wait_us(2);
    }

    led1=0;
    led2=0;
    led3=0;
    led4=0;

    if (DISABLE_X) disable_x();
    if (DISABLE_Y) disable_y();
    if (DISABLE_Z) disable_z();
    if (DISABLE_E) disable_e();

    // Update current position partly based on direction, we probably can combine this with the direction code above...
    if (destination_x > current_x) current_x = current_x + x_steps_to_take/x_steps_per_unit;
    else current_x = current_x - x_steps_to_take/x_steps_per_unit;
    if (destination_y > current_y) current_y = current_y + y_steps_to_take/y_steps_per_unit;
    else current_y = current_y - y_steps_to_take/y_steps_per_unit;
    if (destination_z > current_z) current_z = current_z + z_steps_to_take/z_steps_per_unit;
    else current_z = current_z - z_steps_to_take/z_steps_per_unit;
    if (destination_e > current_e) current_e = current_e + e_steps_to_take/e_steps_per_unit;
    else current_e = current_e - e_steps_to_take/e_steps_per_unit;
}