void routing_execute(int routingModel, double routingStep)
//
//  Input:   routingModel = routing method code
//           routingStep = routing time step (sec)
//  Output:  none
//  Purpose: executes the routing process at the current time period.
//
{
    int      j;
    int      stepCount = 1;
    int      actionCount = 0;
    int      inSteadyState = FALSE;
    DateTime currentDate;
    double   stepFlowError;

    // --- update continuity with current state
    //     applied over 1/2 of time step
    if ( ErrorCode ) return;
    massbal_updateRoutingTotals(routingStep/2.);

    // --- evaluate control rules at current date and elapsed time
    currentDate = getDateTime(NewRoutingTime);
    for (j=0; j<Nobjects[LINK]; j++) link_setTargetSetting(j);
    controls_evaluate(currentDate, currentDate - StartDateTime,
                      routingStep/SECperDAY);
    for (j=0; j<Nobjects[LINK]; j++)
    {
        if ( Link[j].targetSetting != Link[j].setting )
        {
            Link[j].timeLastSet = currentDate;                                 //(5.1.010)
            link_setSetting(j, routingStep);
            actionCount++;
        } 
    }

    // --- update value of elapsed routing time (in milliseconds)
    OldRoutingTime = NewRoutingTime;
    NewRoutingTime = NewRoutingTime + 1000.0 * routingStep;
//    currentDate = getDateTime(NewRoutingTime);   //Deleted                   //(5.1.008)             

    // --- initialize mass balance totals for time step
    stepFlowError = massbal_getStepFlowError();
    massbal_initTimeStepTotals();

    // --- replace old water quality state with new state
    if ( Nobjects[POLLUT] > 0 )
    {
        for (j=0; j<Nobjects[NODE]; j++) node_setOldQualState(j);
        for (j=0; j<Nobjects[LINK]; j++) link_setOldQualState(j);
    }

    // --- add lateral inflows and evap/seepage losses at nodes                //(5.1.007)
    for (j = 0; j < Nobjects[NODE]; j++)
    {
        Node[j].oldLatFlow  = Node[j].newLatFlow;
        Node[j].newLatFlow  = 0.0;
        Node[j].losses      = node_getLosses(j, routingStep);                  //(5.1.007)
    }
    addExternalInflows(currentDate);
    addDryWeatherInflows(currentDate);
    addWetWeatherInflows(OldRoutingTime);                                      //(5.1.008)
    addGroundwaterInflows(OldRoutingTime);                                     //(5.1.008)
    addLidDrainInflows(OldRoutingTime);                                        //(5.1.008)
    addRdiiInflows(currentDate);
    addIfaceInflows(currentDate);

    // --- check if can skip steady state periods
    if ( SkipSteadyState )
    {
        if ( OldRoutingTime == 0.0
        ||   actionCount > 0
        ||   fabs(stepFlowError) > SysFlowTol
        ||   inflowHasChanged() ) inSteadyState = FALSE;
        else inSteadyState = TRUE;
    }

    // --- find new hydraulic state if system has changed
    if ( inSteadyState == FALSE )
    {
        // --- replace old hydraulic state values with current ones
        for (j = 0; j < Nobjects[LINK]; j++) link_setOldHydState(j);
        for (j = 0; j < Nobjects[NODE]; j++)
        {
            node_setOldHydState(j);
            node_initInflow(j, routingStep);
        }

        // --- route flow through the drainage network
        if ( Nobjects[LINK] > 0 )
        {
            stepCount = flowrout_execute(SortedLinks, routingModel, routingStep);
        }
    }

    // --- route quality through the drainage network
    if ( Nobjects[POLLUT] > 0 && !IgnoreQuality ) 
    {
        qualrout_execute(routingStep);
    }

    // --- remove evaporation, infiltration & outflows from system
    removeStorageLosses(routingStep);
    removeConduitLosses();
    removeOutflows(routingStep);                                               //(5.1.008)
	
    // --- update continuity with new totals
    //     applied over 1/2 of routing step
    massbal_updateRoutingTotals(routingStep/2.);

    // --- update summary statistics
    if ( RptFlags.flowStats && Nobjects[LINK] > 0 )
    {
        stats_updateFlowStats(routingStep, getDateTime(NewRoutingTime),        //(5.1.008)
                              stepCount, inSteadyState);
    }
}
Ejemplo n.º 2
0
int massbal_open()
//
//  Input:   none
//  Output:  returns error code
//  Purpose: opens and initializes mass balance continuity checking.
//
{
    int j, n;

    // --- initialize global continuity errors
    RunoffError = 0.0;
    GwaterError = 0.0;
    FlowError   = 0.0;
    QualError   = 0.0;

    // --- initialize runoff totals
    RunoffTotals.rainfall    = 0.0;
    RunoffTotals.evap        = 0.0;
    RunoffTotals.infil       = 0.0;
    RunoffTotals.runoff      = 0.0;
    RunoffTotals.snowRemoved = 0.0;
    RunoffTotals.initStorage = 0.0;
    RunoffTotals.initSnowCover = 0.0;
    TotalArea = 0.0;
    for (j = 0; j < Nobjects[SUBCATCH]; j++)
    {
        RunoffTotals.initSnowCover += snow_getSnowCover(j);
        TotalArea += Subcatch[j].area;
    }

    // --- initialize groundwater totals
    GwaterTotals.infil        = 0.0;
    GwaterTotals.upperEvap    = 0.0;
    GwaterTotals.lowerEvap    = 0.0;
    GwaterTotals.lowerPerc    = 0.0;
    GwaterTotals.gwater       = 0.0;
    GwaterTotals.initStorage  = 0.0;
    GwaterTotals.finalStorage = 0.0;
    for ( j = 0; j < Nobjects[SUBCATCH]; j++ )
    {
        GwaterTotals.initStorage += gwater_getVolume(j) * Subcatch[j].area;
    }

    // --- initialize node flow & storage totals
    FlowTotals.dwInflow = 0.0;
    FlowTotals.wwInflow = 0.0;
    FlowTotals.gwInflow = 0.0;
    FlowTotals.iiInflow = 0.0;
    FlowTotals.exInflow = 0.0;
    FlowTotals.floodingNumNodes = 0.0;
    FlowTotals.outflow  = 0.0;
    FlowTotals.pumpedVol = 0.0;
    FlowTotals.initStorage = 0.0;
    for (j = 0; j < Nobjects[NODE]; j++)
        FlowTotals.initStorage += Node[j].newVolume;
    for (j = 0; j < Nobjects[LINK]; j++)
        FlowTotals.initStorage += Link[j].newVolume;
    StepFlowTotals = FlowTotals;

    // --- initialize arrays to null
    LoadingTotals = NULL;
    QualTotals = NULL;
    StepQualTotals = NULL;
    NodeInflow = NULL;
    NodeOutflow = NULL;

    // --- allocate memory for WQ washoff continuity totals
    n = Nobjects[POLLUT];
    if ( n > 0 )
    {
        LoadingTotals = (TLoadingTotals *) calloc(n, sizeof(TLoadingTotals));
        if ( LoadingTotals == NULL )
        {
             report_writeErrorMsg(ERR_MEMORY, "");
             return ErrorCode;
        }
        for (j = 0; j < n; j++)
        {
            LoadingTotals[j].initLoad      = massbal_getBuildup(j);
            LoadingTotals[j].buildup       = 0.0;
            LoadingTotals[j].deposition    = 0.0;
            LoadingTotals[j].sweeping      = 0.0;
            LoadingTotals[j].infil         = 0.0;
            LoadingTotals[j].bmpRemoval    = 0.0;
            LoadingTotals[j].runoff        = 0.0;
            LoadingTotals[j].finalLoad     = 0.0;
        }
    }

    // --- allocate memory for nodal WQ continuity totals
    if ( n > 0 )
    {
         QualTotals = (TRoutingTotals *) calloc(n, sizeof(TRoutingTotals));
         StepQualTotals = (TRoutingTotals *) calloc(n, sizeof(TRoutingTotals));
         if ( QualTotals == NULL || StepQualTotals == NULL )
         {
             report_writeErrorMsg(ERR_MEMORY, "");
             return ErrorCode;
         }
     }

    // --- initialize WQ totals
    for (j = 0; j < n; j++)
    {
        QualTotals[j].dwInflow = 0.0;
        QualTotals[j].wwInflow = 0.0;
        QualTotals[j].gwInflow = 0.0;
        QualTotals[j].exInflow = 0.0;
        QualTotals[j].floodingNumNodes = 0.0;
        QualTotals[j].outflow  = 0.0;
        QualTotals[j].pumpedVol = 0.0;
        QualTotals[j].initStorage = 0.0;
    }

    // --- initialize totals used over a single time step
    massbal_initTimeStepTotals();
 
    // --- allocate memory for nodal flow continuity
    if ( Nobjects[NODE] > 0 )
    {
        NodeInflow = (double *) calloc(Nobjects[NODE], sizeof(double));
        if ( NodeInflow == NULL )
        {
             report_writeErrorMsg(ERR_MEMORY, "");
             return ErrorCode;
        }
        NodeOutflow = (double *) calloc(Nobjects[NODE], sizeof(double));
        if ( NodeOutflow == NULL )
        {
             report_writeErrorMsg(ERR_MEMORY, "");
             return ErrorCode;
        }
        for (j = 0; j < Nobjects[NODE]; j++) NodeInflow[j] = Node[j].newVolume;
    }
    return ErrorCode;
}
Ejemplo n.º 3
0
Archivo: massbal.c Proyecto: wsjlr/SWMM
int massbal_open()
//
//  Input:   none
//  Output:  returns error code
//  Purpose: opens and initializes mass balance continuity checking.
//
{
    int j, n;

    // --- initialize global continuity errors
    RunoffError = 0.0;
    GwaterError = 0.0;
    FlowError   = 0.0;
    QualError   = 0.0;

    // --- initialize runoff totals
    RunoffTotals.rainfall    = 0.0;
    RunoffTotals.evap        = 0.0;
    RunoffTotals.infil       = 0.0;
    RunoffTotals.runoff      = 0.0;
    RunoffTotals.runon       = 0.0;                                            //(5.1.008)
    RunoffTotals.drains      = 0.0;                                            //(5.1.008)
    RunoffTotals.snowRemoved = 0.0;
    RunoffTotals.initStorage = 0.0;
    RunoffTotals.initSnowCover = 0.0;
    TotalArea = 0.0;
    for (j = 0; j < Nobjects[SUBCATCH]; j++)
    {
        RunoffTotals.initStorage += subcatch_getStorage(j);
        RunoffTotals.initSnowCover += snow_getSnowCover(j);
        TotalArea += Subcatch[j].area;
    }

    // --- initialize groundwater totals
    GwaterTotals.infil        = 0.0;
    GwaterTotals.upperEvap    = 0.0;
    GwaterTotals.lowerEvap    = 0.0;
    GwaterTotals.lowerPerc    = 0.0;
    GwaterTotals.gwater       = 0.0;
    GwaterTotals.initStorage  = 0.0;
    GwaterTotals.finalStorage = 0.0;
    for ( j = 0; j < Nobjects[SUBCATCH]; j++ )
    {
        GwaterTotals.initStorage += gwater_getVolume(j) * Subcatch[j].area;
    }

    // --- initialize node flow & storage totals
    FlowTotals.dwInflow = 0.0;
    FlowTotals.wwInflow = 0.0;
    FlowTotals.gwInflow = 0.0;
    FlowTotals.iiInflow = 0.0;
    FlowTotals.exInflow = 0.0;
    FlowTotals.flooding = 0.0;
    FlowTotals.outflow  = 0.0;
    FlowTotals.evapLoss = 0.0; 
    FlowTotals.seepLoss = 0.0;
    FlowTotals.reacted  = 0.0;
    FlowTotals.initStorage = 0.0;
    for (j = 0; j < Nobjects[NODE]; j++)
        FlowTotals.initStorage += Node[j].newVolume;
    for (j = 0; j < Nobjects[LINK]; j++)
        FlowTotals.initStorage += Link[j].newVolume;
    StepFlowTotals = FlowTotals;

    // --- add contribution of minimum surface area (i.e., manhole area)
    //     to initial storage under dynamic wave routing
    if ( RouteModel == DW )
    {
        for (j = 0; j < Nobjects[NODE]; j++)
	{
            if ( Node[j].type != STORAGE &&
                Node[j].initDepth <= Node[j].crownElev - Node[j].invertElev )  //(5.1.007)
                FlowTotals.initStorage += Node[j].initDepth * MinSurfArea;
	}
    }

    // --- initialize arrays to null
    LoadingTotals = NULL;
    QualTotals = NULL;
    StepQualTotals = NULL;
    NodeInflow = NULL;
    NodeOutflow = NULL;

    // --- allocate memory for WQ washoff continuity totals
    n = Nobjects[POLLUT];
    if ( n > 0 )
    {
        LoadingTotals = (TLoadingTotals *) calloc(n, sizeof(TLoadingTotals));
        if ( LoadingTotals == NULL )
        {
             report_writeErrorMsg(ERR_MEMORY, "");
             return ErrorCode;
        }
        for (j = 0; j < n; j++)
        {
            LoadingTotals[j].initLoad      = massbal_getBuildup(j);
            LoadingTotals[j].buildup       = 0.0;
            LoadingTotals[j].deposition    = 0.0;
            LoadingTotals[j].sweeping      = 0.0;
            LoadingTotals[j].infil         = 0.0;
            LoadingTotals[j].bmpRemoval    = 0.0;
            LoadingTotals[j].runoff        = 0.0;
            LoadingTotals[j].finalLoad     = 0.0;
        }
    }

    // --- allocate memory for nodal WQ continuity totals
    if ( n > 0 )
    {
         QualTotals = (TRoutingTotals *) calloc(n, sizeof(TRoutingTotals));
         StepQualTotals = (TRoutingTotals *) calloc(n, sizeof(TRoutingTotals));
         if ( QualTotals == NULL || StepQualTotals == NULL )
         {
             report_writeErrorMsg(ERR_MEMORY, "");
             return ErrorCode;
         }
     }

    // --- initialize WQ totals
    for (j = 0; j < n; j++)
    {
        QualTotals[j].dwInflow = 0.0;
        QualTotals[j].wwInflow = 0.0;
        QualTotals[j].gwInflow = 0.0;
        QualTotals[j].exInflow = 0.0;
        QualTotals[j].flooding = 0.0;
        QualTotals[j].outflow  = 0.0;
        QualTotals[j].evapLoss = 0.0;
        QualTotals[j].seepLoss = 0.0; 
        QualTotals[j].reacted  = 0.0;
        QualTotals[j].initStorage = massbal_getStoredMass(j);
    }

    // --- initialize totals used over a single time step
    massbal_initTimeStepTotals();

    // --- allocate memory for nodal flow continuity
    if ( Nobjects[NODE] > 0 )
    {
        NodeInflow = (double *) calloc(Nobjects[NODE], sizeof(double));
        if ( NodeInflow == NULL )
        {
             report_writeErrorMsg(ERR_MEMORY, "");
             return ErrorCode;
        }
        NodeOutflow = (double *) calloc(Nobjects[NODE], sizeof(double));
        if ( NodeOutflow == NULL )
        {
             report_writeErrorMsg(ERR_MEMORY, "");
             return ErrorCode;
        }
        for (j = 0; j < Nobjects[NODE]; j++) NodeInflow[j] = Node[j].newVolume;
    }
    return ErrorCode;
}
Ejemplo n.º 4
0
void routing_execute(int routingModel, double routingStep)
//
//  Input:   routingModel = routing method code
//           routingStep = routing time step (sec)
//  Output:  none
//  Purpose: executes the routing process at the current time period.
//
{
    int      j;
    int      stepCount = 1;
    int      actionCount = 0;                                                  //(5.0.010 - LR)
    DateTime currentDate;
    double   stepFlowError;                                                    //(5.0.012 - LR)

    // --- update continuity with current state
    //     applied over 1/2 of time step
    if ( ErrorCode ) return;
    massbal_updateRoutingTotals(routingStep/2.);

    // --- evaluate control rules at current date and elapsed time
    currentDate = getDateTime(NewRoutingTime);
    for (j=0; j<Nobjects[LINK]; j++) link_setTargetSetting(j);                 //(5.0.010 - LR)
    controls_evaluate(currentDate, currentDate - StartDateTime,                //(5.0.010 - LR)
                      routingStep/SECperDAY);                                  //(5.0.010 - LR)
    for (j=0; j<Nobjects[LINK]; j++)                                           //(5.0.010 - LR)
    {                                                                          //(5.0.010 - LR)
        if ( Link[j].targetSetting != Link[j].setting )                        //(5.0.010 - LR)
        {                                                                      //(5.0.010 - LR)
            link_setSetting(j, routingStep);                                   //(5.0.010 - LR)
            actionCount++;                                                     //(5.0.010 - LR)
        }                                                                      //(5.0.010 - LR)
    }                                                                          //(5.0.010 - LR)

    // --- update value of elapsed routing time (in milliseconds)
    OldRoutingTime = NewRoutingTime;
    NewRoutingTime = NewRoutingTime + 1000.0 * routingStep;
    currentDate = getDateTime(NewRoutingTime);

    // --- initialize mass balance totals for time step
    stepFlowError = massbal_getStepFlowError();                                //(5.0.012 - LR)
    massbal_initTimeStepTotals();

    // --- replace old water quality state with new state
    if ( Nobjects[POLLUT] > 0 )
    {
        for (j=0; j<Nobjects[NODE]; j++) node_setOldQualState(j);
        for (j=0; j<Nobjects[LINK]; j++) link_setOldQualState(j);
    }

    // --- add lateral inflows to nodes
    for (j = 0; j < Nobjects[NODE]; j++)
    {
        Node[j].oldLatFlow  = Node[j].newLatFlow;
        Node[j].newLatFlow  = 0.0;
    }
    addExternalInflows(currentDate);
    addDryWeatherInflows(currentDate);
    addWetWeatherInflows(NewRoutingTime);
    addGroundwaterInflows(NewRoutingTime);
    addRdiiInflows(currentDate);
    addIfaceInflows(currentDate);

    // --- check if can skip steady state periods
    if ( SkipSteadyState )
    {
        if ( OldRoutingTime == 0.0
        ||   actionCount > 0
        ||   fabs(stepFlowError) > FLOW_ERR_TOL                                //(5.0.012 - LR)
        ||   systemHasChanged(routingModel) ) InSteadyState = FALSE;
        else InSteadyState = TRUE;
    }

    // --- find new hydraulic state if system has changed
    if ( InSteadyState == FALSE )
    {
        // --- replace old hydraulic state values with current ones
        for (j = 0; j < Nobjects[LINK]; j++) link_setOldHydState(j);
        for (j = 0; j < Nobjects[NODE]; j++)
        {
            node_setOldHydState(j);
            node_initInflow(j, routingStep);
        }

        // --- route flow through the drainage network
        if ( Nobjects[LINK] > 0 )
        {
            stepCount = flowrout_execute(SortedLinks, routingModel, routingStep);
        }
    }

    // --- route quality through the drainage network
    if ( Nobjects[POLLUT] > 0 )
    {
        qualrout_execute(routingStep);
    }

    // --- remove evaporation & system outflows from nodes
    findEvap(routingStep);
    removeOutflows();
	
    // --- update continuity with new totals
    //     applied over 1/2 of routing step
    massbal_updateRoutingTotals(routingStep/2.);

    // --- update summary statistics
    if ( RptFlags.flowStats && Nobjects[LINK] > 0 )
    {
        stats_updateFlowStats(routingStep, currentDate, stepCount, InSteadyState);
    }
}