Ejemplo n.º 1
0
/**
 * fast_aes_wrap - Wrap keys with AES Key Wrap Algorithm (128-bit KEK) (RFC3394)
 * @kek: 16-octet Key encryption key (KEK)
 * @n: Length of the plaintext key in 64-bit units; e.g., 2 = 128-bit = 16
 * bytes
 * @plain: Plaintext key to be wrapped, n * 64 bits
 * @cipher: Wrapped key, (n + 1) * 64 bits
 * Returns: 0 on success, -1 on failure
 */
int fast_aes_wrap(const uint8_t *kek, int n, const uint8_t *plain, uint8_t *cipher)
{
    uint8_t *a, *r, b[16];
    int32_t i, j;
    int32_t ret = 0;
    mbedtls_aes_context ctx;

    a = cipher;
    r = cipher + 8;

    /* 1) Initialize variables. */
    os_memset(a, 0xa6, 8);
    os_memcpy(r, plain, 8 * n);

    mbedtls_aes_init(&ctx);
    ret = mbedtls_aes_setkey_enc(&ctx, kek, 128);
    if (ret < 0) {
        mbedtls_aes_free(&ctx);
        return ret;
    }

    /* 2) Calculate intermediate values.
     * For j = 0 to 5
     *     For i=1 to n
     *         B = AES(K, A | R[i])
     *         A = MSB(64, B) ^ t where t = (n*j)+i
     *         R[i] = LSB(64, B)
     */
    for (j = 0; j <= 5; j++) {
	r = cipher + 8;
	for (i = 1; i <= n; i++) {
            os_memcpy(b, a, 8);
            os_memcpy(b + 8, r, 8);
            mbedtls_aes_encrypt(&ctx, b, b);
            os_memcpy(a, b, 8);
            a[7] ^= n * j + i;
            os_memcpy(r, b + 8, 8);
            r += 8;
	}
    }
    mbedtls_aes_free(&ctx);

    /* 3) Output the results.
     *
     * These are already in @cipher due to the location of temporary
     * variables.
     */

    return 0;
}
Ejemplo n.º 2
0
void Java_net_md_15_bungee_jni_cipher_NativeCipherImpl_free(JNIEnv* env, jobject obj, jlong ctx) {
    crypto_context *crypto = (crypto_context*) ctx;

    mbedtls_aes_free(&crypto->cipher);
    free(crypto->key);
    free(crypto);
}
Ejemplo n.º 3
0
void blufi_security_deinit(void)
{
    mbedtls_dhm_free(&blufi_sec->dhm);
    mbedtls_aes_free(&blufi_sec->aes);

    memset(blufi_sec, 0x0, sizeof(struct blufi_security));

    free(blufi_sec);
    blufi_sec =  NULL;
}
Ejemplo n.º 4
0
void mbedtls_ctr_drbg_free( mbedtls_ctr_drbg_context *ctx )
{
    if( ctx == NULL )
        return;

#if defined(MBEDTLS_THREADING_C)
    mbedtls_mutex_free( &ctx->mutex );
#endif
    mbedtls_aes_free( &ctx->aes_ctx );
    mbedtls_zeroize( ctx, sizeof( mbedtls_ctr_drbg_context ) );
}
void  fast_crypto_cipher_deinit(struct crypto_cipher *ctx)
{
    struct fast_crypto_cipher *fast_ctx;

    fast_ctx = (struct fast_crypto_cipher *)ctx;

    switch (fast_ctx->alg) {
        case CRYPTO_CIPHER_ALG_AES:
            mbedtls_aes_free(&(fast_ctx->u.aes.ctx_enc));
            mbedtls_aes_free(&(fast_ctx->u.aes.ctx_dec));
            break;
#ifdef CONFIG_DES3
        case CRYPTO_CIPHER_ALG_3DES:
            break;
#endif
        default:
            break;
    }
    os_free(ctx);
}
Ejemplo n.º 6
0
int mbedtls_aes_self_test(int verbose)
{
    (void)verbose;

    /* 128-bit Key 2b7e151628aed2a6abf7158809cf4f3c */
    const uint8_t       key_128b[16] = {0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
                                  0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c};
    mbedtls_aes_context aes;
    int                 retval = 0;

    uint8_t input[16]   = {0};
    uint8_t output[16]  = {0};
    uint8_t decrypt[16] = {0};

    strcpy((char *)input, (const char *)"hw_aes_test");

    mbedtls_aes_init(&aes);

    retval = mbedtls_aes_setkey_enc(&aes, (const unsigned char *)key_128b, 128);
    VerifyOrExit(retval != 0, retval = -1);

    retval = mbedtls_aes_setkey_dec(&aes, (const unsigned char *)key_128b, 128);
    VerifyOrExit(retval != 0, retval = -1);

    retval = mbedtls_aes_crypt_ecb(&aes, MBEDTLS_AES_ENCRYPT, input, output);
    VerifyOrExit(retval != 0, retval = -1);

    retval = mbedtls_aes_crypt_ecb(&aes, MBEDTLS_AES_DECRYPT, output, decrypt);
    VerifyOrExit(retval != 0, retval = -1);

    mbedtls_aes_free(&aes);

exit:

    return retval;
}
Ejemplo n.º 7
0
static int block_cipher_df( unsigned char *output,
                            const unsigned char *data, size_t data_len )
{
    unsigned char buf[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT + MBEDTLS_CTR_DRBG_BLOCKSIZE + 16];
    unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN];
    unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE];
    unsigned char chain[MBEDTLS_CTR_DRBG_BLOCKSIZE];
    unsigned char *p, *iv;
    mbedtls_aes_context aes_ctx;

    int i, j;
    size_t buf_len, use_len;

    if( data_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT )
        return( MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG );

    memset( buf, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT + MBEDTLS_CTR_DRBG_BLOCKSIZE + 16 );
    mbedtls_aes_init( &aes_ctx );

    /*
     * Construct IV (16 bytes) and S in buffer
     * IV = Counter (in 32-bits) padded to 16 with zeroes
     * S = Length input string (in 32-bits) || Length of output (in 32-bits) ||
     *     data || 0x80
     *     (Total is padded to a multiple of 16-bytes with zeroes)
     */
    p = buf + MBEDTLS_CTR_DRBG_BLOCKSIZE;
    *p++ = ( data_len >> 24 ) & 0xff;
    *p++ = ( data_len >> 16 ) & 0xff;
    *p++ = ( data_len >> 8  ) & 0xff;
    *p++ = ( data_len       ) & 0xff;
    p += 3;
    *p++ = MBEDTLS_CTR_DRBG_SEEDLEN;
    memcpy( p, data, data_len );
    p[data_len] = 0x80;

    buf_len = MBEDTLS_CTR_DRBG_BLOCKSIZE + 8 + data_len + 1;

    for( i = 0; i < MBEDTLS_CTR_DRBG_KEYSIZE; i++ )
        key[i] = i;

    mbedtls_aes_setkey_enc( &aes_ctx, key, MBEDTLS_CTR_DRBG_KEYBITS );

    /*
     * Reduce data to MBEDTLS_CTR_DRBG_SEEDLEN bytes of data
     */
    for( j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE )
    {
        p = buf;
        memset( chain, 0, MBEDTLS_CTR_DRBG_BLOCKSIZE );
        use_len = buf_len;

        while( use_len > 0 )
        {
            for( i = 0; i < MBEDTLS_CTR_DRBG_BLOCKSIZE; i++ )
                chain[i] ^= p[i];
            p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
            use_len -= ( use_len >= MBEDTLS_CTR_DRBG_BLOCKSIZE ) ?
                       MBEDTLS_CTR_DRBG_BLOCKSIZE : use_len;

            mbedtls_aes_crypt_ecb( &aes_ctx, MBEDTLS_AES_ENCRYPT, chain, chain );
        }

        memcpy( tmp + j, chain, MBEDTLS_CTR_DRBG_BLOCKSIZE );

        /*
         * Update IV
         */
        buf[3]++;
    }

    /*
     * Do final encryption with reduced data
     */
    mbedtls_aes_setkey_enc( &aes_ctx, tmp, MBEDTLS_CTR_DRBG_KEYBITS );
    iv = tmp + MBEDTLS_CTR_DRBG_KEYSIZE;
    p = output;

    for( j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE )
    {
        mbedtls_aes_crypt_ecb( &aes_ctx, MBEDTLS_AES_ENCRYPT, iv, iv );
        memcpy( p, iv, MBEDTLS_CTR_DRBG_BLOCKSIZE );
        p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
    }

    mbedtls_aes_free( &aes_ctx );

    return( 0 );
}
Ejemplo n.º 8
0
int main( int argc, char *argv[] )
{
    int i;
    unsigned char tmp[200];
    char title[TITLE_LEN];
    todo_list todo;
#if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C)
    unsigned char alloc_buf[HEAP_SIZE] = { 0 };
#endif

    if( argc <= 1 )
    {
        memset( &todo, 1, sizeof( todo ) );
    }
    else
    {
        memset( &todo, 0, sizeof( todo ) );

        for( i = 1; i < argc; i++ )
        {
            if( strcmp( argv[i], "md4" ) == 0 )
                todo.md4 = 1;
            else if( strcmp( argv[i], "md5" ) == 0 )
                todo.md5 = 1;
            else if( strcmp( argv[i], "ripemd160" ) == 0 )
                todo.ripemd160 = 1;
            else if( strcmp( argv[i], "sha1" ) == 0 )
                todo.sha1 = 1;
            else if( strcmp( argv[i], "sha256" ) == 0 )
                todo.sha256 = 1;
            else if( strcmp( argv[i], "sha512" ) == 0 )
                todo.sha512 = 1;
            else if( strcmp( argv[i], "arc4" ) == 0 )
                todo.arc4 = 1;
            else if( strcmp( argv[i], "des3" ) == 0 )
                todo.des3 = 1;
            else if( strcmp( argv[i], "des" ) == 0 )
                todo.des = 1;
            else if( strcmp( argv[i], "aes_cbc" ) == 0 )
                todo.aes_cbc = 1;
            else if( strcmp( argv[i], "aes_gcm" ) == 0 )
                todo.aes_gcm = 1;
            else if( strcmp( argv[i], "aes_ccm" ) == 0 )
                todo.aes_ccm = 1;
            else if( strcmp( argv[i], "aes_cmac" ) == 0 )
                todo.aes_cmac = 1;
            else if( strcmp( argv[i], "des3_cmac" ) == 0 )
                todo.des3_cmac = 1;
            else if( strcmp( argv[i], "camellia" ) == 0 )
                todo.camellia = 1;
            else if( strcmp( argv[i], "blowfish" ) == 0 )
                todo.blowfish = 1;
            else if( strcmp( argv[i], "havege" ) == 0 )
                todo.havege = 1;
            else if( strcmp( argv[i], "ctr_drbg" ) == 0 )
                todo.ctr_drbg = 1;
            else if( strcmp( argv[i], "hmac_drbg" ) == 0 )
                todo.hmac_drbg = 1;
            else if( strcmp( argv[i], "rsa" ) == 0 )
                todo.rsa = 1;
            else if( strcmp( argv[i], "dhm" ) == 0 )
                todo.dhm = 1;
            else if( strcmp( argv[i], "ecdsa" ) == 0 )
                todo.ecdsa = 1;
            else if( strcmp( argv[i], "ecdh" ) == 0 )
                todo.ecdh = 1;
            else
            {
                mbedtls_printf( "Unrecognized option: %s\n", argv[i] );
                mbedtls_printf( "Available options: " OPTIONS );
            }
        }
    }

    mbedtls_printf( "\n" );

#if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C)
    mbedtls_memory_buffer_alloc_init( alloc_buf, sizeof( alloc_buf ) );
#endif
    memset( buf, 0xAA, sizeof( buf ) );
    memset( tmp, 0xBB, sizeof( tmp ) );

#if defined(MBEDTLS_MD4_C)
    if( todo.md4 )
        TIME_AND_TSC( "MD4", mbedtls_md4_ret( buf, BUFSIZE, tmp ) );
#endif

#if defined(MBEDTLS_MD5_C)
    if( todo.md5 )
        TIME_AND_TSC( "MD5", mbedtls_md5_ret( buf, BUFSIZE, tmp ) );
#endif

#if defined(MBEDTLS_RIPEMD160_C)
    if( todo.ripemd160 )
        TIME_AND_TSC( "RIPEMD160", mbedtls_ripemd160_ret( buf, BUFSIZE, tmp ) );
#endif

#if defined(MBEDTLS_SHA1_C)
    if( todo.sha1 )
        TIME_AND_TSC( "SHA-1", mbedtls_sha1_ret( buf, BUFSIZE, tmp ) );
#endif

#if defined(MBEDTLS_SHA256_C)
    if( todo.sha256 )
        TIME_AND_TSC( "SHA-256", mbedtls_sha256_ret( buf, BUFSIZE, tmp, 0 ) );
#endif

#if defined(MBEDTLS_SHA512_C)
    if( todo.sha512 )
        TIME_AND_TSC( "SHA-512", mbedtls_sha512_ret( buf, BUFSIZE, tmp, 0 ) );
#endif

#if defined(MBEDTLS_ARC4_C)
    if( todo.arc4 )
    {
        mbedtls_arc4_context arc4;
        mbedtls_arc4_init( &arc4 );
        mbedtls_arc4_setup( &arc4, tmp, 32 );
        TIME_AND_TSC( "ARC4", mbedtls_arc4_crypt( &arc4, BUFSIZE, buf, buf ) );
        mbedtls_arc4_free( &arc4 );
    }
#endif

#if defined(MBEDTLS_DES_C)
#if defined(MBEDTLS_CIPHER_MODE_CBC)
    if( todo.des3 )
    {
        mbedtls_des3_context des3;
        mbedtls_des3_init( &des3 );
        mbedtls_des3_set3key_enc( &des3, tmp );
        TIME_AND_TSC( "3DES",
                mbedtls_des3_crypt_cbc( &des3, MBEDTLS_DES_ENCRYPT, BUFSIZE, tmp, buf, buf ) );
        mbedtls_des3_free( &des3 );
    }

    if( todo.des )
    {
        mbedtls_des_context des;
        mbedtls_des_init( &des );
        mbedtls_des_setkey_enc( &des, tmp );
        TIME_AND_TSC( "DES",
                mbedtls_des_crypt_cbc( &des, MBEDTLS_DES_ENCRYPT, BUFSIZE, tmp, buf, buf ) );
        mbedtls_des_free( &des );
    }

#endif /* MBEDTLS_CIPHER_MODE_CBC */
#if defined(MBEDTLS_CMAC_C)
    if( todo.des3_cmac )
    {
        unsigned char output[8];
        const mbedtls_cipher_info_t *cipher_info;

        memset( buf, 0, sizeof( buf ) );
        memset( tmp, 0, sizeof( tmp ) );

        cipher_info = mbedtls_cipher_info_from_type( MBEDTLS_CIPHER_DES_EDE3_ECB );

        TIME_AND_TSC( "3DES-CMAC",
                      mbedtls_cipher_cmac( cipher_info, tmp, 192, buf,
                      BUFSIZE, output ) );
    }
#endif /* MBEDTLS_CMAC_C */
#endif /* MBEDTLS_DES_C */

#if defined(MBEDTLS_AES_C)
#if defined(MBEDTLS_CIPHER_MODE_CBC)
    if( todo.aes_cbc )
    {
        int keysize;
        mbedtls_aes_context aes;
        mbedtls_aes_init( &aes );
        for( keysize = 128; keysize <= 256; keysize += 64 )
        {
            mbedtls_snprintf( title, sizeof( title ), "AES-CBC-%d", keysize );

            memset( buf, 0, sizeof( buf ) );
            memset( tmp, 0, sizeof( tmp ) );
            mbedtls_aes_setkey_enc( &aes, tmp, keysize );

            TIME_AND_TSC( title,
                mbedtls_aes_crypt_cbc( &aes, MBEDTLS_AES_ENCRYPT, BUFSIZE, tmp, buf, buf ) );
        }
        mbedtls_aes_free( &aes );
    }
#endif
#if defined(MBEDTLS_GCM_C)
    if( todo.aes_gcm )
    {
        int keysize;
        mbedtls_gcm_context gcm;

        mbedtls_gcm_init( &gcm );
        for( keysize = 128; keysize <= 256; keysize += 64 )
        {
            mbedtls_snprintf( title, sizeof( title ), "AES-GCM-%d", keysize );

            memset( buf, 0, sizeof( buf ) );
            memset( tmp, 0, sizeof( tmp ) );
            mbedtls_gcm_setkey( &gcm, MBEDTLS_CIPHER_ID_AES, tmp, keysize );

            TIME_AND_TSC( title,
                    mbedtls_gcm_crypt_and_tag( &gcm, MBEDTLS_GCM_ENCRYPT, BUFSIZE, tmp,
                        12, NULL, 0, buf, buf, 16, tmp ) );

            mbedtls_gcm_free( &gcm );
        }
    }
#endif
#if defined(MBEDTLS_CCM_C)
    if( todo.aes_ccm )
    {
        int keysize;
        mbedtls_ccm_context ccm;

        mbedtls_ccm_init( &ccm );
        for( keysize = 128; keysize <= 256; keysize += 64 )
        {
            mbedtls_snprintf( title, sizeof( title ), "AES-CCM-%d", keysize );

            memset( buf, 0, sizeof( buf ) );
            memset( tmp, 0, sizeof( tmp ) );
            mbedtls_ccm_setkey( &ccm, MBEDTLS_CIPHER_ID_AES, tmp, keysize );

            TIME_AND_TSC( title,
                    mbedtls_ccm_encrypt_and_tag( &ccm, BUFSIZE, tmp,
                        12, NULL, 0, buf, buf, tmp, 16 ) );

            mbedtls_ccm_free( &ccm );
        }
    }
#endif
#if defined(MBEDTLS_CMAC_C)
    if( todo.aes_cmac )
    {
        unsigned char output[16];
        const mbedtls_cipher_info_t *cipher_info;
        mbedtls_cipher_type_t cipher_type;
        int keysize;

        for( keysize = 128, cipher_type = MBEDTLS_CIPHER_AES_128_ECB;
             keysize <= 256;
             keysize += 64, cipher_type++ )
        {
            mbedtls_snprintf( title, sizeof( title ), "AES-CMAC-%d", keysize );

            memset( buf, 0, sizeof( buf ) );
            memset( tmp, 0, sizeof( tmp ) );

            cipher_info = mbedtls_cipher_info_from_type( cipher_type );

            TIME_AND_TSC( title,
                          mbedtls_cipher_cmac( cipher_info, tmp, keysize,
                                               buf, BUFSIZE, output ) );
        }

        memset( buf, 0, sizeof( buf ) );
        memset( tmp, 0, sizeof( tmp ) );
        TIME_AND_TSC( "AES-CMAC-PRF-128",
                      mbedtls_aes_cmac_prf_128( tmp, 16, buf, BUFSIZE,
                                                output ) );
    }
#endif /* MBEDTLS_CMAC_C */
#endif /* MBEDTLS_AES_C */

#if defined(MBEDTLS_CAMELLIA_C) && defined(MBEDTLS_CIPHER_MODE_CBC)
    if( todo.camellia )
    {
        int keysize;
        mbedtls_camellia_context camellia;
        mbedtls_camellia_init( &camellia );
        for( keysize = 128; keysize <= 256; keysize += 64 )
        {
            mbedtls_snprintf( title, sizeof( title ), "CAMELLIA-CBC-%d", keysize );

            memset( buf, 0, sizeof( buf ) );
            memset( tmp, 0, sizeof( tmp ) );
            mbedtls_camellia_setkey_enc( &camellia, tmp, keysize );

            TIME_AND_TSC( title,
                    mbedtls_camellia_crypt_cbc( &camellia, MBEDTLS_CAMELLIA_ENCRYPT,
                        BUFSIZE, tmp, buf, buf ) );
        }
        mbedtls_camellia_free( &camellia );
    }
#endif

#if defined(MBEDTLS_BLOWFISH_C) && defined(MBEDTLS_CIPHER_MODE_CBC)
    if( todo.blowfish )
    {
        int keysize;
        mbedtls_blowfish_context blowfish;
        mbedtls_blowfish_init( &blowfish );

        for( keysize = 128; keysize <= 256; keysize += 64 )
        {
            mbedtls_snprintf( title, sizeof( title ), "BLOWFISH-CBC-%d", keysize );

            memset( buf, 0, sizeof( buf ) );
            memset( tmp, 0, sizeof( tmp ) );
            mbedtls_blowfish_setkey( &blowfish, tmp, keysize );

            TIME_AND_TSC( title,
                    mbedtls_blowfish_crypt_cbc( &blowfish, MBEDTLS_BLOWFISH_ENCRYPT, BUFSIZE,
                        tmp, buf, buf ) );
        }

        mbedtls_blowfish_free( &blowfish );
    }
#endif

#if defined(MBEDTLS_HAVEGE_C)
    if( todo.havege )
    {
        mbedtls_havege_state hs;
        mbedtls_havege_init( &hs );
        TIME_AND_TSC( "HAVEGE", mbedtls_havege_random( &hs, buf, BUFSIZE ) );
        mbedtls_havege_free( &hs );
    }
#endif

#if defined(MBEDTLS_CTR_DRBG_C)
    if( todo.ctr_drbg )
    {
        mbedtls_ctr_drbg_context ctr_drbg;

        mbedtls_ctr_drbg_init( &ctr_drbg );

        if( mbedtls_ctr_drbg_seed( &ctr_drbg, myrand, NULL, NULL, 0 ) != 0 )
            mbedtls_exit(1);
        TIME_AND_TSC( "CTR_DRBG (NOPR)",
                if( mbedtls_ctr_drbg_random( &ctr_drbg, buf, BUFSIZE ) != 0 )
                mbedtls_exit(1) );

        if( mbedtls_ctr_drbg_seed( &ctr_drbg, myrand, NULL, NULL, 0 ) != 0 )
            mbedtls_exit(1);
        mbedtls_ctr_drbg_set_prediction_resistance( &ctr_drbg, MBEDTLS_CTR_DRBG_PR_ON );
        TIME_AND_TSC( "CTR_DRBG (PR)",
                if( mbedtls_ctr_drbg_random( &ctr_drbg, buf, BUFSIZE ) != 0 )
                mbedtls_exit(1) );
        mbedtls_ctr_drbg_free( &ctr_drbg );
    }
Ejemplo n.º 9
0
int main( void )
{
    FILE *f;

    int ret;
    size_t n, buflen;
    mbedtls_net_context server_fd;

    unsigned char *p, *end;
    unsigned char buf[2048];
    unsigned char hash[32];
    const char *pers = "dh_client";

    mbedtls_entropy_context entropy;
    mbedtls_ctr_drbg_context ctr_drbg;
    mbedtls_rsa_context rsa;
    mbedtls_dhm_context dhm;
    mbedtls_aes_context aes;

    mbedtls_net_init( &server_fd );
    mbedtls_rsa_init( &rsa, MBEDTLS_RSA_PKCS_V15, MBEDTLS_MD_SHA256 );
    mbedtls_dhm_init( &dhm );
    mbedtls_aes_init( &aes );
    mbedtls_ctr_drbg_init( &ctr_drbg );

    /*
     * 1. Setup the RNG
     */
    mbedtls_printf( "\n  . Seeding the random number generator" );
    fflush( stdout );

    mbedtls_entropy_init( &entropy );
    if( ( ret = mbedtls_ctr_drbg_seed( &ctr_drbg, mbedtls_entropy_func, &entropy,
                               (const unsigned char *) pers,
                               strlen( pers ) ) ) != 0 )
    {
        mbedtls_printf( " failed\n  ! mbedtls_ctr_drbg_seed returned %d\n", ret );
        goto exit;
    }

    /*
     * 2. Read the server's public RSA key
     */
    mbedtls_printf( "\n  . Reading public key from rsa_pub.txt" );
    fflush( stdout );

    if( ( f = fopen( "rsa_pub.txt", "rb" ) ) == NULL )
    {
        ret = 1;
        mbedtls_printf( " failed\n  ! Could not open rsa_pub.txt\n" \
                "  ! Please run rsa_genkey first\n\n" );
        goto exit;
    }

    mbedtls_rsa_init( &rsa, MBEDTLS_RSA_PKCS_V15, 0 );

    if( ( ret = mbedtls_mpi_read_file( &rsa.N, 16, f ) ) != 0 ||
        ( ret = mbedtls_mpi_read_file( &rsa.E, 16, f ) ) != 0 )
    {
        mbedtls_printf( " failed\n  ! mbedtls_mpi_read_file returned %d\n\n", ret );
        goto exit;
    }

    rsa.len = ( mbedtls_mpi_bitlen( &rsa.N ) + 7 ) >> 3;

    fclose( f );

    /*
     * 3. Initiate the connection
     */
    mbedtls_printf( "\n  . Connecting to tcp/%s/%s", SERVER_NAME,
                                             SERVER_PORT );
    fflush( stdout );

    if( ( ret = mbedtls_net_connect( &server_fd, SERVER_NAME,
                                         SERVER_PORT, MBEDTLS_NET_PROTO_TCP ) ) != 0 )
    {
        mbedtls_printf( " failed\n  ! mbedtls_net_connect returned %d\n\n", ret );
        goto exit;
    }

    /*
     * 4a. First get the buffer length
     */
    mbedtls_printf( "\n  . Receiving the server's DH parameters" );
    fflush( stdout );

    memset( buf, 0, sizeof( buf ) );

    if( ( ret = mbedtls_net_recv( &server_fd, buf, 2 ) ) != 2 )
    {
        mbedtls_printf( " failed\n  ! mbedtls_net_recv returned %d\n\n", ret );
        goto exit;
    }

    n = buflen = ( buf[0] << 8 ) | buf[1];
    if( buflen < 1 || buflen > sizeof( buf ) )
    {
        mbedtls_printf( " failed\n  ! Got an invalid buffer length\n\n" );
        goto exit;
    }

    /*
     * 4b. Get the DHM parameters: P, G and Ys = G^Xs mod P
     */
    memset( buf, 0, sizeof( buf ) );

    if( ( ret = mbedtls_net_recv( &server_fd, buf, n ) ) != (int) n )
    {
        mbedtls_printf( " failed\n  ! mbedtls_net_recv returned %d\n\n", ret );
        goto exit;
    }

    p = buf, end = buf + buflen;

    if( ( ret = mbedtls_dhm_read_params( &dhm, &p, end ) ) != 0 )
    {
        mbedtls_printf( " failed\n  ! mbedtls_dhm_read_params returned %d\n\n", ret );
        goto exit;
    }

    if( dhm.len < 64 || dhm.len > 512 )
    {
        ret = 1;
        mbedtls_printf( " failed\n  ! Invalid DHM modulus size\n\n" );
        goto exit;
    }

    /*
     * 5. Check that the server's RSA signature matches
     *    the SHA-256 hash of (P,G,Ys)
     */
    mbedtls_printf( "\n  . Verifying the server's RSA signature" );
    fflush( stdout );

    p += 2;

    if( ( n = (size_t) ( end - p ) ) != rsa.len )
    {
        ret = 1;
        mbedtls_printf( " failed\n  ! Invalid RSA signature size\n\n" );
        goto exit;
    }

    mbedtls_sha1( buf, (int)( p - 2 - buf ), hash );

    if( ( ret = mbedtls_rsa_pkcs1_verify( &rsa, NULL, NULL, MBEDTLS_RSA_PUBLIC,
                                  MBEDTLS_MD_SHA256, 0, hash, p ) ) != 0 )
    {
        mbedtls_printf( " failed\n  ! mbedtls_rsa_pkcs1_verify returned %d\n\n", ret );
        goto exit;
    }

    /*
     * 6. Send our public value: Yc = G ^ Xc mod P
     */
    mbedtls_printf( "\n  . Sending own public value to server" );
    fflush( stdout );

    n = dhm.len;
    if( ( ret = mbedtls_dhm_make_public( &dhm, (int) dhm.len, buf, n,
                                 mbedtls_ctr_drbg_random, &ctr_drbg ) ) != 0 )
    {
        mbedtls_printf( " failed\n  ! mbedtls_dhm_make_public returned %d\n\n", ret );
        goto exit;
    }

    if( ( ret = mbedtls_net_send( &server_fd, buf, n ) ) != (int) n )
    {
        mbedtls_printf( " failed\n  ! mbedtls_net_send returned %d\n\n", ret );
        goto exit;
    }

    /*
     * 7. Derive the shared secret: K = Ys ^ Xc mod P
     */
    mbedtls_printf( "\n  . Shared secret: " );
    fflush( stdout );

    if( ( ret = mbedtls_dhm_calc_secret( &dhm, buf, sizeof( buf ), &n,
                                 mbedtls_ctr_drbg_random, &ctr_drbg ) ) != 0 )
    {
        mbedtls_printf( " failed\n  ! mbedtls_dhm_calc_secret returned %d\n\n", ret );
        goto exit;
    }

    for( n = 0; n < 16; n++ )
        mbedtls_printf( "%02x", buf[n] );

    /*
     * 8. Setup the AES-256 decryption key
     *
     * This is an overly simplified example; best practice is
     * to hash the shared secret with a random value to derive
     * the keying material for the encryption/decryption keys,
     * IVs and MACs.
     */
    mbedtls_printf( "...\n  . Receiving and decrypting the ciphertext" );
    fflush( stdout );

    mbedtls_aes_setkey_dec( &aes, buf, 256 );

    memset( buf, 0, sizeof( buf ) );

    if( ( ret = mbedtls_net_recv( &server_fd, buf, 16 ) ) != 16 )
    {
        mbedtls_printf( " failed\n  ! mbedtls_net_recv returned %d\n\n", ret );
        goto exit;
    }

    mbedtls_aes_crypt_ecb( &aes, MBEDTLS_AES_DECRYPT, buf, buf );
    buf[16] = '\0';
    mbedtls_printf( "\n  . Plaintext is \"%s\"\n\n", (char *) buf );

exit:

    mbedtls_net_free( &server_fd );

    mbedtls_aes_free( &aes );
    mbedtls_rsa_free( &rsa );
    mbedtls_dhm_free( &dhm );
    mbedtls_ctr_drbg_free( &ctr_drbg );
    mbedtls_entropy_free( &entropy );

#if defined(_WIN32)
    mbedtls_printf( "  + Press Enter to exit this program.\n" );
    fflush( stdout ); getchar();
#endif

    return( ret );
}
Ejemplo n.º 10
0
static NO_INLINE JsVar *jswrap_crypto_AEScrypt(JsVar *message, JsVar *key, JsVar *options, bool encrypt) {
  int err;

  unsigned char iv[16]; // initialisation vector
  memset(iv, 0, 16);

  CryptoMode mode = CM_CBC;

  if (jsvIsObject(options)) {
    JsVar *ivVar = jsvObjectGetChild(options, "iv", 0);
    if (ivVar) {
      jsvIterateCallbackToBytes(ivVar, iv, sizeof(iv));
      jsvUnLock(ivVar);
    }
    JsVar *modeVar = jsvObjectGetChild(options, "mode", 0);
    if (!jsvIsUndefined(modeVar))
      mode = jswrap_crypto_getMode(modeVar);
    jsvUnLock(modeVar);
    if (mode == CM_NONE) return 0;
  } else if (!jsvIsUndefined(options)) {
    jsError("'options' must be undefined, or an Object");
    return 0;
  }



  mbedtls_aes_context aes;
  mbedtls_aes_init( &aes );

  JSV_GET_AS_CHAR_ARRAY(messagePtr, messageLen, message);
  if (!messagePtr) return 0;

  JSV_GET_AS_CHAR_ARRAY(keyPtr, keyLen, key);
  if (!keyPtr) return 0;

  if (encrypt)
    err = mbedtls_aes_setkey_enc( &aes, (unsigned char*)keyPtr, (unsigned int)keyLen*8 );
  else
    err = mbedtls_aes_setkey_dec( &aes, (unsigned char*)keyPtr, (unsigned int)keyLen*8 );
  if (err) {
    jswrap_crypto_error(err);
    return 0;
  }

  char *outPtr = 0;
  JsVar *outVar = jsvNewArrayBufferWithPtr((unsigned int)messageLen, &outPtr);
  if (!outPtr) {
    jsError("Not enough memory for result");
    return 0;
  }



  switch (mode) {
  case CM_CBC:
    err = mbedtls_aes_crypt_cbc( &aes,
                     encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT,
                     messageLen,
                     iv,
                     (unsigned char*)messagePtr,
                     (unsigned char*)outPtr );
    break;
  case CM_CFB:
    err = mbedtls_aes_crypt_cfb8( &aes,
                     encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT,
                     messageLen,
                     iv,
                     (unsigned char*)messagePtr,
                     (unsigned char*)outPtr );
    break;
  case CM_CTR: {
    size_t nc_off = 0;
    unsigned char nonce_counter[16];
    unsigned char stream_block[16];
    memset(nonce_counter, 0, sizeof(nonce_counter));
    memset(stream_block, 0, sizeof(stream_block));
    err = mbedtls_aes_crypt_ctr( &aes,
                     messageLen,
                     &nc_off,
                     nonce_counter,
                     stream_block,
                     (unsigned char*)messagePtr,
                     (unsigned char*)outPtr );
    break;
  }
  case CM_ECB: {
    size_t i = 0;
    while (!err && i+15 < messageLen) {
      err = mbedtls_aes_crypt_ecb( &aes,
                       encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT,
                       (unsigned char*)&messagePtr[i],
                       (unsigned char*)&outPtr[i] );
      i += 16;
    }
    break;
  }
  default:
    err = MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE;
    break;
  }

  mbedtls_aes_free( &aes );
  if (!err) {
    return outVar;
  } else {
    jswrap_crypto_error(err);
    jsvUnLock(outVar);
    return 0;
  }
}
Ejemplo n.º 11
0
	void AESContext::destructor(State & state, mbedtls_aes_context * context){
		mbedtls_aes_free(context);
		delete context;
	}
Ejemplo n.º 12
0
static void aes_ctx_free( void *ctx )
{
    mbedtls_aes_free( (mbedtls_aes_context *) ctx );
    mbedtls_free( ctx );
}
Ejemplo n.º 13
0
/**
* Block symmetric ciphers.
* Please note that linker-override is possible, but dynamic override is generally
*   preferable to avoid clobbering all symmetric support.
*
* @param uint8_t* Buffer containing plaintext.
* @param int      Length of plaintext.
* @param uint8_t* Target buffer for ciphertext.
* @param int      Length of output.
* @param uint8_t* Buffer containing the symmetric key.
* @param int      Length of the key, in bits.
* @param uint8_t* IV. Caller's responsibility to use correct size.
* @param Cipher   The cipher by which to encrypt.
* @param uint32_t Options to the optionation.
* @return true if the root function ought to defer.
*/
int __attribute__((weak)) wrapped_sym_cipher(uint8_t* in, int in_len, uint8_t* out, int out_len, uint8_t* key, int key_len, uint8_t* iv, Cipher ci, uint32_t opts) {
  if (cipher_deferred_handling(ci)) {
    // If overriden by user implementation.
    return _sym_overrides[ci](in, in_len, out, out_len, key, key_len, iv, ci, opts);
  }
  int8_t ret = -1;
  switch (ci) {
    #if defined(MBEDTLS_AES_C)
      case Cipher::SYM_AES_256_CBC:
      case Cipher::SYM_AES_192_CBC:
      case Cipher::SYM_AES_128_CBC:
        {
          mbedtls_aes_context ctx;
          if (opts & OP_ENCRYPT) {
            mbedtls_aes_setkey_enc(&ctx, key, (unsigned int) key_len);
          }
          else {
            mbedtls_aes_setkey_dec(&ctx, key, (unsigned int) key_len);
          }
          ret = mbedtls_aes_crypt_cbc(&ctx, _cipher_opcode(ci, opts), in_len, iv, in, out);
          mbedtls_aes_free(&ctx);
        }
        break;
    #endif

    #if defined(MBEDTLS_RSA_C)
      case Cipher::ASYM_RSA:
        {
          mbedtls_ctr_drbg_context ctr_drbg;
          mbedtls_ctr_drbg_init(&ctr_drbg);
          size_t olen = 0;
          mbedtls_pk_context ctx;
          mbedtls_pk_init(&ctx);
          if (opts & OP_ENCRYPT) {
            ret = mbedtls_pk_encrypt(&ctx, in, in_len, out, &olen, out_len, mbedtls_ctr_drbg_random, &ctr_drbg);
          }
          else {
            ret = mbedtls_pk_decrypt(&ctx, in, in_len, out, &olen, out_len, mbedtls_ctr_drbg_random, &ctr_drbg);
          }
          mbedtls_pk_free(&ctx);
        }
        break;
    #endif

    #if defined(MBEDTLS_BLOWFISH_C)
      case Cipher::SYM_BLOWFISH_CBC:
        {
          mbedtls_blowfish_context ctx;
          mbedtls_blowfish_setkey(&ctx, key, key_len);
          ret = mbedtls_blowfish_crypt_cbc(&ctx, _cipher_opcode(ci, opts), in_len, iv, in, out);
          mbedtls_blowfish_free(&ctx);
        }
        break;
    #endif

    #if defined(WRAPPED_SYM_NULL)
      case Cipher::SYM_NULL:
        memcpy(out, in, in_len);
        ret = 0;
        break;
    #endif

    default:
      break;
  }
  return ret;
}