Ejemplo n.º 1
0
static PointSymmetry get_lattice_symmetry( SPGCONST Cell *cell,
					   const double symprec )
{
  int i, j, k, num_sym;
  int axes[3][3];
  double lattice[3][3], min_lattice[3][3];
  double metric[3][3], cell_metric[3][3];
  PointSymmetry lattice_sym;

  if ( ! lat_smallest_lattice_vector( min_lattice,
				      cell->lattice,
				      symprec ) ) {
    goto err;
  }
  mat_get_metric( cell_metric, min_lattice );

  num_sym = 0;
  for ( i = 0; i < 26; i++ ) {
    for ( j = 0; j < 26; j++ ) {
      for ( k = 0; k < 26; k++ ) {
	set_axes( axes, i, j, k );
	if ( ! ( ( mat_get_determinant_i3( axes ) == 1 ) ||
		 ( mat_get_determinant_i3( axes ) == -1 ) ) ) {
	  continue;
	}
	mat_multiply_matrix_di3( lattice, min_lattice, axes );
	mat_get_metric( metric, lattice );
	if ( mat_check_identity_matrix_d3( metric,
					   cell_metric,
					   symprec ) ) {
	  mat_copy_matrix_i3( lattice_sym.rot[num_sym], axes );
	  num_sym++;
	}
	if ( num_sym > 48 ) {
	  warning_print("spglib: Too many lattice symmetries was found.\n");
	  warning_print("        Tolerance may be too large ");
	  warning_print("(line %d, %s).\n", __LINE__, __FILE__);
	  goto err;
	}
      }
    }
  }

  lattice_sym.size = num_sym;
  return transform_pointsymmetry( &lattice_sym,
				  cell->lattice,
				  min_lattice );
  
 err:
  lattice_sym.size = 0;
  return lattice_sym;
}
Ejemplo n.º 2
0
static Symmetry * reduce_symmetry_in_frame(const int frame[3],
        SPGCONST Symmetry *prim_sym,
        SPGCONST int t_mat[3][3],
        SPGCONST double lattice[3][3],
        const int multiplicity,
        const double symprec)
{
    int i, j, k, l, num_trans, size_sym_orig;
    Symmetry *symmetry, *t_sym;
    double inv_tmat[3][3], tmp_mat[3][3], tmp_rot_d[3][3], tmp_lat_d[3][3], tmp_lat_i[3][3];
    int tmp_rot_i[3][3];
    VecDBL *pure_trans, *lattice_trans;

    mat_cast_matrix_3i_to_3d(tmp_mat, t_mat);
    mat_inverse_matrix_d3(inv_tmat, tmp_mat, symprec);

    /* transformed lattice points */
    lattice_trans = mat_alloc_VecDBL(frame[0]*frame[1]*frame[2]);
    num_trans = 0;
    for (i = 0; i < frame[0]; i++) {
        for (j = 0; j < frame[1]; j++) {
            for (k = 0; k < frame[2]; k++) {
                lattice_trans->vec[num_trans][0] = i;
                lattice_trans->vec[num_trans][1] = j;
                lattice_trans->vec[num_trans][2] = k;

                mat_multiply_matrix_vector_d3(lattice_trans->vec[num_trans],
                                              inv_tmat,
                                              lattice_trans->vec[num_trans]);
                for (l = 0; l < 3; l++) {
                    /* t' = T^-1*t */
                    lattice_trans->vec[num_trans][l] = \
                                                       mat_Dmod1(lattice_trans->vec[num_trans][l]);
                }
                num_trans++;
            }
        }
    }

    /* transformed symmetry operations of primitive cell */
    t_sym = sym_alloc_symmetry(prim_sym->size);
    size_sym_orig = 0;
    for (i = 0; i < prim_sym->size; i++) {
        /* R' = T^-1*R*T */
        mat_multiply_matrix_di3(tmp_mat, inv_tmat, prim_sym->rot[i]);
        mat_multiply_matrix_di3(tmp_rot_d, tmp_mat, t_mat);
        mat_cast_matrix_3d_to_3i(tmp_rot_i, tmp_rot_d);
        mat_multiply_matrix_di3(tmp_lat_i, lattice, tmp_rot_i);
        mat_multiply_matrix_d3(tmp_lat_d, lattice, tmp_rot_d);
        if (mat_check_identity_matrix_d3(tmp_lat_i, tmp_lat_d, symprec)) {
            mat_copy_matrix_i3(t_sym->rot[size_sym_orig], tmp_rot_i);
            /* t' = T^-1*t */
            mat_multiply_matrix_vector_d3(t_sym->trans[size_sym_orig],
                                          inv_tmat, prim_sym->trans[i]);
            size_sym_orig++;
        }
    }

    /* reduce lattice points */
    pure_trans = reduce_lattice_points(lattice,
                                       lattice_trans,
                                       symprec);

    if (! (pure_trans->size == multiplicity)) {
        symmetry = sym_alloc_symmetry(0);
        goto ret;
    }

    /* copy symmetry operations upon lattice points */
    symmetry = sym_alloc_symmetry(pure_trans->size * size_sym_orig);
    for (i = 0; i < pure_trans->size; i++) {
        for (j = 0; j < size_sym_orig; j++) {
            mat_copy_matrix_i3(symmetry->rot[size_sym_orig * i + j],
                               t_sym->rot[j]);
            mat_copy_vector_d3(symmetry->trans[size_sym_orig * i + j],
                               t_sym->trans[j]);
            for (k = 0; k < 3; k++) {
                symmetry->trans[size_sym_orig * i + j][k] += pure_trans->vec[i][k];
                symmetry->trans[size_sym_orig * i + j][k] = \
                        mat_Dmod1(symmetry->trans[size_sym_orig * i + j][k]);
            }
        }
    }


ret:
    mat_free_VecDBL(lattice_trans);
    mat_free_VecDBL(pure_trans);
    sym_free_symmetry(t_sym);

    return symmetry;
}
Ejemplo n.º 3
0
/* Return NULL if failed */
static Symmetry *
get_symmetry_in_original_cell(SPGCONST int t_mat[3][3],
			      SPGCONST double inv_tmat[3][3],
			      SPGCONST double lattice[3][3],
			      SPGCONST Symmetry *prim_sym,
			      const double symprec)
{
  int i, size_sym_orig;
  double tmp_rot_d[3][3], tmp_lat_d[3][3], tmp_lat_i[3][3], tmp_mat[3][3];
  int tmp_rot_i[3][3];
  Symmetry *t_sym, *t_red_sym;

  t_sym = NULL;
  t_red_sym = NULL;

  if ((t_sym = sym_alloc_symmetry(prim_sym->size)) == NULL) {
    return NULL;
  }

  /* transform symmetry operations of primitive cell to those of original */
  size_sym_orig = 0;
  for (i = 0; i < prim_sym->size; i++) {
    /* R' = T^-1*R*T */
    mat_multiply_matrix_di3(tmp_mat, inv_tmat, prim_sym->rot[i]);
    mat_multiply_matrix_di3(tmp_rot_d, tmp_mat, t_mat);

    /* In spglib, symmetry of supercell is defined by the set of symmetry */
    /* operations that are searched among supercell lattice point group */
    /* operations. The supercell lattice may be made by breaking the */
    /* unit cell lattice symmetry. In this case, a part of symmetry */
    /* operations is discarded. */
    mat_cast_matrix_3d_to_3i(tmp_rot_i, tmp_rot_d);
    mat_multiply_matrix_di3(tmp_lat_i, lattice, tmp_rot_i);
    mat_multiply_matrix_d3(tmp_lat_d, lattice, tmp_rot_d);
    if (mat_check_identity_matrix_d3(tmp_lat_i, tmp_lat_d, symprec)) {
      mat_copy_matrix_i3(t_sym->rot[size_sym_orig], tmp_rot_i);
      /* t' = T^-1*t */
      mat_multiply_matrix_vector_d3(t_sym->trans[size_sym_orig],
				    inv_tmat,
				    prim_sym->trans[i]);
      size_sym_orig++;
    }
  }

  /* Broken symmetry due to supercell multiplicity */
  if (size_sym_orig != prim_sym->size) {

    if ((t_red_sym = sym_alloc_symmetry(size_sym_orig)) == NULL) {
      sym_free_symmetry(t_sym);
      t_sym = NULL;
      return NULL;
    }

    for (i = 0; i < size_sym_orig; i++) {
      mat_copy_matrix_i3(t_red_sym->rot[i], t_sym->rot[i]);
      mat_copy_vector_d3(t_red_sym->trans[i], t_sym->trans[i]);
    }

    sym_free_symmetry(t_sym);
    t_sym = NULL;

    t_sym = t_red_sym;
    t_red_sym = NULL;
  }

  return t_sym;
}