Ejemplo n.º 1
0
Archivo: main.c Proyecto: likon/bldc
/*
 * Called every time new ADC values are available. Note that
 * the ADC is initialized from mcpwm.c
 */
void main_dma_adc_handler(void) {
	ledpwm_update_pwm();

	if (sample_at_start && mcpwm_get_state() == MC_STATE_STARTING) {
		sample_now = 0;
		sample_ready = 0;
		was_start_wample = 1;
		sample_at_start = 0;
	}

	static int a = 0;
	if (!sample_ready) {
		a++;
		if (a >= sample_int) {
			a = 0;
			curr0_samples[sample_now] = ADC_curr_norm_value[0];
			curr1_samples[sample_now] = ADC_curr_norm_value[1];
			ph1_samples[sample_now] = ADC_V_L1;
			ph2_samples[sample_now] = ADC_V_L2;
			ph3_samples[sample_now] = ADC_V_L3;
			vzero_samples[sample_now] = ADC_V_ZERO * MCPWM_VZERO_FACT;

			if (mcpwm_get_state() == MC_STATE_DETECTING && 0) {
				status_samples[sample_now] = mcpwm_get_detect_top();
			} else {
				uint8_t tmp;

				if (was_start_wample) {
					if (mcpwm_get_state() == MC_STATE_STARTING) {
						tmp = 1;
					} else if (mcpwm_get_state() == MC_STATE_RUNNING) {
						tmp = 2;
					} else {
						tmp = 3;
					}
				} else {
					tmp = mcpwm_read_hall_phase();
				}

				status_samples[sample_now] = mcpwm_get_comm_step() | (tmp << 3);
			}

			curr_fir_samples[sample_now] = (int16_t)(mcpwm_get_tot_current_filtered() * 100);

			sample_now++;

			if (sample_now == sample_len) {
				sample_ready = 1;
				sample_now = 0;
				was_start_wample = 0;
				chSysLockFromIsr();
				chEvtSignalI(sample_send_tp, (eventmask_t) 1);
				chSysUnlockFromIsr();
			}

			main_last_adc_duration = mcpwm_get_last_adc_isr_duration();
		}
	}
}
Ejemplo n.º 2
0
/*
 * Called every time new ADC values are available. Note that
 * the ADC is initialized from mcpwm.c
 */
void main_dma_adc_handler(void) {
    ledpwm_update_pwm();

    if (sample_at_start && (mc_interface_get_state() == MC_STATE_RUNNING ||
                            start_comm != mcpwm_get_comm_step())) {
        sample_now = 0;
        sample_ready = 0;
        sample_at_start = 0;
    }

    static int a = 0;
    if (!sample_ready) {
        a++;
        if (a >= sample_int) {
            a = 0;

            if (mc_interface_get_state() == MC_STATE_DETECTING) {
                curr0_samples[sample_now] = (int16_t)mcpwm_detect_currents[mcpwm_get_comm_step() - 1];
                curr1_samples[sample_now] = (int16_t)mcpwm_detect_currents_diff[mcpwm_get_comm_step() - 1];

                ph1_samples[sample_now] = (int16_t)mcpwm_detect_voltages[0];
                ph2_samples[sample_now] = (int16_t)mcpwm_detect_voltages[1];
                ph3_samples[sample_now] = (int16_t)mcpwm_detect_voltages[2];
            } else {
                curr0_samples[sample_now] = ADC_curr_norm_value[0];
                curr1_samples[sample_now] = ADC_curr_norm_value[1];

                ph1_samples[sample_now] = ADC_V_L1 - mcpwm_vzero;
                ph2_samples[sample_now] = ADC_V_L2 - mcpwm_vzero;
                ph3_samples[sample_now] = ADC_V_L3 - mcpwm_vzero;
            }

            vzero_samples[sample_now] = mcpwm_vzero;

            curr_fir_samples[sample_now] = (int16_t)(mc_interface_get_tot_current() * 100.0);
            f_sw_samples[sample_now] = (int16_t)(mc_interface_get_switching_frequency_now() / 10.0);

            status_samples[sample_now] = mcpwm_get_comm_step() | (mcpwm_read_hall_phase() << 3);

            sample_now++;

            if (sample_now == sample_len) {
                sample_ready = 1;
                sample_now = 0;
                chSysLockFromISR();
                chEvtSignalI(sample_send_tp, (eventmask_t) 1);
                chSysUnlockFromISR();
            }

            main_last_adc_duration = mcpwm_get_last_adc_isr_duration();
        }
    }
}
Ejemplo n.º 3
0
void terminal_process_string(char *str) {
	enum { kMaxArgs = 64 };
	int argc = 0;
	char *argv[kMaxArgs];

	char *p2 = strtok(str, " ");
	while (p2 && argc < kMaxArgs) {
		argv[argc++] = p2;
		p2 = strtok(0, " ");
	}

	if (argc == 0) {
		commands_printf("No command received\n");
		return;
	}

	if (strcmp(argv[0], "ping") == 0) {
		commands_printf("pong\n");
	} else if (strcmp(argv[0], "stop") == 0) {
		mcpwm_set_duty(0);
		commands_printf("Motor stopped\n");
	} else if (strcmp(argv[0], "last_adc_duration") == 0) {
		commands_printf("Latest ADC duration: %.4f ms", (double)(mcpwm_get_last_adc_isr_duration() * 1000.0));
		commands_printf("Latest injected ADC duration: %.4f ms", (double)(mcpwm_get_last_inj_adc_isr_duration() * 1000.0));
		commands_printf("Latest main ADC duration: %.4f ms\n", (double)(main_get_last_adc_isr_duration() * 1000.0));
	} else if (strcmp(argv[0], "kv") == 0) {
		commands_printf("Calculated KV: %.2f rpm/volt\n", (double)mcpwm_get_kv_filtered());
	} else if (strcmp(argv[0], "mem") == 0) {
		size_t n, size;
		n = chHeapStatus(NULL, &size);
		commands_printf("core free memory : %u bytes", chCoreStatus());
		commands_printf("heap fragments   : %u", n);
		commands_printf("heap free total  : %u bytes\n", size);
	} else if (strcmp(argv[0], "threads") == 0) {
		Thread *tp;
		static const char *states[] = {THD_STATE_NAMES};
		commands_printf("    addr    stack prio refs     state           name time    ");
		commands_printf("-------------------------------------------------------------");
		tp = chRegFirstThread();
		do {
			commands_printf("%.8lx %.8lx %4lu %4lu %9s %14s %lu",
					(uint32_t)tp, (uint32_t)tp->p_ctx.r13,
					(uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1),
					states[tp->p_state], tp->p_name, (uint32_t)tp->p_time);
			tp = chRegNextThread(tp);
		} while (tp != NULL);
		commands_printf("");
	} else if (strcmp(argv[0], "fault") == 0) {
		commands_printf("%s\n", mcpwm_fault_to_string(mcpwm_get_fault()));
	} else if (strcmp(argv[0], "faults") == 0) {
		if (fault_vec_write == 0) {
			commands_printf("No faults registered since startup\n");
		} else {
			commands_printf("The following faults were registered since start:\n");
			for (int i = 0;i < fault_vec_write;i++) {
				commands_printf("Fault            : %s", mcpwm_fault_to_string(fault_vec[i].fault));
				commands_printf("Current          : %.1f", (double)fault_vec[i].current);
				commands_printf("Current filtered : %.1f", (double)fault_vec[i].current_filtered);
				commands_printf("Voltage          : %.2f", (double)fault_vec[i].voltage);
				commands_printf("Duty             : %.2f", (double)fault_vec[i].duty);
				commands_printf("RPM              : %.1f", (double)fault_vec[i].rpm);
				commands_printf("Tacho            : %d", fault_vec[i].tacho);
				commands_printf("TIM PWM CNT      : %d", fault_vec[i].tim_pwm_cnt);
				commands_printf("TIM Samp CNT     : %d", fault_vec[i].tim_samp_cnt);
				commands_printf("Comm step        : %d", fault_vec[i].comm_step);
				commands_printf("Temperature      : %.2f\n", (double)fault_vec[i].temperature);
			}
		}
	} else if (strcmp(argv[0], "rpm") == 0) {
		commands_printf("Electrical RPM: %.2f rpm\n", (double)mcpwm_get_rpm());
	} else if (strcmp(argv[0], "tacho") == 0) {
		commands_printf("Tachometer counts: %i\n", mcpwm_get_tachometer_value(0));
	} else if (strcmp(argv[0], "tim") == 0) {
		chSysLock();
		volatile int t1_cnt = TIM1->CNT;
		volatile int t8_cnt = TIM8->CNT;
		chSysUnlock();
		int duty = TIM1->CCR1;
		int top = TIM1->ARR;
		int voltage_samp = TIM8->CCR1;
		int current1_samp = TIM1->CCR4;
		int current2_samp = TIM8->CCR2;
		commands_printf("Tim1 CNT: %i", t1_cnt);
		commands_printf("Tim8 CNT: %u", t8_cnt);
		commands_printf("Duty cycle: %u", duty);
		commands_printf("Top: %u", top);
		commands_printf("Voltage sample: %u", voltage_samp);
		commands_printf("Current 1 sample: %u", current1_samp);
		commands_printf("Current 2 sample: %u\n", current2_samp);
	} else if (strcmp(argv[0], "volt") == 0) {
		commands_printf("Input voltage: %.2f\n", (double)GET_INPUT_VOLTAGE());
	} else if (strcmp(argv[0], "param_detect") == 0) {
		// Use COMM_MODE_DELAY and try to figure out the motor parameters.
		if (argc == 4) {
			float current = -1.0;
			float min_rpm = -1.0;
			float low_duty = -1.0;
			sscanf(argv[1], "%f", &current);
			sscanf(argv[2], "%f", &min_rpm);
			sscanf(argv[3], "%f", &low_duty);

			const volatile mc_configuration *mcconf = mcpwm_get_configuration();

			if (current > 0.0 && current < mcconf->l_current_max &&
					min_rpm > 10.0 && min_rpm < 3000.0 &&
					low_duty > 0.02 && low_duty < 0.8) {

				float cycle_integrator;
				float coupling_k;
				if (conf_general_detect_motor_param(current, min_rpm, low_duty, &cycle_integrator, &coupling_k)) {
					commands_printf("Cycle integrator limit: %.2f", (double)cycle_integrator);
					commands_printf("Coupling factor: %.2f\n", (double)coupling_k);
				} else {
					commands_printf("Detection failed. Try again with different parameters.\n");
				}
			} else {
				commands_printf("Invalid argument(s).\n");
			}
		} else {
			commands_printf("This command requires three arguments.\n");
		}
	} else if (strcmp(argv[0], "rpm_dep") == 0) {
		mc_rpm_dep_struct rpm_dep = mcpwm_get_rpm_dep();
		commands_printf("Cycle int limit: %.2f", (double)rpm_dep.cycle_int_limit);
		commands_printf("Cycle int limit running: %.2f", (double)rpm_dep.cycle_int_limit_running);
		commands_printf("Cycle int limit max: %.2f\n", (double)rpm_dep.cycle_int_limit_max);
	}

	// Setters
	else if (strcmp(argv[0], "set_hall_table") == 0) {
		if (argc == 4) {
			int dir = -1;
			int fwd_add = -1;
			int rev_add = -1;
			sscanf(argv[1], "%i", &dir);
			sscanf(argv[2], "%i", &fwd_add);
			sscanf(argv[3], "%i", &rev_add);

			if (dir >= 0 && fwd_add >= 0 && rev_add >= 0) {
				mcpwm_init_hall_table(dir, fwd_add, rev_add);
				commands_printf("New hall sensor dir: %i fwd_add %i rev_add %i\n",
						dir, fwd_add, rev_add);
			} else {
				commands_printf("Invalid argument(s).\n");
			}
		} else {
			commands_printf("This command requires three arguments.\n");
		}
	}

	// The help command
	else if (strcmp(argv[0], "help") == 0) {
		commands_printf("Valid commands are:");
		commands_printf("help");
		commands_printf("  Show this help");

		commands_printf("ping");
		commands_printf("  Print pong here to see if the reply works");

		commands_printf("stop");
		commands_printf("  Stop the motor");

		commands_printf("last_adc_duration");
		commands_printf("  The time the latest ADC interrupt consumed");

		commands_printf("kv");
		commands_printf("  The calculated kv of the motor");

		commands_printf("mem");
		commands_printf("  Show memory usage");

		commands_printf("threads");
		commands_printf("  List all threads");

		commands_printf("fault");
		commands_printf("  Prints the current fault code");

		commands_printf("faults");
		commands_printf("  Prints all stored fault codes and conditions when they arrived");

		commands_printf("rpm");
		commands_printf("  Prints the current electrical RPM");

		commands_printf("tacho");
		commands_printf("  Prints tachometer value");

		commands_printf("tim");
		commands_printf("  Prints tim1 and tim8 settings");

		commands_printf("set_hall_table [dir] [fwd_add] [rev_add]");
		commands_printf("  Update the hall sensor lookup table");

		commands_printf("volt");
		commands_printf("  Prints different voltages");

		commands_printf("param_detect [current] [min_rpm] [low_duty]");
		commands_printf("  Spin up the motor in COMM_MODE_DELAY and compute its parameters.");
		commands_printf("  This test should be performed without load on the motor.");
		commands_printf("  Example: param_detect 5.0 600 0.06");

		commands_printf("rpm_dep");
		commands_printf("  Prints some rpm-dep values\n");
	} else {
		commands_printf("Invalid command: %s\n"
				"type help to list all available commands\n", argv[0]);
	}
}
Ejemplo n.º 4
0
void terminal_process_string(char *str) {
	enum { kMaxArgs = 64 };
	int argc = 0;
	char *argv[kMaxArgs];

	char *p2 = strtok(str, " ");
	while (p2 && argc < kMaxArgs) {
		argv[argc++] = p2;
		p2 = strtok(0, " ");
	}

	if (argc == 0) {
		commands_printf("No command received\n");
		return;
	}

	static mc_configuration mcconf; // static to save some stack
	static mc_configuration mcconf_old; // static to save some stack
	mcconf = *mc_interface_get_configuration();
	mcconf_old = mcconf;

	if (strcmp(argv[0], "ping") == 0) {
		commands_printf("pong\n");
	} else if (strcmp(argv[0], "stop") == 0) {
		mc_interface_set_duty(0);
		commands_printf("Motor stopped\n");
	} else if (strcmp(argv[0], "last_adc_duration") == 0) {
		commands_printf("Latest ADC duration: %.4f ms", (double)(mcpwm_get_last_adc_isr_duration() * 1000.0));
		commands_printf("Latest injected ADC duration: %.4f ms", (double)(mc_interface_get_last_inj_adc_isr_duration() * 1000.0));
		commands_printf("Latest sample ADC duration: %.4f ms\n", (double)(mc_interface_get_last_sample_adc_isr_duration() * 1000.0));
	} else if (strcmp(argv[0], "kv") == 0) {
		commands_printf("Calculated KV: %.2f rpm/volt\n", (double)mcpwm_get_kv_filtered());
	} else if (strcmp(argv[0], "mem") == 0) {
		size_t n, size;
		n = chHeapStatus(NULL, &size);
		commands_printf("core free memory : %u bytes", chCoreGetStatusX());
		commands_printf("heap fragments   : %u", n);
		commands_printf("heap free total  : %u bytes\n", size);
	} else if (strcmp(argv[0], "threads") == 0) {
		thread_t *tp;
		static const char *states[] = {CH_STATE_NAMES};
		commands_printf("    addr    stack prio refs     state           name time    ");
		commands_printf("-------------------------------------------------------------");
		tp = chRegFirstThread();
		do {
			commands_printf("%.8lx %.8lx %4lu %4lu %9s %14s %lu",
					(uint32_t)tp, (uint32_t)tp->p_ctx.r13,
					(uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1),
					states[tp->p_state], tp->p_name, (uint32_t)tp->p_time);
			tp = chRegNextThread(tp);
		} while (tp != NULL);
		commands_printf("");
	} else if (strcmp(argv[0], "fault") == 0) {
		commands_printf("%s\n", mc_interface_fault_to_string(mc_interface_get_fault()));
	} else if (strcmp(argv[0], "faults") == 0) {
		if (fault_vec_write == 0) {
			commands_printf("No faults registered since startup\n");
		} else {
			commands_printf("The following faults were registered since start:\n");
			for (int i = 0;i < fault_vec_write;i++) {
				commands_printf("Fault            : %s", mc_interface_fault_to_string(fault_vec[i].fault));
				commands_printf("Current          : %.1f", (double)fault_vec[i].current);
				commands_printf("Current filtered : %.1f", (double)fault_vec[i].current_filtered);
				commands_printf("Voltage          : %.2f", (double)fault_vec[i].voltage);
				commands_printf("Duty             : %.2f", (double)fault_vec[i].duty);
				commands_printf("RPM              : %.1f", (double)fault_vec[i].rpm);
				commands_printf("Tacho            : %d", fault_vec[i].tacho);
				commands_printf("Cycles running   : %d", fault_vec[i].cycles_running);
				commands_printf("TIM duty         : %d", (int)((float)fault_vec[i].tim_top * fault_vec[i].duty));
				commands_printf("TIM val samp     : %d", fault_vec[i].tim_val_samp);
				commands_printf("TIM current samp : %d", fault_vec[i].tim_current_samp);
				commands_printf("TIM top          : %d", fault_vec[i].tim_top);
				commands_printf("Comm step        : %d", fault_vec[i].comm_step);
				commands_printf("Temperature      : %.2f\n", (double)fault_vec[i].temperature);
			}
		}
	} else if (strcmp(argv[0], "rpm") == 0) {
		commands_printf("Electrical RPM: %.2f rpm\n", (double)mc_interface_get_rpm());
	} else if (strcmp(argv[0], "tacho") == 0) {
		commands_printf("Tachometer counts: %i\n", mc_interface_get_tachometer_value(0));
	} else if (strcmp(argv[0], "tim") == 0) {
		chSysLock();
		volatile int t1_cnt = TIM1->CNT;
		volatile int t8_cnt = TIM8->CNT;
		volatile int dir1 = !!(TIM1->CR1 & (1 << 4));
		volatile int dir8 = !!(TIM8->CR1 & (1 << 4));
		chSysUnlock();
		int duty1 = TIM1->CCR1;
		int duty2 = TIM1->CCR2;
		int duty3 = TIM1->CCR3;
		int top = TIM1->ARR;
		int voltage_samp = TIM8->CCR1;
		int current1_samp = TIM1->CCR4;
		int current2_samp = TIM8->CCR2;
		commands_printf("Tim1 CNT: %i", t1_cnt);
		commands_printf("Tim8 CNT: %u", t8_cnt);
		commands_printf("Duty cycle1: %u", duty1);
		commands_printf("Duty cycle2: %u", duty2);
		commands_printf("Duty cycle3: %u", duty3);
		commands_printf("Top: %u", top);
		commands_printf("Dir1: %u", dir1);
		commands_printf("Dir8: %u", dir8);
		commands_printf("Voltage sample: %u", voltage_samp);
		commands_printf("Current 1 sample: %u", current1_samp);
		commands_printf("Current 2 sample: %u\n", current2_samp);
	} else if (strcmp(argv[0], "volt") == 0) {
		commands_printf("Input voltage: %.2f\n", (double)GET_INPUT_VOLTAGE());
	} else if (strcmp(argv[0], "param_detect") == 0) {
		// Use COMM_MODE_DELAY and try to figure out the motor parameters.
		if (argc == 4) {
			float current = -1.0;
			float min_rpm = -1.0;
			float low_duty = -1.0;
			sscanf(argv[1], "%f", &current);
			sscanf(argv[2], "%f", &min_rpm);
			sscanf(argv[3], "%f", &low_duty);

			if (current > 0.0 && current < mcconf.l_current_max &&
					min_rpm > 10.0 && min_rpm < 3000.0 &&
					low_duty > 0.02 && low_duty < 0.8) {

				float cycle_integrator;
				float coupling_k;
				int8_t hall_table[8];
				int hall_res;
				if (conf_general_detect_motor_param(current, min_rpm, low_duty, &cycle_integrator, &coupling_k, hall_table, &hall_res)) {
					commands_printf("Cycle integrator limit: %.2f", (double)cycle_integrator);
					commands_printf("Coupling factor: %.2f", (double)coupling_k);

					if (hall_res == 0) {
						commands_printf("Detected hall sensor table:");
						commands_printf("%i, %i, %i, %i, %i, %i, %i, %i\n",
								hall_table[0], hall_table[1], hall_table[2], hall_table[3],
								hall_table[4], hall_table[5], hall_table[6], hall_table[7]);
					} else if (hall_res == -1) {
						commands_printf("Hall sensor detection failed:");
						commands_printf("%i, %i, %i, %i, %i, %i, %i, %i\n",
								hall_table[0], hall_table[1], hall_table[2], hall_table[3],
								hall_table[4], hall_table[5], hall_table[6], hall_table[7]);
					} else if (hall_res == -2) {
						commands_printf("WS2811 enabled. Hall sensors cannot be used.\n");
					} else if (hall_res == -3) {
						commands_printf("Encoder enabled. Hall sensors cannot be used.\n");
					}
				} else {
					commands_printf("Detection failed. Try again with different parameters.\n");
				}
			} else {
				commands_printf("Invalid argument(s).\n");
			}
		} else {
			commands_printf("This command requires three arguments.\n");
		}
	} else if (strcmp(argv[0], "rpm_dep") == 0) {
		mc_rpm_dep_struct rpm_dep = mcpwm_get_rpm_dep();
		commands_printf("Cycle int limit: %.2f", (double)rpm_dep.cycle_int_limit);
		commands_printf("Cycle int limit running: %.2f", (double)rpm_dep.cycle_int_limit_running);
		commands_printf("Cycle int limit max: %.2f\n", (double)rpm_dep.cycle_int_limit_max);
	} else if (strcmp(argv[0], "can_devs") == 0) {
		commands_printf("CAN devices seen on the bus the past second:\n");
		for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) {
			can_status_msg *msg = comm_can_get_status_msg_index(i);

			if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < 1.0) {
				commands_printf("ID                 : %i", msg->id);
				commands_printf("RX Time            : %i", msg->rx_time);
				commands_printf("Age (milliseconds) : %.2f", (double)(UTILS_AGE_S(msg->rx_time) * 1000.0));
				commands_printf("RPM                : %.2f", (double)msg->rpm);
				commands_printf("Current            : %.2f", (double)msg->current);
				commands_printf("Duty               : %.2f\n", (double)msg->duty);
			}
		}
	} else if (strcmp(argv[0], "foc_encoder_detect") == 0) {
		if (argc == 2) {
			float current = -1.0;
			sscanf(argv[1], "%f", &current);

			if (current > 0.0 && current <= mcconf.l_current_max) {
				if (encoder_is_configured()) {
					mc_motor_type type_old = mcconf.motor_type;
					mcconf.motor_type = MOTOR_TYPE_FOC;
					mc_interface_set_configuration(&mcconf);

					float offset = 0.0;
					float ratio = 0.0;
					bool inverted = false;
					mcpwm_foc_encoder_detect(current, true, &offset, &ratio, &inverted);

					mcconf.motor_type = type_old;
					mc_interface_set_configuration(&mcconf);

					commands_printf("Offset   : %.2f", (double)offset);
					commands_printf("Ratio    : %.2f", (double)ratio);
					commands_printf("Inverted : %s\n", inverted ? "true" : "false");
				} else {
					commands_printf("Encoder not enabled.\n");
				}
			} else {
				commands_printf("Invalid argument(s).\n");
			}
		} else {
			commands_printf("This command requires one argument.\n");
		}
	} else if (strcmp(argv[0], "measure_res") == 0) {
		if (argc == 2) {
			float current = -1.0;
			sscanf(argv[1], "%f", &current);

			if (current > 0.0 && current <= mcconf.l_current_max) {
				mcconf.motor_type = MOTOR_TYPE_FOC;
				mc_interface_set_configuration(&mcconf);

				commands_printf("Resistance: %.6f ohm\n", (double)mcpwm_foc_measure_resistance(current, 2000));

				mc_interface_set_configuration(&mcconf_old);
			} else {
				commands_printf("Invalid argument(s).\n");
			}
		} else {
			commands_printf("This command requires one argument.\n");
		}
	} else if (strcmp(argv[0], "measure_ind") == 0) {
		if (argc == 2) {
			float duty = -1.0;
			sscanf(argv[1], "%f", &duty);

			if (duty > 0.0) {
				mcconf.motor_type = MOTOR_TYPE_FOC;
				mcconf.foc_f_sw = 3000.0;
				mc_interface_set_configuration(&mcconf);

				commands_printf("Inductance: %.2f microhenry\n", (double)(mcpwm_foc_measure_inductance(duty, 200, 0)));

				mc_interface_set_configuration(&mcconf_old);
			} else {
				commands_printf("Invalid argument(s).\n");
			}
		} else {
			commands_printf("This command requires one argument.\n");
		}
	} else if (strcmp(argv[0], "measure_linkage") == 0) {
		if (argc == 5) {
			float current = -1.0;
			float duty = -1.0;
			float min_erpm = -1.0;
			float res = -1.0;
			sscanf(argv[1], "%f", &current);
			sscanf(argv[2], "%f", &duty);
			sscanf(argv[3], "%f", &min_erpm);
			sscanf(argv[4], "%f", &res);

			if (current > 0.0 && current <= mcconf.l_current_max && min_erpm > 0.0 && duty > 0.02 && res >= 0.0) {
				float linkage;
				conf_general_measure_flux_linkage(current, duty, min_erpm, res, &linkage);
				commands_printf("Flux linkage: %.7f\n", (double)linkage);
			} else {
				commands_printf("Invalid argument(s).\n");
			}
		} else {
			commands_printf("This command requires one argument.\n");
		}
	} else if (strcmp(argv[0], "measure_res_ind") == 0) {
		mcconf.motor_type = MOTOR_TYPE_FOC;
		mc_interface_set_configuration(&mcconf);

		float res = 0.0;
		float ind = 0.0;
		mcpwm_foc_measure_res_ind(&res, &ind);
		commands_printf("Resistance: %.6f ohm", (double)res);
		commands_printf("Inductance: %.2f microhenry\n", (double)ind);

		mc_interface_set_configuration(&mcconf_old);
	} else if (strcmp(argv[0], "measure_linkage_foc") == 0) {
		if (argc == 2) {
			float duty = -1.0;
			sscanf(argv[1], "%f", &duty);

			if (duty > 0.0) {
				mcconf.motor_type = MOTOR_TYPE_FOC;
				mc_interface_set_configuration(&mcconf);
				const float res = (3.0 / 2.0) * mcconf.foc_motor_r;

				// Disable timeout
				systime_t tout = timeout_get_timeout_msec();
				float tout_c = timeout_get_brake_current();
				timeout_configure(60000, 0.0);

				for (int i = 0;i < 100;i++) {
					mc_interface_set_duty(((float)i / 100.0) * duty);
					chThdSleepMilliseconds(20);
				}

				float vq_avg = 0.0;
				float rpm_avg = 0.0;
				float samples = 0.0;
				float iq_avg = 0.0;
				for (int i = 0;i < 1000;i++) {
					vq_avg += mcpwm_foc_get_vq();
					rpm_avg += mc_interface_get_rpm();
					iq_avg += mc_interface_get_tot_current_directional();
					samples += 1.0;
					chThdSleepMilliseconds(1);
				}

				mc_interface_release_motor();
				mc_interface_set_configuration(&mcconf_old);

				// Enable timeout
				timeout_configure(tout, tout_c);

				vq_avg /= samples;
				rpm_avg /= samples;
				iq_avg /= samples;

				float linkage = (vq_avg - res * iq_avg) / (rpm_avg * ((2.0 * M_PI) / 60.0));

				commands_printf("Flux linkage: %.7f\n", (double)linkage);
			} else {
				commands_printf("Invalid argument(s).\n");
			}
		} else {
			commands_printf("This command requires one argument.\n");
		}
	} else if (strcmp(argv[0], "foc_state") == 0) {
		mcpwm_foc_print_state();
		commands_printf(" ");
	}

	// The help command
	else if (strcmp(argv[0], "help") == 0) {
		commands_printf("Valid commands are:");
		commands_printf("help");
		commands_printf("  Show this help");

		commands_printf("ping");
		commands_printf("  Print pong here to see if the reply works");

		commands_printf("stop");
		commands_printf("  Stop the motor");

		commands_printf("last_adc_duration");
		commands_printf("  The time the latest ADC interrupt consumed");

		commands_printf("kv");
		commands_printf("  The calculated kv of the motor");

		commands_printf("mem");
		commands_printf("  Show memory usage");

		commands_printf("threads");
		commands_printf("  List all threads");

		commands_printf("fault");
		commands_printf("  Prints the current fault code");

		commands_printf("faults");
		commands_printf("  Prints all stored fault codes and conditions when they arrived");

		commands_printf("rpm");
		commands_printf("  Prints the current electrical RPM");

		commands_printf("tacho");
		commands_printf("  Prints tachometer value");

		commands_printf("tim");
		commands_printf("  Prints tim1 and tim8 settings");

		commands_printf("volt");
		commands_printf("  Prints different voltages");

		commands_printf("param_detect [current] [min_rpm] [low_duty]");
		commands_printf("  Spin up the motor in COMM_MODE_DELAY and compute its parameters.");
		commands_printf("  This test should be performed without load on the motor.");
		commands_printf("  Example: param_detect 5.0 600 0.06");

		commands_printf("rpm_dep");
		commands_printf("  Prints some rpm-dep values");

		commands_printf("can_devs");
		commands_printf("  Prints all CAN devices seen on the bus the past second");

		commands_printf("foc_encoder_detect [current]");
		commands_printf("  Run the motor at 1Hz on open loop and compute encoder settings");

		commands_printf("measure_res [current]");
		commands_printf("  Lock the motor with a current and calculate its resistance");

		commands_printf("measure_ind [duty]");
		commands_printf("  Send short voltage pulses, measure the current and calculate the motor inductance");

		commands_printf("measure_linkage [current] [duty] [min_rpm] [motor_res]");
		commands_printf("  Run the motor in BLDC delay mode and measure the flux linkage");
		commands_printf("  example measure_linkage 5 0.5 700 0.076");
		commands_printf("  tip: measure the resistance with measure_res first");

		commands_printf("measure_res_ind");
		commands_printf("  Measure the motor resistance and inductance with an incremental adaptive algorithm.");

		commands_printf("measure_linkage_foc [duty]");
		commands_printf("  Run the motor with FOC and measure the flux linkage.");

		commands_printf("foc_state");
		commands_printf("  Print some FOC state variables.\n");
	} else {
		commands_printf("Invalid command: %s\n"
				"type help to list all available commands\n", argv[0]);
	}
}
Ejemplo n.º 5
0
void terminal_process_string(char *str) {
	enum { kMaxArgs = 64 };
	int argc = 0;
	char *argv[kMaxArgs];
	static char buffer[256];

	char *p2 = strtok(str, " ");
	while (p2 && argc < kMaxArgs) {
		argv[argc++] = p2;
		p2 = strtok(0, " ");
	}

	if (argc == 0) {
		comm_print("No command received\n");
		return;
	}

	if (strcmp(argv[0], "ping") == 0) {
		comm_print("pong\n");
	} else if (strcmp(argv[0], "stop") == 0) {
		mcpwm_set_duty(0);
		comm_print("Motor stopped\n");
	} else if (strcmp(argv[0], "last_adc_duration") == 0) {
		sprintf(buffer, "Latest ADC duration: %.4f ms", (double)(mcpwm_get_last_adc_isr_duration() * 1000.0));
		comm_print(buffer);
		sprintf(buffer, "Latest injected ADC duration: %.4f ms", (double)(mcpwm_get_last_inj_adc_isr_duration() * 1000.0));
		comm_print(buffer);
		sprintf(buffer, "Latest main ADC duration: %.4f ms\n", (double)(main_get_last_adc_isr_duration() * 1000.0));
				comm_print(buffer);
	} else if (strcmp(argv[0], "kv") == 0) {
		sprintf(buffer, "Calculated KV: %.2f rpm/volt\n", (double)mcpwm_get_kv_filtered());
		comm_print(buffer);
	} else if (strcmp(argv[0], "mem") == 0) {
		size_t n, size;
		n = chHeapStatus(NULL, &size);
		sprintf(buffer, "core free memory : %u bytes", chCoreStatus());
		comm_print(buffer);
		sprintf(buffer, "heap fragments   : %u", n);
		comm_print(buffer);
		sprintf(buffer, "heap free total  : %u bytes\n", size);
		comm_print(buffer);
	} else if (strcmp(argv[0], "threads") == 0) {
		Thread *tp;
		static const char *states[] = {THD_STATE_NAMES};
		comm_print("    addr    stack prio refs     state           name time    ");
		comm_print("-------------------------------------------------------------");
		tp = chRegFirstThread();
		do {
			sprintf(buffer, "%.8lx %.8lx %4lu %4lu %9s %14s %lu",
					(uint32_t)tp, (uint32_t)tp->p_ctx.r13,
					(uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1),
					states[tp->p_state], tp->p_name, (uint32_t)tp->p_time);
			comm_print(buffer);
			tp = chRegNextThread(tp);
		} while (tp != NULL);
		comm_print("");
	} else if (strcmp(argv[0], "fault") == 0) {
		comm_print_fault_code(mcpwm_get_fault());
	} else if (strcmp(argv[0], "rpm") == 0) {
		sprintf(buffer, "Electrical RPM: %.2f rpm\n", (double)mcpwm_get_rpm());
		comm_print(buffer);
	} else if (strcmp(argv[0], "tacho") == 0) {
		sprintf(buffer, "Tachometer counts: %i\n", mcpwm_get_tachometer_value(0));
		comm_print(buffer);
	} else if (strcmp(argv[0], "tim") == 0) {
		TIM_Cmd(TIM1, DISABLE);
		int t1_cnt = TIM1->CNT;
		int t8_cnt = TIM8->CNT;
		int duty = TIM1->CCR1;
		int top = TIM1->ARR;
		int voltage_samp = TIM8->CCR1;
		int current1_samp = TIM1->CCR4;
		int current2_samp = TIM8->CCR2;
		TIM_Cmd(TIM1, ENABLE);
		sprintf(buffer, "Tim1 CNT: %i", t1_cnt);
		comm_print(buffer);
		sprintf(buffer, "Tim8 CNT: %u", t8_cnt);
		comm_print(buffer);
		sprintf(buffer, "Duty cycle: %u", duty);
		comm_print(buffer);
		sprintf(buffer, "Top: %u", top);
		comm_print(buffer);
		sprintf(buffer, "Voltage sample: %u", voltage_samp);
		comm_print(buffer);
		sprintf(buffer, "Current 1 sample: %u", current1_samp);
		comm_print(buffer);
		sprintf(buffer, "Current 2 sample: %u\n", current2_samp);
		comm_print(buffer);
	} else if (strcmp(argv[0], "help") == 0) {
		comm_print("Valid commands are:");
		comm_print("help");
		comm_print("  Show this help");

		comm_print("ping");
		comm_print("  Print pong here to see if the reply works");

		comm_print("stop");
		comm_print("  Stop the motor");

		comm_print("last_adc_duration");
		comm_print("  The time the latest ADC interrupt consumed");

		comm_print("kv");
		comm_print("  The calculated kv of the motor");

		comm_print("mem");
		comm_print("  Show memory usage");

		comm_print("threads");
		comm_print("  List all threads");

		comm_print("fault");
		comm_print("  Prints the current fault code");

		comm_print("rpm");
		comm_print("  Prints the current electrical RPM");

		comm_print("tacho");
		comm_print("  Prints tachometer value");

		comm_print("tim");
		comm_print("  Prints tim1 and tim8 settings\n");
	} else {
		sprintf(buffer, "Invalid command: %s\n"
				"type help to list all available commands\n", argv[0]);
		comm_print(buffer);
	}
}
Ejemplo n.º 6
0
void terminal_process_string(char *str) {
	enum { kMaxArgs = 64 };
	int argc = 0;
	char *argv[kMaxArgs];

	char *p2 = strtok(str, " ");
	while (p2 && argc < kMaxArgs) {
		argv[argc++] = p2;
		p2 = strtok(0, " ");
	}

	if (argc == 0) {
		comm_printf("No command received\n");
		return;
	}

	if (strcmp(argv[0], "ping") == 0) {
		comm_printf("pong\n");
	} else if (strcmp(argv[0], "stop") == 0) {
		mcpwm_set_duty(0);
		comm_printf("Motor stopped\n");
	} else if (strcmp(argv[0], "last_adc_duration") == 0) {
		comm_printf("Latest ADC duration: %.4f ms", (double)(mcpwm_get_last_adc_isr_duration() * 1000.0));
		comm_printf("Latest injected ADC duration: %.4f ms", (double)(mcpwm_get_last_inj_adc_isr_duration() * 1000.0));
		comm_printf("Latest main ADC duration: %.4f ms\n", (double)(main_get_last_adc_isr_duration() * 1000.0));
	} else if (strcmp(argv[0], "kv") == 0) {
		comm_printf("Calculated KV: %.2f rpm/volt\n", (double)mcpwm_get_kv_filtered());
	} else if (strcmp(argv[0], "mem") == 0) {
		size_t n, size;
		n = chHeapStatus(NULL, &size);
		comm_printf("core free memory : %u bytes", chCoreStatus());
		comm_printf("heap fragments   : %u", n);
		comm_printf("heap free total  : %u bytes\n", size);
	} else if (strcmp(argv[0], "threads") == 0) {
		Thread *tp;
		static const char *states[] = {THD_STATE_NAMES};
		comm_printf("    addr    stack prio refs     state           name time    ");
		comm_printf("-------------------------------------------------------------");
		tp = chRegFirstThread();
		do {
			comm_printf("%.8lx %.8lx %4lu %4lu %9s %14s %lu",
					(uint32_t)tp, (uint32_t)tp->p_ctx.r13,
					(uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1),
					states[tp->p_state], tp->p_name, (uint32_t)tp->p_time);
			tp = chRegNextThread(tp);
		} while (tp != NULL);
		comm_printf("");
	} else if (strcmp(argv[0], "fault") == 0) {
		comm_print_fault_code(mcpwm_get_fault());
	} else if (strcmp(argv[0], "rpm") == 0) {
		comm_printf("Electrical RPM: %.2f rpm\n", (double)mcpwm_get_rpm());
	} else if (strcmp(argv[0], "tacho") == 0) {
		comm_printf("Tachometer counts: %i\n", mcpwm_get_tachometer_value(0));
	} else if (strcmp(argv[0], "tim") == 0) {
		TIM_Cmd(TIM_PWM, DISABLE);
		int t_pwm_cnt = TIM_PWM->CNT;
		int t_adc_cnt = TIM_ADC->CNT;
		int duty = TIM_PWM->CCR1;
		int top = TIM_PWM->ARR;
		int voltage_samp = TIM_ADC->CCR1;
		int current1_samp = TIM_PWM->CCR4;
		int current2_samp = TIM_ADC->CCR4;
		TIM_Cmd(TIM_PWM, ENABLE);
		comm_printf("TIM_PWM CNT: %i", t_pwm_cnt);
		comm_printf("TIM_ADC CNT: %u", t_adc_cnt);
		comm_printf("Duty cycle: %u", duty);
		comm_printf("Top: %u", top);
		comm_printf("Voltage sample: %u", voltage_samp);
		comm_printf("Current 1 sample: %u", current1_samp);
		comm_printf("Current 2 sample: %u\n", current2_samp);
	} else if (strcmp(argv[0], "volt") == 0) {
		comm_printf("Input voltage: %.2f\n", (double)GET_INPUT_VOLTAGE());
	} else if (strcmp(argv[0], "reset_drv") == 0) {
		comm_printf("reset driver\n");
		mcpwm_reset_driver();
	}
	
	// Setters
	else if (strcmp(argv[0], "set_hall_table") == 0) {
		if (argc == 4) {
			int dir = -1;
			int fwd_add = -1;
			int rev_add = -1;
			sscanf(argv[1], "%i", &dir);
			sscanf(argv[2], "%i", &fwd_add);
			sscanf(argv[3], "%i", &rev_add);

			if (dir >= 0 && fwd_add >= 0 && rev_add >= 0) {
				mcpwm_init_hall_table(dir, fwd_add, rev_add);
				comm_printf("New hall sensor dir: %i fwd_add %i rev_add %i\n",
						dir, fwd_add, rev_add);
			} else {
				comm_printf("Invalid argument(s).\n");
			}
		} else {
			comm_printf("This command requires three arguments.\n");
		}
	}

	// The help command
	else if (strcmp(argv[0], "help") == 0) {
		comm_printf("Valid commands are:");
		comm_printf("help");
		comm_printf("  Show this help");

		comm_printf("ping");
		comm_printf("  Print pong here to see if the reply works");

		comm_printf("stop");
		comm_printf("  Stop the motor");

		comm_printf("last_adc_duration");
		comm_printf("  The time the latest ADC interrupt consumed");

		comm_printf("kv");
		comm_printf("  The calculated kv of the motor");

		comm_printf("mem");
		comm_printf("  Show memory usage");

		comm_printf("threads");
		comm_printf("  List all threads");

		comm_printf("fault");
		comm_printf("  Prints the current fault code");

		comm_printf("rpm");
		comm_printf("  Prints the current electrical RPM");

		comm_printf("tacho");
		comm_printf("  Prints tachometer value");

		comm_printf("tim");
		comm_printf("  Prints TIM_PWM and TIM_ADC settings");

		comm_printf("reset_drv");
		comm_printf("  Short pulse on EN_GATE to reset latched driver fault");

		comm_printf("set_hall_table [dir] [fwd_add] [rev_add]");
		comm_printf("  Update the hall sensor lookup table");

		comm_printf("volt");
		comm_printf("  Prints different voltages\n");
	} else {
		comm_printf("Invalid command: %s\n"
				"type help to list all available commands\n", argv[0]);
	}
}
Ejemplo n.º 7
0
void mc_interface_mc_timer_isr(void) {
	ledpwm_update_pwm(); // LED PWM Driver update

	const float input_voltage = GET_INPUT_VOLTAGE();

	// Check for faults that should stop the motor
	static int wrong_voltage_iterations = 0;
	if (input_voltage < m_conf.l_min_vin ||
			input_voltage > m_conf.l_max_vin) {
		wrong_voltage_iterations++;

		if ((wrong_voltage_iterations >= 8)) {
			mc_interface_fault_stop(input_voltage < m_conf.l_min_vin ?
					FAULT_CODE_UNDER_VOLTAGE : FAULT_CODE_OVER_VOLTAGE);
		}
	} else {
		wrong_voltage_iterations = 0;
	}

	if (mc_interface_get_state() == MC_STATE_RUNNING) {
		m_cycles_running++;
	} else {
		m_cycles_running = 0;
	}

	if (pwn_done_func) {
		pwn_done_func();
	}

	const float current = mc_interface_get_tot_current_filtered();
	const float current_in = mc_interface_get_tot_current_in_filtered();
	m_motor_current_sum += current;
	m_input_current_sum += current_in;
	m_motor_current_iterations++;
	m_input_current_iterations++;

	float abs_current = mc_interface_get_tot_current();
	float abs_current_filtered = current;
	if (m_conf.motor_type == MOTOR_TYPE_FOC) {
		// TODO: Make this more general
		abs_current = mcpwm_foc_get_abs_motor_current();
		abs_current_filtered = mcpwm_foc_get_abs_motor_current_filtered();
	}

	// Current fault code
	if (m_conf.l_slow_abs_current) {
		if (fabsf(abs_current_filtered) > m_conf.l_abs_current_max) {
			mc_interface_fault_stop(FAULT_CODE_ABS_OVER_CURRENT);
		}
	} else {
		if (fabsf(abs_current) > m_conf.l_abs_current_max) {
			mc_interface_fault_stop(FAULT_CODE_ABS_OVER_CURRENT);
		}
	}

	// Watt and ah counters
	const float f_sw = mc_interface_get_switching_frequency_now();
	if (fabsf(current) > 1.0) {
		// Some extra filtering
		static float curr_diff_sum = 0.0;
		static float curr_diff_samples = 0;

		curr_diff_sum += current_in / f_sw;
		curr_diff_samples += 1.0 / f_sw;

		if (curr_diff_samples >= 0.01) {
			if (curr_diff_sum > 0.0) {
				m_amp_seconds += curr_diff_sum;
				m_watt_seconds += curr_diff_sum * input_voltage;
			} else {
				m_amp_seconds_charged -= curr_diff_sum;
				m_watt_seconds_charged -= curr_diff_sum * input_voltage;
			}

			curr_diff_samples = 0.0;
			curr_diff_sum = 0.0;
		}
	}

	// Sample collection
	if (m_sample_at_start && (mc_interface_get_state() == MC_STATE_RUNNING ||
			m_start_comm != mcpwm_get_comm_step())) {
		m_sample_now = 0;
		m_sample_ready = 0;
		m_sample_at_start = 0;
	}

	static int a = 0;
	if (!m_sample_ready) {
		a++;
		if (a >= m_sample_int) {
			a = 0;

			if (mc_interface_get_state() == MC_STATE_DETECTING) {
				m_curr0_samples[m_sample_now] = (int16_t)mcpwm_detect_currents[mcpwm_get_comm_step() - 1];
				m_curr1_samples[m_sample_now] = (int16_t)mcpwm_detect_currents_diff[mcpwm_get_comm_step() - 1];

				m_ph1_samples[m_sample_now] = (int16_t)mcpwm_detect_voltages[0];
				m_ph2_samples[m_sample_now] = (int16_t)mcpwm_detect_voltages[1];
				m_ph3_samples[m_sample_now] = (int16_t)mcpwm_detect_voltages[2];
			} else {
				m_curr0_samples[m_sample_now] = ADC_curr_norm_value[0];
				m_curr1_samples[m_sample_now] = ADC_curr_norm_value[1];

				m_ph1_samples[m_sample_now] = ADC_V_L1 - mcpwm_vzero;
				m_ph2_samples[m_sample_now] = ADC_V_L2 - mcpwm_vzero;
				m_ph3_samples[m_sample_now] = ADC_V_L3 - mcpwm_vzero;
			}

			m_vzero_samples[m_sample_now] = mcpwm_vzero;

			m_curr_fir_samples[m_sample_now] = (int16_t)(mc_interface_get_tot_current() * 100.0);
			m_f_sw_samples[m_sample_now] = (int16_t)(mc_interface_get_switching_frequency_now() / 10.0);

			m_status_samples[m_sample_now] = mcpwm_get_comm_step() | (mcpwm_read_hall_phase() << 3);

			m_sample_now++;

			if (m_sample_now == m_sample_len) {
				m_sample_ready = 1;
				m_sample_now = 0;
				chSysLockFromISR();
				chEvtSignalI(sample_send_tp, (eventmask_t) 1);
				chSysUnlockFromISR();
			}

			m_last_adc_duration_sample = mcpwm_get_last_adc_isr_duration();
		}
	}
}