Ejemplo n.º 1
0
static void subTaskMotorUpdate(void)
{
    uint32_t startTime = 0;
    if (debugMode == DEBUG_CYCLETIME) {
        startTime = micros();
        static uint32_t previousMotorUpdateTime;
        const uint32_t currentDeltaTime = startTime - previousMotorUpdateTime;
        debug[2] = currentDeltaTime;
        debug[3] = currentDeltaTime - targetPidLooptime;
        previousMotorUpdateTime = startTime;
    } else if (debugMode == DEBUG_PIDLOOP) {
        startTime = micros();
    }

    mixTable(currentPidProfile);

#ifdef USE_SERVOS
    // motor outputs are used as sources for servo mixing, so motors must be calculated using mixTable() before servos.
    if (isMixerUsingServos()) {
        writeServos();
    }
#endif

    if (motorControlEnable) {
        writeMotors();
    }
    DEBUG_SET(DEBUG_PIDLOOP, 3, micros() - startTime);
}
Ejemplo n.º 2
0
void subTaskMotorUpdate(void)
{
    const uint32_t startTime = micros();
    if (debugMode == DEBUG_CYCLETIME) {
        static uint32_t previousMotorUpdateTime;
        const uint32_t currentDeltaTime = startTime - previousMotorUpdateTime;
        debug[2] = currentDeltaTime;
        debug[3] = currentDeltaTime - targetPidLooptime;
        previousMotorUpdateTime = startTime;
    }

    mixTable(&currentProfile->pidProfile);

#ifdef USE_SERVOS
    filterServos();
    writeServos();
#endif

    if (motorControlEnable) {
        writeMotors();
    }
    if (debugMode == DEBUG_PIDLOOP) {debug[3] = micros() - startTime;}
}
Ejemplo n.º 3
0
void loop(void)
{
    static uint32_t loopTime;
#if defined(BARO) || defined(SONAR)
    static bool haveProcessedAnnexCodeOnce = false;
#endif

    updateRx(currentTime);

    if (shouldProcessRx(currentTime)) {
        processRx();
        isRXDataNew = true;

#ifdef BARO
        // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data.
        if (haveProcessedAnnexCodeOnce) {
            if (sensors(SENSOR_BARO)) {
                updateAltHoldState();
            }
        }
#endif

#ifdef SONAR
        // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data.
        if (haveProcessedAnnexCodeOnce) {
            if (sensors(SENSOR_SONAR)) {
                updateSonarAltHoldState();
            }
        }
#endif

    } else {
        // not processing rx this iteration
        executePeriodicTasks();

        // if GPS feature is enabled, gpsThread() will be called at some intervals to check for stuck
        // hardware, wrong baud rates, init GPS if needed, etc. Don't use SENSOR_GPS here as gpsThread() can and will
        // change this based on available hardware
#ifdef GPS
        if (feature(FEATURE_GPS)) {
            gpsThread();
        }
#endif
    }

    currentTime = micros();
    if (shouldRunLoop(loopTime)) {
        loopTime = currentTime + targetLooptime;

        imuUpdate(&currentProfile->accelerometerTrims);

        // Measure loop rate just after reading the sensors
        currentTime = micros();
        cycleTime = (int32_t)(currentTime - previousTime);
        previousTime = currentTime;

        dT = (float)cycleTime * 0.000001f;

        annexCode();

        if (masterConfig.rxConfig.rcSmoothing) {
            filterRc();
        }

#if defined(BARO) || defined(SONAR)
        haveProcessedAnnexCodeOnce = true;
#endif

#ifdef MAG
        if (sensors(SENSOR_MAG)) {
            updateMagHold();
        }
#endif

#ifdef GTUNE
        updateGtuneState();
#endif

#if defined(BARO) || defined(SONAR)
        if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) {
            if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) {
                applyAltHold(&masterConfig.airplaneConfig);
            }
        }
#endif

        // If we're armed, at minimum throttle, and we do arming via the
        // sticks, do not process yaw input from the rx.  We do this so the
        // motors do not spin up while we are trying to arm or disarm.
        // Allow yaw control for tricopters if the user wants the servo to move even when unarmed.
        if (isUsingSticksForArming() && rcData[THROTTLE] <= masterConfig.rxConfig.mincheck
#ifndef USE_QUAD_MIXER_ONLY
#ifdef USE_SERVOS
                && !((masterConfig.mixerMode == MIXER_TRI || masterConfig.mixerMode == MIXER_CUSTOM_TRI) && masterConfig.mixerConfig.tri_unarmed_servo)
#endif
                && masterConfig.mixerMode != MIXER_AIRPLANE
                && masterConfig.mixerMode != MIXER_FLYING_WING
#endif
        ) {
            rcCommand[YAW] = 0;
        }


        if (currentProfile->throttle_correction_value && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) {
            rcCommand[THROTTLE] += calculateThrottleAngleCorrection(currentProfile->throttle_correction_value);
        }

#ifdef GPS
        if (sensors(SENSOR_GPS)) {
            if ((FLIGHT_MODE(GPS_HOME_MODE) || FLIGHT_MODE(GPS_HOLD_MODE)) && STATE(GPS_FIX_HOME)) {
                updateGpsStateForHomeAndHoldMode();
            }
        }
#endif

        // PID - note this is function pointer set by setPIDController()
        pid_controller(
            &currentProfile->pidProfile,
            currentControlRateProfile,
            masterConfig.max_angle_inclination,
            &currentProfile->accelerometerTrims,
            &masterConfig.rxConfig
        );

        mixTable();

#ifdef USE_SERVOS
        filterServos();
        writeServos();
#endif

        if (motorControlEnable) {
            writeMotors();
        }

#ifdef BLACKBOX
        if (!cliMode && feature(FEATURE_BLACKBOX)) {
            handleBlackbox();
        }
#endif
    }

#ifdef TELEMETRY
    if (!cliMode && feature(FEATURE_TELEMETRY)) {
        telemetryProcess(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);
    }
#endif

#ifdef LED_STRIP
    if (feature(FEATURE_LED_STRIP)) {
        updateLedStrip();
    }
#endif
}
Ejemplo n.º 4
0
int main(void)
{
	///////////////////////////////////////////////////////////////////////////

	uint32_t currentTime;

    systemInit();

    systemReady = true;

    while (1)
    {
    	///////////////////////////////

        if (frame_50Hz)
        {
        	frame_50Hz = false;

        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;

			processFlightCommands();

			if (eepromConfig.osdEnabled)
			{
				if (eepromConfig.osdDisplayAlt)
				    displayAltitude(sensors.pressureAlt10Hz, 0.0f, DISENGAGED);

				if (eepromConfig.osdDisplayAH)
				    displayArtificialHorizon(sensors.attitude500Hz[ROLL], sensors.attitude500Hz[PITCH], flightMode);

				if (eepromConfig.osdDisplayAtt)
				    displayAttitude(sensors.attitude500Hz[ROLL], sensors.attitude500Hz[PITCH], flightMode);

				if (eepromConfig.osdDisplayHdg)
				    displayHeading(heading.mag);
			}

			executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
        	frame_10Hz = false;

        	currentTime      = micros();
			deltaTime10Hz    = currentTime - previous10HzTime;
			previous10HzTime = currentTime;

			if (newMagData == true)
			{
				sensors.mag10Hz[XAXIS] =   (float)rawMag[XAXIS].value * magScaleFactor[XAXIS] - eepromConfig.magBias[XAXIS];
			    sensors.mag10Hz[YAXIS] =   (float)rawMag[YAXIS].value * magScaleFactor[YAXIS] - eepromConfig.magBias[YAXIS];
			    sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS] - eepromConfig.magBias[ZAXIS]);

			    newMagData = false;
			    magDataUpdate = true;
			}

        	d1Average = d1Sum / 10;
        	d1Sum = 0;
        	calculateTemperature();
        	calculatePressureAltitude();

        	pressureAltValid = true;

        	switch (eepromConfig.gpsType)
			{
			    ///////////////////////

			    case NO_GPS:                // No GPS installed
			        break;

			    ///////////////////////

			    case MEDIATEK_3329_BINARY:  // MediaTek 3329 in binary mode
			    	decodeMediaTek3329BinaryMsg();
			    	break;

				///////////////////////

				case MEDIATEK_3329_NMEA:    // MediaTek 3329 in NMEA mode
				    decodeNMEAsentence();
	        	    break;

			    ///////////////////////

			    case UBLOX:                 // UBLOX in binary mode
			    	decodeUbloxMsg();
			    	break;

			    ///////////////////////
			}

        	cliCom();

        	rfCom();

            executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
			frame_500Hz = false;

       	    currentTime       = micros();
       	    deltaTime500Hz    = currentTime - previous500HzTime;
       	    previous500HzTime = currentTime;

       	    TIM_Cmd(TIM10, DISABLE);
       	 	timerValue = TIM_GetCounter(TIM10);
       	 	TIM_SetCounter(TIM10, 0);
       	 	TIM_Cmd(TIM10, ENABLE);

       	 	dt500Hz = (float)timerValue * 0.0000005f;  // For integrations in 500 Hz loop

            computeMPU6000TCBias();
            /*
            sensorTemp1 = computeMPU6000SensorTemp();
            sensorTemp2 = sensorTemp1 * sensorTemp1;
            sensorTemp3 = sensorTemp2 * sensorTemp1;
            */
            sensors.accel500Hz[XAXIS] =  ((float)accelSummedSamples500Hz[XAXIS] / 2.0f - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
			sensors.accel500Hz[YAXIS] = -((float)accelSummedSamples500Hz[YAXIS] / 2.0f - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
			sensors.accel500Hz[ZAXIS] = -((float)accelSummedSamples500Hz[ZAXIS] / 2.0f - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;
            /*
            sensors.accel500Hz[XAXIS] =  ((float)accelSummedSamples500Hz[XAXIS] / 2.0f  +
                                          eepromConfig.accelBiasP0[XAXIS]               +
                                          eepromConfig.accelBiasP1[XAXIS] * sensorTemp1 +
                                          eepromConfig.accelBiasP2[XAXIS] * sensorTemp2 +
                                          eepromConfig.accelBiasP3[XAXIS] * sensorTemp3 ) * ACCEL_SCALE_FACTOR;

			sensors.accel500Hz[YAXIS] = -((float)accelSummedSamples500Hz[YAXIS] / 2.0f  +
			                              eepromConfig.accelBiasP0[YAXIS]               +
			                              eepromConfig.accelBiasP1[YAXIS] * sensorTemp1 +
			                              eepromConfig.accelBiasP2[YAXIS] * sensorTemp2 +
			                              eepromConfig.accelBiasP3[YAXIS] * sensorTemp3 ) * ACCEL_SCALE_FACTOR;

			sensors.accel500Hz[ZAXIS] = -((float)accelSummedSamples500Hz[ZAXIS] / 2.0f  +
			                              eepromConfig.accelBiasP0[ZAXIS]               +
			                              eepromConfig.accelBiasP1[ZAXIS] * sensorTemp1 +
			                              eepromConfig.accelBiasP2[ZAXIS] * sensorTemp2 +
			                              eepromConfig.accelBiasP3[ZAXIS] * sensorTemp3 ) * ACCEL_SCALE_FACTOR;
            */
            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;
            /*
            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL ] / 2.0f  +
                                         gyroBiasP0[ROLL ]                            +
                                         eepromConfig.gyroBiasP1[ROLL ] * sensorTemp1 +
                                         eepromConfig.gyroBiasP2[ROLL ] * sensorTemp2 +
                                         eepromConfig.gyroBiasP3[ROLL ] * sensorTemp3 ) * GYRO_SCALE_FACTOR;

			sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f  +
			                             gyroBiasP0[PITCH]                            +
			                             eepromConfig.gyroBiasP1[PITCH] * sensorTemp1 +
			                             eepromConfig.gyroBiasP2[PITCH] * sensorTemp2 +
			                             eepromConfig.gyroBiasP3[PITCH] * sensorTemp3 ) * GYRO_SCALE_FACTOR;

            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f  +
                                         gyroBiasP0[YAW  ]                            +
                                         eepromConfig.gyroBiasP1[YAW  ] * sensorTemp1 +
                                         eepromConfig.gyroBiasP2[YAW  ] * sensorTemp2 +
                                         eepromConfig.gyroBiasP3[YAW  ] * sensorTemp3 ) * GYRO_SCALE_FACTOR;
            */
            MargAHRSupdate( sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                            sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                            sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                            eepromConfig.accelCutoff,
                            magDataUpdate,
                            dt500Hz );

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeServos();
            writeMotors();

       	    executionTime500Hz = micros() - currentTime;
		}

        ///////////////////////////////

        if (frame_100Hz)
        {
        	frame_100Hz = false;

        	currentTime       = micros();
			deltaTime100Hz    = currentTime - previous100HzTime;
			previous100HzTime = currentTime;

			TIM_Cmd(TIM11, DISABLE);
			timerValue = TIM_GetCounter(TIM11);
			TIM_SetCounter(TIM11, 0);
			TIM_Cmd(TIM11, ENABLE);

			dt100Hz = (float)timerValue * 0.0000005f;  // For integrations in 100 Hz loop

			sensors.accel100Hz[XAXIS] =  ((float)accelSummedSamples100Hz[XAXIS] / 10.0f - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
			sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] / 10.0f - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
			sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] / 10.0f - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;

        	createRotationMatrix();
        	bodyAccelToEarthAccel();
        	vertCompFilter(dt100Hz);

        	if ( highSpeedTelem1Enabled == true )
            {
            	// 500 Hz Accels
            	telemetryPrintF("%9.4f, %9.4f, %9.4f\n", sensors.accel500Hz[XAXIS],
            	        			                     sensors.accel500Hz[YAXIS],
            	        			                     sensors.accel500Hz[ZAXIS]);
            }

            if ( highSpeedTelem2Enabled == true )
            {
            	// 500 Hz Gyros
            	telemetryPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro500Hz[ROLL ],
            	        			                     sensors.gyro500Hz[PITCH],
            	        					             sensors.gyro500Hz[YAW  ]);
            }

            if ( highSpeedTelem3Enabled == true )
            {
            	// Roll Rate, Roll Rate Command
            	telemetryPrintF("%9.4f, %9.4f\n", sensors.gyro500Hz[ROLL],
            			                          rxCommand[ROLL]);
            }

            if ( highSpeedTelem4Enabled == true )
            {
            	// Pitch Rate, Pitch Rate Command
            	telemetryPrintF("%9.4f, %9.4f\n", sensors.gyro500Hz[PITCH],
            	            			          rxCommand[PITCH]);
            }

            if ( highSpeedTelem5Enabled == true )
            {
            	// Yaw Rate, Yaw Rate Command
            	telemetryPrintF("%9.4f, %9.4f\n", sensors.gyro500Hz[YAW],
            	            	                  rxCommand[YAW]);
            }

            if ( highSpeedTelem6Enabled == true )
            {
            	// 500 Hz Attitudes
            	telemetryPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude500Hz[ROLL ],
            	        			                     sensors.attitude500Hz[PITCH],
            	        			                     sensors.attitude500Hz[YAW  ]);
            }

            if ( highSpeedTelem7Enabled == true )
            {
               	// Vertical Variables
            	telemetryPrintF("%9.4f, %9.4f, %9.4f, %9.4f\n", earthAxisAccels[ZAXIS],
            			                                        sensors.pressureAlt10Hz,
            			                                        hDotEstimate,
            			                                        hEstimate);
            }

            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
        	frame_5Hz = false;

        	currentTime     = micros();
			deltaTime5Hz    = currentTime - previous5HzTime;
			previous5HzTime = currentTime;

			if (execUp == true)
			    BLUE_LED_TOGGLE;

        	executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
        	frame_1Hz = false;

        	currentTime     = micros();
			deltaTime1Hz    = currentTime - previous1HzTime;
			previous1HzTime = currentTime;

			if (execUp == true)
			    GREEN_LED_TOGGLE;

			if (execUp == false)
			    execUpCount++;

			if ((execUpCount == 5) && (execUp == false))
			    execUp = true;

			executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}
Ejemplo n.º 5
0
void taskMainPidLoop(void)
{
    cycleTime = getTaskDeltaTime(TASK_SELF);
    dT = (float)cycleTime * 0.000001f;

    imuUpdateAccelerometer();
    imuUpdateGyroAndAttitude();

    annexCode();

    if (masterConfig.rxConfig.rcSmoothing) {
        filterRc(isRXDataNew);
    }

#if defined(NAV)
    if (isRXDataNew) {
        updateWaypointsAndNavigationMode();
    }
#endif

    isRXDataNew = false;

#if defined(NAV)
    updatePositionEstimator();
    applyWaypointNavigationAndAltitudeHold();
#endif

    // If we're armed, at minimum throttle, and we do arming via the
    // sticks, do not process yaw input from the rx.  We do this so the
    // motors do not spin up while we are trying to arm or disarm.
    // Allow yaw control for tricopters if the user wants the servo to move even when unarmed.
    if (isUsingSticksForArming() && rcData[THROTTLE] <= masterConfig.rxConfig.mincheck
#ifndef USE_QUAD_MIXER_ONLY
#ifdef USE_SERVOS
            && !((masterConfig.mixerMode == MIXER_TRI || masterConfig.mixerMode == MIXER_CUSTOM_TRI) && masterConfig.servoMixerConfig.tri_unarmed_servo)
#endif
            && masterConfig.mixerMode != MIXER_AIRPLANE
            && masterConfig.mixerMode != MIXER_FLYING_WING
            && masterConfig.mixerMode != MIXER_CUSTOM_AIRPLANE
#endif
    ) {
        rcCommand[YAW] = 0;
    }

    // Apply throttle tilt compensation
    if (!STATE(FIXED_WING)) {
        int16_t thrTiltCompStrength = 0;

        if (navigationRequiresThrottleTiltCompensation()) {
            thrTiltCompStrength = 100;
        }
        else if (currentProfile->throttle_tilt_compensation_strength && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) {
            thrTiltCompStrength = currentProfile->throttle_tilt_compensation_strength;
        }

        if (thrTiltCompStrength) {
            rcCommand[THROTTLE] = constrain(masterConfig.motorConfig.minthrottle
                                            + (rcCommand[THROTTLE] - masterConfig.motorConfig.minthrottle) * calculateThrottleTiltCompensationFactor(thrTiltCompStrength),
                                            masterConfig.motorConfig.minthrottle,
                                            masterConfig.motorConfig.maxthrottle);
        }
    }

    pidController(&currentProfile->pidProfile, currentControlRateProfile, &masterConfig.rxConfig);

#ifdef HIL
    if (hilActive) {
        hilUpdateControlState();
        motorControlEnable = false;
    }
#endif

    mixTable();

#ifdef USE_SERVOS

    if (isMixerUsingServos()) {
        servoMixer(currentProfile->flaperon_throw_offset, currentProfile->flaperon_throw_inverted);
    }

    if (feature(FEATURE_SERVO_TILT)) {
        processServoTilt();
    }

    //Servos should be filtered or written only when mixer is using servos or special feaures are enabled
    if (isServoOutputEnabled()) {
        filterServos();
        writeServos();
    }
#endif

    if (motorControlEnable) {
        writeMotors();
    }

#ifdef USE_SDCARD
        afatfs_poll();
#endif

#ifdef BLACKBOX
    if (!cliMode && feature(FEATURE_BLACKBOX)) {
        handleBlackbox();
    }
#endif

}
Ejemplo n.º 6
0
void executePeriodicTasks(void)
{
    static int periodicTaskIndex = 0;

    switch (periodicTaskIndex++) {
#ifdef MAG
    case UPDATE_COMPASS_TASK:
        if (sensors(SENSOR_MAG)) {
            updateCompass(&masterConfig.magZero);
        }
        break;
#endif

#ifdef BARO
    case UPDATE_BARO_TASK:
        if (sensors(SENSOR_BARO)) {
            baroUpdate(currentTime);
        }
        break;
#endif

#if defined(BARO) || defined(SONAR)
    case CALCULATE_ALTITUDE_TASK:

#if defined(BARO) && !defined(SONAR)
        if (sensors(SENSOR_BARO) && isBaroReady()) {
#endif
#if defined(BARO) && defined(SONAR)
        if ((sensors(SENSOR_BARO) && isBaroReady()) || sensors(SENSOR_SONAR)) {
#endif
#if !defined(BARO) && defined(SONAR)
        if (sensors(SENSOR_SONAR)) {
#endif
            calculateEstimatedAltitude(currentTime);
        }
        break;
#endif
#ifdef SONAR
    case UPDATE_SONAR_TASK:
        if (sensors(SENSOR_SONAR)) {
            sonarUpdate();
        }
        break;
#endif
#ifdef DISPLAY
    case UPDATE_DISPLAY_TASK:
        if (feature(FEATURE_DISPLAY)) {
            updateDisplay();
        }
        break;
#endif
    }

    if (periodicTaskIndex >= PERIODIC_TASK_COUNT) {
        periodicTaskIndex = 0;
    }
}

void processRx(void)
{
    calculateRxChannelsAndUpdateFailsafe(currentTime);

    // in 3D mode, we need to be able to disarm by switch at any time
    if (feature(FEATURE_3D)) {
        if (!IS_RC_MODE_ACTIVE(BOXARM))
            mwDisarm();
    }

    updateRSSI(currentTime);

    if (feature(FEATURE_FAILSAFE)) {

        if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsEnabled()) {
            failsafeEnable();
        }

        failsafeUpdateState();
    }

    throttleStatus_e throttleStatus = calculateThrottleStatus(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    if (throttleStatus == THROTTLE_LOW) {
        pidResetErrorAngle();
        pidResetErrorGyro();
    }
    // When armed and motors aren't spinning, disarm board after delay so users without buzzer won't lose fingers.
    // mixTable constrains motor commands, so checking  throttleStatus is enough
    if (ARMING_FLAG(ARMED)
        && feature(FEATURE_MOTOR_STOP) && !STATE(FIXED_WING)
        && masterConfig.auto_disarm_delay != 0
        && isUsingSticksForArming()) {
        if (throttleStatus == THROTTLE_LOW) {
            if ((int32_t)(disarmAt - millis()) < 0)  // delay is over
                mwDisarm();
        } else {
            disarmAt = millis() + masterConfig.auto_disarm_delay * 1000;   // extend delay
        }
    }

    processRcStickPositions(&masterConfig.rxConfig, throttleStatus, masterConfig.retarded_arm, masterConfig.disarm_kill_switch);

    if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
        updateInflightCalibrationState();
    }

    updateActivatedModes(currentProfile->modeActivationConditions);

    if (!cliMode) {
        updateAdjustmentStates(currentProfile->adjustmentRanges);
        processRcAdjustments(currentControlRateProfile, &masterConfig.rxConfig);
    }

    bool canUseHorizonMode = true;

    if ((IS_RC_MODE_ACTIVE(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeHasTimerElapsed())) && (sensors(SENSOR_ACC))) {
        // bumpless transfer to Level mode
    	canUseHorizonMode = false;

        if (!FLIGHT_MODE(ANGLE_MODE)) {
            pidResetErrorAngle();
            ENABLE_FLIGHT_MODE(ANGLE_MODE);
        }
    } else {
        DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support
    }

    if (IS_RC_MODE_ACTIVE(BOXHORIZON) && canUseHorizonMode) {

        DISABLE_FLIGHT_MODE(ANGLE_MODE);

        if (!FLIGHT_MODE(HORIZON_MODE)) {
            pidResetErrorAngle();
            ENABLE_FLIGHT_MODE(HORIZON_MODE);
        }
    } else {
        DISABLE_FLIGHT_MODE(HORIZON_MODE);
    }

    if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) {
        LED1_ON;
    } else {
        LED1_OFF;
    }

#ifdef  MAG
    if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) {
        if (IS_RC_MODE_ACTIVE(BOXMAG)) {
            if (!FLIGHT_MODE(MAG_MODE)) {
                ENABLE_FLIGHT_MODE(MAG_MODE);
                magHold = heading;
            }
        } else {
            DISABLE_FLIGHT_MODE(MAG_MODE);
        }
        if (IS_RC_MODE_ACTIVE(BOXHEADFREE)) {
            if (!FLIGHT_MODE(HEADFREE_MODE)) {
                ENABLE_FLIGHT_MODE(HEADFREE_MODE);
            }
        } else {
            DISABLE_FLIGHT_MODE(HEADFREE_MODE);
        }
        if (IS_RC_MODE_ACTIVE(BOXHEADADJ)) {
            headFreeModeHold = heading; // acquire new heading
        }
    }
#endif

#ifdef GPS
    if (sensors(SENSOR_GPS)) {
        updateGpsWaypointsAndMode();
    }
#endif

    if (IS_RC_MODE_ACTIVE(BOXPASSTHRU)) {
        ENABLE_FLIGHT_MODE(PASSTHRU_MODE);
    } else {
        DISABLE_FLIGHT_MODE(PASSTHRU_MODE);
    }

    if (masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_AIRPLANE) {
        DISABLE_FLIGHT_MODE(HEADFREE_MODE);
    }
}

void loop(void)
{
    static uint32_t loopTime;
#if defined(BARO) || defined(SONAR)
    static bool haveProcessedAnnexCodeOnce = false;
#endif

    updateRx();

    if (shouldProcessRx(currentTime)) {
        processRx();

#ifdef BARO
        // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data.
        if (haveProcessedAnnexCodeOnce) {
            if (sensors(SENSOR_BARO)) {
                updateAltHoldState();
            }
        }
#endif

#ifdef SONAR
        // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data.
        if (haveProcessedAnnexCodeOnce) {
            if (sensors(SENSOR_SONAR)) {
                updateSonarAltHoldState();
            }
        }
#endif

    } else {
        // not processing rx this iteration
        executePeriodicTasks();

        // if GPS feature is enabled, gpsThread() will be called at some intervals to check for stuck
        // hardware, wrong baud rates, init GPS if needed, etc. Don't use SENSOR_GPS here as gpsThread() can and will
        // change this based on available hardware
#ifdef GPS
        if (feature(FEATURE_GPS)) {
            gpsThread();
        }
#endif
    }

    currentTime = micros();
    if (masterConfig.looptime == 0 || (int32_t)(currentTime - loopTime) >= 0) {
        loopTime = currentTime + masterConfig.looptime;

        imuUpdate(&currentProfile->accelerometerTrims, masterConfig.mixerMode);

        // Measure loop rate just after reading the sensors
        currentTime = micros();
        cycleTime = (int32_t)(currentTime - previousTime);
        previousTime = currentTime;

        annexCode();
#if defined(BARO) || defined(SONAR)
        haveProcessedAnnexCodeOnce = true;
#endif

#ifdef AUTOTUNE
        updateAutotuneState();
#endif

#ifdef MAG
        if (sensors(SENSOR_MAG)) {
        	updateMagHold();
        }
#endif

#if defined(BARO) || defined(SONAR)
        if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) {
            if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) {
                applyAltHold(&masterConfig.airplaneConfig);
            }
        }
#endif

        // If we're armed, at minimum throttle, and we do arming via the
        // sticks, do not process yaw input from the rx.  We do this so the
        // motors do not spin up while we are trying to arm or disarm.
        if (isUsingSticksForArming() && rcData[THROTTLE] <= masterConfig.rxConfig.mincheck) {
            rcCommand[YAW] = 0;
        }


        if (currentProfile->throttle_correction_value && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) {
            rcCommand[THROTTLE] += calculateThrottleAngleCorrection(currentProfile->throttle_correction_value);
        }

#ifdef GPS
        if (sensors(SENSOR_GPS)) {
            if ((FLIGHT_MODE(GPS_HOME_MODE) || FLIGHT_MODE(GPS_HOLD_MODE)) && STATE(GPS_FIX_HOME)) {
                updateGpsStateForHomeAndHoldMode();
            }
        }
#endif

        // PID - note this is function pointer set by setPIDController()
        pid_controller(
            &currentProfile->pidProfile,
            currentControlRateProfile,
            masterConfig.max_angle_inclination,
            &currentProfile->accelerometerTrims,
            &masterConfig.rxConfig
        );

        mixTable();

#ifdef USE_SERVOS
        filterServos();
        writeServos();
#endif

        writeMotors();

#ifdef BLACKBOX
        if (!cliMode && feature(FEATURE_BLACKBOX)) {
            handleBlackbox();
        }
#endif
    }

#ifdef TELEMETRY
    if (!cliMode && feature(FEATURE_TELEMETRY)) {
        handleTelemetry();
    }
#endif

#ifdef LED_STRIP
    if (feature(FEATURE_LED_STRIP)) {
        updateLedStrip();
    }
#endif
}
Ejemplo n.º 7
0
void executePeriodicTasks(void)
{
    static int periodicTaskIndex = 0;

    switch (periodicTaskIndex++) {
#ifdef MAG
    case UPDATE_COMPASS_TASK:
        if (sensors(SENSOR_MAG)) {
            updateCompass(&masterConfig.magZero);
        }
        break;
#endif

#ifdef BARO
    case UPDATE_BARO_TASK:
        if (sensors(SENSOR_BARO)) {
            baroUpdate(currentTime);
        }
        break;
#endif

#if defined(BARO) || defined(SONAR)
    case CALCULATE_ALTITUDE_TASK:

#if defined(BARO) && !defined(SONAR)
        if (sensors(SENSOR_BARO) && isBaroReady()) {
#endif
#if defined(BARO) && defined(SONAR)
        if ((sensors(SENSOR_BARO) && isBaroReady()) || sensors(SENSOR_SONAR)) {
#endif
#if !defined(BARO) && defined(SONAR)
        if (sensors(SENSOR_SONAR)) {
#endif
            calculateEstimatedAltitude(currentTime);
        }
        break;
#endif
#ifdef SONAR
    case UPDATE_SONAR_TASK:
        if (sensors(SENSOR_SONAR)) {
            sonarUpdate();
        }
        break;
#endif
#ifdef DISPLAY
    case UPDATE_DISPLAY_TASK:
        if (feature(FEATURE_DISPLAY)) {
            updateDisplay();
        }
        break;
#endif
    }

    if (periodicTaskIndex >= PERIODIC_TASK_COUNT) {
        periodicTaskIndex = 0;
    }
}

void processRx(void)
{
    static bool armedBeeperOn = false;

    calculateRxChannelsAndUpdateFailsafe(currentTime);

    // in 3D mode, we need to be able to disarm by switch at any time
    if (feature(FEATURE_3D)) {
        if (!IS_RC_MODE_ACTIVE(BOXARM))
            mwDisarm();
    }

    updateRSSI(currentTime);

    if (feature(FEATURE_FAILSAFE)) {

        if (currentTime > FAILSAFE_POWER_ON_DELAY_US && !failsafeIsMonitoring()) {
            failsafeStartMonitoring();
        }

        failsafeUpdateState();
    }

    throttleStatus_e throttleStatus = calculateThrottleStatus(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);

    if (throttleStatus == THROTTLE_LOW) {
        pidResetErrorAngle();
        pidResetErrorGyro();
    }

    // When armed and motors aren't spinning, do beeps and then disarm
    // board after delay so users without buzzer won't lose fingers.
    // mixTable constrains motor commands, so checking  throttleStatus is enough
    if (ARMING_FLAG(ARMED)
        && feature(FEATURE_MOTOR_STOP)
        && !STATE(FIXED_WING)
    ) {
        if (isUsingSticksForArming()) {
            if (throttleStatus == THROTTLE_LOW) {
                if (masterConfig.auto_disarm_delay != 0
                    && (int32_t)(disarmAt - millis()) < 0
                ) {
                    // auto-disarm configured and delay is over
                    mwDisarm();
                    armedBeeperOn = false;
                } else {
                    // still armed; do warning beeps while armed
                    beeper(BEEPER_ARMED);
                    armedBeeperOn = true;
                }
            } else {
                // throttle is not low
                if (masterConfig.auto_disarm_delay != 0) {
                    // extend disarm time
                    disarmAt = millis() + masterConfig.auto_disarm_delay * 1000;
                }

                if (armedBeeperOn) {
                    beeperSilence();
                    armedBeeperOn = false;
                }
            }
        } else {
            // arming is via AUX switch; beep while throttle low
            if (throttleStatus == THROTTLE_LOW) {
                beeper(BEEPER_ARMED);
                armedBeeperOn = true;
            } else if (armedBeeperOn) {
                beeperSilence();
                armedBeeperOn = false;
            }
        }
    }

    processRcStickPositions(&masterConfig.rxConfig, throttleStatus, masterConfig.retarded_arm, masterConfig.disarm_kill_switch);

    if (feature(FEATURE_INFLIGHT_ACC_CAL)) {
        updateInflightCalibrationState();
    }

    updateActivatedModes(currentProfile->modeActivationConditions);

    if (!cliMode) {
        updateAdjustmentStates(currentProfile->adjustmentRanges);
        processRcAdjustments(currentControlRateProfile, &masterConfig.rxConfig);
    }

    bool canUseHorizonMode = true;

    if ((IS_RC_MODE_ACTIVE(BOXANGLE) || (feature(FEATURE_FAILSAFE) && failsafeIsActive())) && (sensors(SENSOR_ACC))) {
        // bumpless transfer to Level mode
    	canUseHorizonMode = false;

        if (!FLIGHT_MODE(ANGLE_MODE)) {
            pidResetErrorAngle();
            ENABLE_FLIGHT_MODE(ANGLE_MODE);
        }
    } else {
        DISABLE_FLIGHT_MODE(ANGLE_MODE); // failsafe support
    }

    if (IS_RC_MODE_ACTIVE(BOXHORIZON) && canUseHorizonMode) {

        DISABLE_FLIGHT_MODE(ANGLE_MODE);

        if (!FLIGHT_MODE(HORIZON_MODE)) {
            pidResetErrorAngle();
            ENABLE_FLIGHT_MODE(HORIZON_MODE);
        }
    } else {
        DISABLE_FLIGHT_MODE(HORIZON_MODE);
    }

    if (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE)) {
        LED1_ON;
    } else {
        LED1_OFF;
    }

#ifdef  MAG
    if (sensors(SENSOR_ACC) || sensors(SENSOR_MAG)) {
        if (IS_RC_MODE_ACTIVE(BOXMAG)) {
            if (!FLIGHT_MODE(MAG_MODE)) {
                ENABLE_FLIGHT_MODE(MAG_MODE);
                magHold = heading;
            }
        } else {
            DISABLE_FLIGHT_MODE(MAG_MODE);
        }
        if (IS_RC_MODE_ACTIVE(BOXHEADFREE)) {
            if (!FLIGHT_MODE(HEADFREE_MODE)) {
                ENABLE_FLIGHT_MODE(HEADFREE_MODE);
            }
        } else {
            DISABLE_FLIGHT_MODE(HEADFREE_MODE);
        }
        if (IS_RC_MODE_ACTIVE(BOXHEADADJ)) {
            headFreeModeHold = heading; // acquire new heading
        }
    }
#endif

#ifdef GPS
    if (sensors(SENSOR_GPS)) {
        updateGpsWaypointsAndMode();
    }
#endif

    if (IS_RC_MODE_ACTIVE(BOXPASSTHRU)) {
        ENABLE_FLIGHT_MODE(PASSTHRU_MODE);
    } else {
        DISABLE_FLIGHT_MODE(PASSTHRU_MODE);
    }

    if (masterConfig.mixerMode == MIXER_FLYING_WING || masterConfig.mixerMode == MIXER_AIRPLANE) {
        DISABLE_FLIGHT_MODE(HEADFREE_MODE);
    }

#ifdef TELEMETRY
    if (feature(FEATURE_TELEMETRY)) {
        if ((!masterConfig.telemetryConfig.telemetry_switch && ARMING_FLAG(ARMED)) ||
                (masterConfig.telemetryConfig.telemetry_switch && IS_RC_MODE_ACTIVE(BOXTELEMETRY))) {

            releaseSharedTelemetryPorts();
        } else {
            // the telemetry state must be checked immediately so that shared serial ports are released.
            telemetryCheckState();
            mspAllocateSerialPorts(&masterConfig.serialConfig);
        }
    }
#endif

}

void filterRc(void){
    static int16_t lastCommand[4] = { 0, 0, 0, 0 };
    static int16_t deltaRC[4] = { 0, 0, 0, 0 };
    static int16_t factor, rcInterpolationFactor;
    static filterStatePt1_t filteredCycleTimeState;
    uint16_t rxRefreshRate, filteredCycleTime;

    // Set RC refresh rate for sampling and channels to filter
   	initRxRefreshRate(&rxRefreshRate);

    filteredCycleTime = filterApplyPt1(cycleTime, &filteredCycleTimeState, 1);
    rcInterpolationFactor = rxRefreshRate / filteredCycleTime + 1;

    if (isRXDataNew) {
        for (int channel=0; channel < 4; channel++) {
        	deltaRC[channel] = rcData[channel] -  (lastCommand[channel] - deltaRC[channel] * factor / rcInterpolationFactor);
            lastCommand[channel] = rcData[channel];
        }

        isRXDataNew = false;
        factor = rcInterpolationFactor - 1;
    } else {
        factor--;
    }

    // Interpolate steps of rcData
    if (factor > 0) {
        for (int channel=0; channel < 4; channel++) {
            rcData[channel] = lastCommand[channel] - deltaRC[channel] * factor/rcInterpolationFactor;
         }
    } else {
        factor = 0;
    }
}

void loop(void)
{
    static uint32_t loopTime;
#if defined(BARO) || defined(SONAR)
    static bool haveProcessedAnnexCodeOnce = false;
#endif

    updateRx(currentTime);

    if (shouldProcessRx(currentTime)) {
        processRx();
        isRXDataNew = true;

#ifdef BARO
        // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data.
        if (haveProcessedAnnexCodeOnce) {
            if (sensors(SENSOR_BARO)) {
                updateAltHoldState();
            }
        }
#endif

#ifdef SONAR
        // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data.
        if (haveProcessedAnnexCodeOnce) {
            if (sensors(SENSOR_SONAR)) {
                updateSonarAltHoldState();
            }
        }
#endif

    } else {
        // not processing rx this iteration
        executePeriodicTasks();

        // if GPS feature is enabled, gpsThread() will be called at some intervals to check for stuck
        // hardware, wrong baud rates, init GPS if needed, etc. Don't use SENSOR_GPS here as gpsThread() can and will
        // change this based on available hardware
#ifdef GPS
        if (feature(FEATURE_GPS)) {
            gpsThread();
        }
#endif
    }

    currentTime = micros();
    if (masterConfig.looptime == 0 || (int32_t)(currentTime - loopTime) >= 0) {
        loopTime = currentTime + masterConfig.looptime;

        imuUpdate(&currentProfile->accelerometerTrims);

        // Measure loop rate just after reading the sensors
        currentTime = micros();
        cycleTime = (int32_t)(currentTime - previousTime);
        previousTime = currentTime;

        // Gyro Low Pass
        if (currentProfile->pidProfile.gyro_cut_hz) {
            int axis;
            static filterStatePt1_t gyroADCState[XYZ_AXIS_COUNT];

            for (axis = 0; axis < XYZ_AXIS_COUNT; axis++) {
        	    gyroADC[axis] = filterApplyPt1(gyroADC[axis], &gyroADCState[axis], currentProfile->pidProfile.gyro_cut_hz);
            }
        }

        if (masterConfig.rxConfig.rcSmoothing) {
            filterRc();
        }

        annexCode();
#if defined(BARO) || defined(SONAR)
        haveProcessedAnnexCodeOnce = true;
#endif

#ifdef MAG
        if (sensors(SENSOR_MAG)) {
        	updateMagHold();
        }
#endif

#ifdef GTUNE
        updateGtuneState();
#endif

#if defined(BARO) || defined(SONAR)
        if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) {
            if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) {
                applyAltHold(&masterConfig.airplaneConfig);
            }
        }
#endif

        // If we're armed, at minimum throttle, and we do arming via the
        // sticks, do not process yaw input from the rx.  We do this so the
        // motors do not spin up while we are trying to arm or disarm.
        // Allow yaw control for tricopters if the user wants the servo to move even when unarmed.
        if (isUsingSticksForArming() && rcData[THROTTLE] <= masterConfig.rxConfig.mincheck
#ifndef USE_QUAD_MIXER_ONLY
                && !((masterConfig.mixerMode == MIXER_TRI || masterConfig.mixerMode == MIXER_CUSTOM_TRI) && masterConfig.mixerConfig.tri_unarmed_servo)
                && masterConfig.mixerMode != MIXER_AIRPLANE
                && masterConfig.mixerMode != MIXER_FLYING_WING
#endif
        ) {
            rcCommand[YAW] = 0;
        }


        if (currentProfile->throttle_correction_value && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) {
            rcCommand[THROTTLE] += calculateThrottleAngleCorrection(currentProfile->throttle_correction_value);
        }

#ifdef GPS
        if (sensors(SENSOR_GPS)) {
            if ((FLIGHT_MODE(GPS_HOME_MODE) || FLIGHT_MODE(GPS_HOLD_MODE)) && STATE(GPS_FIX_HOME)) {
                updateGpsStateForHomeAndHoldMode();
            }
        }
#endif

        // PID - note this is function pointer set by setPIDController()
        pid_controller(
            &currentProfile->pidProfile,
            currentControlRateProfile,
            masterConfig.max_angle_inclination,
            &currentProfile->accelerometerTrims,
            &masterConfig.rxConfig
        );

        mixTable();

#ifdef USE_SERVOS
        filterServos();
        writeServos();
#endif

        if (motorControlEnable) {
            writeMotors();
        }

#ifdef BLACKBOX
        if (!cliMode && feature(FEATURE_BLACKBOX)) {
            handleBlackbox();
        }
#endif
    }

#ifdef TELEMETRY
    if (!cliMode && feature(FEATURE_TELEMETRY)) {
        telemetryProcess(&masterConfig.rxConfig, masterConfig.flight3DConfig.deadband3d_throttle);
    }
#endif

#ifdef LED_STRIP
    if (feature(FEATURE_LED_STRIP)) {
        updateLedStrip();
    }
#endif
}
Ejemplo n.º 8
0
int main(void)
{
    ///////////////////////////////////////////////////////////////////////////

    #ifdef _DTIMING

        #define LA1_ENABLE       GPIO_SetBits(GPIOA,   GPIO_Pin_4)
        #define LA1_DISABLE      GPIO_ResetBits(GPIOA, GPIO_Pin_4)
        #define LA4_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_5)
        #define LA4_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_5)
        #define LA2_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_2)
        #define LA2_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_2)
        #define LA3_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_3)
        #define LA3_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_3)

        GPIO_InitTypeDef GPIO_InitStructure;

        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC,   ENABLE);

        GPIO_StructInit(&GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_4;
        GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOA, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_0 | GPIO_Pin_1;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOB, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_5;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOC, &GPIO_InitStructure);

        // PB0_DISABLE;
        LA4_DISABLE;
        LA2_DISABLE;
        LA3_DISABLE;
        LA1_DISABLE;

    #endif

    uint32_t currentTime;

    systemInit();

    systemReady = true;

    evrPush(EVR_StartingMain, 0);

    while (1)
    {
        evrCheck();

        ///////////////////////////////

        if (frame_50Hz)
        {
            #ifdef _DTIMING
                LA2_ENABLE;
            #endif

            frame_50Hz = false;

            currentTime      = micros();
            deltaTime50Hz    = currentTime - previous50HzTime;
            previous50HzTime = currentTime;

            processFlightCommands();

            if (newTemperatureReading && newPressureReading)
            {
                d1Value = d1.value;
                d2Value = d2.value;

                calculateTemperature();
                calculatePressureAltitude();

                newTemperatureReading = false;
                newPressureReading    = false;
            }

            sensors.pressureAlt50Hz = firstOrderFilter(sensors.pressureAlt50Hz, &firstOrderFilters[PRESSURE_ALT_LOWPASS]);

            executionTime50Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA2_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            #ifdef _DTIMING
                LA4_ENABLE;
            #endif

            frame_10Hz = false;

            currentTime      = micros();
            deltaTime10Hz    = currentTime - previous10HzTime;
            previous10HzTime = currentTime;

            if (newMagData == true)
            {
                sensors.mag10Hz[XAXIS] =   (float)rawMag[XAXIS].value * magScaleFactor[XAXIS] - eepromConfig.magBias[XAXIS];
                sensors.mag10Hz[YAXIS] =   (float)rawMag[YAXIS].value * magScaleFactor[YAXIS] - eepromConfig.magBias[YAXIS];
                sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS] - eepromConfig.magBias[ZAXIS]);

                newMagData = false;
                magDataUpdate = true;
            }

            cliCom();

            rfCom();

            batMonTick();

            ///////////////////////////

            executionTime10Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA4_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
            #ifdef _DTIMING
                LA1_ENABLE;
            #endif

            frame_500Hz = false;

            currentTime       = micros();
            deltaTime500Hz    = currentTime - previous500HzTime;
            previous500HzTime = currentTime;

            TIM_Cmd(TIM10, DISABLE);
            timerValue = TIM_GetCounter(TIM10);
            TIM_SetCounter(TIM10, 0);
            TIM_Cmd(TIM10, ENABLE);

            dt500Hz = (float)timerValue * 0.0000005f;  // For integrations in 500 Hz loop

            computeMPU6000TCBias();
            /*
            sensorTemp1 = computeMPU6000SensorTemp();
            sensorTemp2 = sensorTemp1 * sensorTemp1;
            sensorTemp3 = sensorTemp2 * sensorTemp1;
            */

            sensors.accel500Hz[XAXIS] =  ((float)accelSummedSamples500Hz[XAXIS] / 2.0f - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
            sensors.accel500Hz[YAXIS] = -((float)accelSummedSamples500Hz[YAXIS] / 2.0f - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
            sensors.accel500Hz[ZAXIS] = -((float)accelSummedSamples500Hz[ZAXIS] / 2.0f - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;

            sensors.accel500HzMXR[XAXIS] = -(accelSummedSamples500HzMXR[XAXIS] / 2.0f - eepromConfig.accelBiasMXR[XAXIS]) * eepromConfig.accelScaleFactorMXR[XAXIS];
            sensors.accel500HzMXR[YAXIS] = -(accelSummedSamples500HzMXR[YAXIS] / 2.0f - eepromConfig.accelBiasMXR[YAXIS]) * eepromConfig.accelScaleFactorMXR[YAXIS];
            sensors.accel500HzMXR[ZAXIS] =  (accelSummedSamples500HzMXR[ZAXIS] / 2.0f - eepromConfig.accelBiasMXR[ZAXIS]) * eepromConfig.accelScaleFactorMXR[ZAXIS];
            /*
            sensors.accel500Hz[XAXIS] =  ((float)accelSummedSamples500Hz[XAXIS] / 2.0f  +
                                          eepromConfig.accelBiasP0[XAXIS]               +
                                          eepromConfig.accelBiasP1[XAXIS] * sensorTemp1 +
                                          eepromConfig.accelBiasP2[XAXIS] * sensorTemp2 +
                                          eepromConfig.accelBiasP3[XAXIS] * sensorTemp3 ) * ACCEL_SCALE_FACTOR;

            sensors.accel500Hz[YAXIS] = -((float)accelSummedSamples500Hz[YAXIS] / 2.0f  +
                                          eepromConfig.accelBiasP0[YAXIS]               +
                                          eepromConfig.accelBiasP1[YAXIS] * sensorTemp1 +
                                          eepromConfig.accelBiasP2[YAXIS] * sensorTemp2 +
                                          eepromConfig.accelBiasP3[YAXIS] * sensorTemp3 ) * ACCEL_SCALE_FACTOR;

            sensors.accel500Hz[ZAXIS] = -((float)accelSummedSamples500Hz[ZAXIS] / 2.0f  +
                                          eepromConfig.accelBiasP0[ZAXIS]               +
                                          eepromConfig.accelBiasP1[ZAXIS] * sensorTemp1 +
                                          eepromConfig.accelBiasP2[ZAXIS] * sensorTemp2 +
                                          eepromConfig.accelBiasP3[ZAXIS] * sensorTemp3 ) * ACCEL_SCALE_FACTOR;
            */
            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            /*
            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL ] / 2.0f  +
                                         gyroBiasP0[ROLL ]                            +
                                         eepromConfig.gyroBiasP1[ROLL ] * sensorTemp1 +
                                         eepromConfig.gyroBiasP2[ROLL ] * sensorTemp2 +
                                         eepromConfig.gyroBiasP3[ROLL ] * sensorTemp3 ) * GYRO_SCALE_FACTOR;

            sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f  +
                                         gyroBiasP0[PITCH]                            +
                                         eepromConfig.gyroBiasP1[PITCH] * sensorTemp1 +
                                         eepromConfig.gyroBiasP2[PITCH] * sensorTemp2 +
                                         eepromConfig.gyroBiasP3[PITCH] * sensorTemp3 ) * GYRO_SCALE_FACTOR;

            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f  +
                                         gyroBiasP0[YAW  ]                            +
                                         eepromConfig.gyroBiasP1[YAW  ] * sensorTemp1 +
                                         eepromConfig.gyroBiasP2[YAW  ] * sensorTemp2 +
                                         eepromConfig.gyroBiasP3[YAW  ] * sensorTemp3 ) * GYRO_SCALE_FACTOR;
            */

            #if defined(MPU_ACCEL)
                MargAHRSupdate(sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                               sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                               sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                               eepromConfig.accelCutoff,
                               magDataUpdate,
                               dt500Hz);
            #endif

            #if defined(MXR_ACCEL)
                sensors.accel500HzMXR[XAXIS] = firstOrderFilter(sensors.accel500HzMXR[XAXIS], &firstOrderFilters[ACCEL500HZ_X_LOWPASS]);
                sensors.accel500HzMXR[YAXIS] = firstOrderFilter(sensors.accel500HzMXR[YAXIS], &firstOrderFilters[ACCEL500HZ_Y_LOWPASS]);
                sensors.accel500HzMXR[ZAXIS] = firstOrderFilter(sensors.accel500HzMXR[ZAXIS], &firstOrderFilters[ACCEL500HZ_Z_LOWPASS]);

                MargAHRSupdate(sensors.gyro500Hz[ROLL],      sensors.gyro500Hz[PITCH],     sensors.gyro500Hz[YAW],
                               sensors.accel500HzMXR[XAXIS], sensors.accel500HzMXR[YAXIS], sensors.accel500HzMXR[ZAXIS],
                               sensors.mag10Hz[XAXIS],       sensors.mag10Hz[YAXIS],       sensors.mag10Hz[ZAXIS],
                               eepromConfig.accelCutoff,
                               magDataUpdate,
                               dt500Hz);
            #endif

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeServos();
            writeMotors();

            executionTime500Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA1_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
            #ifdef _DTIMING
                LA3_ENABLE;
            #endif

            frame_100Hz = false;

            currentTime       = micros();
            deltaTime100Hz    = currentTime - previous100HzTime;
            previous100HzTime = currentTime;

            TIM_Cmd(TIM11, DISABLE);
            timerValue = TIM_GetCounter(TIM11);
            TIM_SetCounter(TIM11, 0);
            TIM_Cmd(TIM11, ENABLE);

            dt100Hz = (float)timerValue * 0.0000005f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] =  ((float)accelSummedSamples100Hz[XAXIS] / 10.0f - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
            sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] / 10.0f - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
            sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] / 10.0f - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;

            sensors.accel100HzMXR[XAXIS] = -(accelSummedSamples100HzMXR[XAXIS] / 10.0f - eepromConfig.accelBiasMXR[XAXIS]) * eepromConfig.accelScaleFactorMXR[XAXIS];
            sensors.accel100HzMXR[YAXIS] = -(accelSummedSamples100HzMXR[YAXIS] / 10.0f - eepromConfig.accelBiasMXR[YAXIS]) * eepromConfig.accelScaleFactorMXR[YAXIS];
            sensors.accel100HzMXR[ZAXIS] =  (accelSummedSamples100HzMXR[ZAXIS] / 10.0f - eepromConfig.accelBiasMXR[ZAXIS]) * eepromConfig.accelScaleFactorMXR[ZAXIS];

            sensors.accel100HzMXR[XAXIS] = firstOrderFilter(sensors.accel100HzMXR[XAXIS], &firstOrderFilters[ACCEL100HZ_X_LOWPASS]);
            sensors.accel100HzMXR[YAXIS] = firstOrderFilter(sensors.accel100HzMXR[YAXIS], &firstOrderFilters[ACCEL100HZ_Y_LOWPASS]);
            sensors.accel100HzMXR[ZAXIS] = firstOrderFilter(sensors.accel100HzMXR[ZAXIS], &firstOrderFilters[ACCEL100HZ_Z_LOWPASS]);

            createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            if (armed == true)
            {
				if ( eepromConfig.activeTelemetry == 1 )
                {
            	    // 500 Hz Accels
					openLogPrintF("%9.4f, %9.4f, %9.4f, %9.4f, %9.4f, %9.4f\n", sensors.accel500Hz[XAXIS],
					        			                                        sensors.accel500Hz[YAXIS],
					        			                                        sensors.accel500Hz[ZAXIS],
					        			                                        sensors.accel500HzMXR[XAXIS],
					        			                                        sensors.accel500HzMXR[YAXIS],
					        			                                        sensors.accel500HzMXR[ZAXIS]);
                }

                if ( eepromConfig.activeTelemetry == 2 )
                {
            	    // 500 Hz Gyros
            	    openLogPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro500Hz[ROLL ],
            	            			                   sensors.gyro500Hz[PITCH],
            	            					           sensors.gyro500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 4 )
                {
            	    // 500 Hz Attitudes
            	    openLogPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude500Hz[ROLL ],
            	            			                   sensors.attitude500Hz[PITCH],
            	            			                   sensors.attitude500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 8 )
                {
               	    // Vertical Variables
            	    openLogPrintF("%9.4f, %9.4f, %9.4f, %9.4f, %4ld\n", earthAxisAccels[ZAXIS],
            	    		                                            sensors.pressureAlt50Hz,
            	    		                                            hDotEstimate,
            	    		                                            hEstimate,
            	    		                                            ms5611Temperature);
                }

                if ( eepromConfig.activeTelemetry == 16)
                {
               	    // Vertical Variables
            	    openLogPrintF("%9.4f, %9.4f, %9.4f, %4ld, %1d, %9.4f, %9.4f\n", verticalVelocityCmd,
            	    		                                                        hDotEstimate,
            	    		                                                        hEstimate,
            	    		                                                        ms5611Temperature,
            	    		                                                        verticalModeState,
            	    		                                                        throttleCmd,
            	    		                                                        eepromConfig.PID[HDOT_PID].iTerm);
                }
		    }

            executionTime100Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA3_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
            frame_5Hz = false;

            currentTime     = micros();
            deltaTime5Hz    = currentTime - previous5HzTime;
            previous5HzTime = currentTime;

            if (execUp == true)
                BLUE_LED_TOGGLE;

			while (batMonVeryLowWarning > 0)
			{
				//BEEP_TOGGLE;
				batMonVeryLowWarning--;
			}

			executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
            frame_1Hz = false;

            currentTime     = micros();
            deltaTime1Hz    = currentTime - previous1HzTime;
            previous1HzTime = currentTime;

            if (execUp == true)
                GREEN_LED_TOGGLE;

            if (execUp == false)
                execUpCount++;

            if ((execUpCount == 5) && (execUp == false))
            {
                execUp = true;
                pwmEscInit(eepromConfig.escPwmRate);
            }

			while (batMonLowWarning > 0)
			{
				//BEEP_TOGGLE;
				batMonLowWarning--;
			}

            executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}
Ejemplo n.º 9
0
void taskMainPidLoop(void)
{
    cycleTime = getTaskDeltaTime(TASK_SELF);
    dT = (float)cycleTime * 0.000001f;

    // Calculate average cycle time and average jitter
    filteredCycleTime = filterApplyPt1(cycleTime, &filteredCycleTimeState, 1, dT);
    
    debug[0] = cycleTime;
    debug[1] = cycleTime - filteredCycleTime;

    imuUpdateGyroAndAttitude();

    annexCode();

    if (rxConfig()->rcSmoothing) {
        filterRc();
    }

#if defined(BARO) || defined(SONAR)
    haveProcessedAnnexCodeOnce = true;
#endif

#ifdef MAG
        if (sensors(SENSOR_MAG)) {
            updateMagHold();
        }
#endif

#if defined(BARO) || defined(SONAR)
        if (sensors(SENSOR_BARO) || sensors(SENSOR_SONAR)) {
            if (FLIGHT_MODE(BARO_MODE) || FLIGHT_MODE(SONAR_MODE)) {
                applyAltHold();
            }
        }
#endif

    // If we're armed, at minimum throttle, and we do arming via the
    // sticks, do not process yaw input from the rx.  We do this so the
    // motors do not spin up while we are trying to arm or disarm.
    // Allow yaw control for tricopters if the user wants the servo to move even when unarmed.
    if (isUsingSticksForArming() && rcData[THROTTLE] <= rxConfig()->mincheck
#ifndef USE_QUAD_MIXER_ONLY
#ifdef USE_SERVOS
                && !((mixerConfig()->mixerMode == MIXER_TRI || mixerConfig()->mixerMode == MIXER_CUSTOM_TRI) && mixerConfig()->tri_unarmed_servo)
#endif
                && mixerConfig()->mixerMode != MIXER_AIRPLANE
                && mixerConfig()->mixerMode != MIXER_FLYING_WING
#endif
    ) {
        rcCommand[YAW] = 0;
    }

    if (throttleCorrectionConfig()->throttle_correction_value && (FLIGHT_MODE(ANGLE_MODE) || FLIGHT_MODE(HORIZON_MODE))) {
        rcCommand[THROTTLE] += calculateThrottleAngleCorrection(throttleCorrectionConfig()->throttle_correction_value);
    }

#ifdef GPS
    if (sensors(SENSOR_GPS)) {
        if ((FLIGHT_MODE(GPS_HOME_MODE) || FLIGHT_MODE(GPS_HOLD_MODE)) && STATE(GPS_FIX_HOME)) {
            updateGpsStateForHomeAndHoldMode();
        }
    }
#endif

    // PID - note this is function pointer set by setPIDController()
    pid_controller(
        pidProfile(),
        currentControlRateProfile,
        imuConfig()->max_angle_inclination,
        &accelerometerConfig()->accelerometerTrims,
        rxConfig()
    );

    mixTable();

#ifdef USE_SERVOS
    filterServos();
    writeServos();
#endif

    if (motorControlEnable) {
        writeMotors();
    }

#ifdef USE_SDCARD
        afatfs_poll();
#endif

#ifdef BLACKBOX
    if (!cliMode && feature(FEATURE_BLACKBOX)) {
        handleBlackbox();
    }
#endif
}
Ejemplo n.º 10
0
int main(void)
{
	uint32_t currentTime;

    // High Speed Telemetry Test Code Begin
    char numberString[12];
    // High Speed Telemetry Test Code End
    RCC_GetClocksFreq(&clocks);
    USB_Interrupts_Config();
    Set_USBClock();
    USB_Init();
    
    // Wait until device configured
    //while(bDeviceState != CONFIGURED);

    testInit();
    
    LED0_ON;
    systemReady = true;
    
    //nrf_tx_mode_no_aa(addr,5,40);
    
    nrf_rx_mode_dual(addr,5,40);
    {
        uint8_t status = nrf_read_reg(NRF_STATUS);
        nrf_write_reg(NRF_WRITE_REG|NRF_STATUS,status); // clear IRQ flags
        nrf_write_reg(NRF_FLUSH_RX, 0xff);
        nrf_write_reg(NRF_FLUSH_TX, 0xff);
    }
    while (1)
    {
        uint8_t buf[64];
        static uint8_t last_tx_done = 0;
        if(ring_buf_pop(nrf_rx_buffer,buf,32)){
            // get data from the adapter
            switch(buf[0]){
                case SET_ATT:
                    break;
                case SET_MOTOR:
                    break;
                case SET_MODE:
                    report_mode = buf[1];
                    break;
            }
            last_tx_done = 1;
        }
        
        if(tx_done){
            tx_done = 0;
            // report ACK success
            last_tx_done = 1;
        }
        
        if(ring_buf_pop(nrf_tx_buffer,buf,32)){
            if(last_tx_done){
                last_tx_done = 0;
                nrf_ack_packet(0, buf, 32);
            }
        }
        
        if (frame_50Hz)
        {
            int16_t motor_val[4];
        	frame_50Hz = false;
        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;
            //memcpy(buf, accelSummedSamples100Hz, 12);
            //memcpy(buf+12, gyroSummedSamples100Hz, 12);
            //memcpy(buf+24, magSumed, 6);
            if(report_mode == DT_ATT){
                buf[0] = DT_ATT;
                memcpy(buf + 1, &sensors.attitude200Hz[0], 12);
                memcpy(buf + 13, &executionTime200Hz, 4);
                motor_val[0] = motor[0];
                motor_val[1] = motor[1];
                motor_val[2] = motor[2];
                motor_val[3] = motor[3];
                memcpy(buf + 17, motor_val, 8);
                usb_send_data(buf , 64);
                executionTime50Hz = micros() - currentTime;
            }else if(report_mode == DT_SENSOR){
                buf[0] = DT_SENSOR;
                memcpy(buf + 1, gyroSummedSamples100Hz, 12);
                memcpy(buf + 13, accelSummedSamples100Hz, 12);
                memcpy(buf + 25, magSumed, 6);
            }
            //nrf_tx_packet(buf,16);
            //if(nrf_rx_packet(buf,16) == NRF_RX_OK)
            //{
            //    LED0_TOGGLE;
            //}
            ring_buf_push(nrf_tx_buffer, buf, 32);
        }
        
        if(frame_10Hz)
        {
            frame_10Hz = false;
            magSumed[XAXIS] = magSum[XAXIS];
            magSumed[YAXIS] = magSum[YAXIS];
            magSumed[ZAXIS] = magSum[ZAXIS];
            magSum[XAXIS] = 0;
			magSum[YAXIS] = 0;
			magSum[ZAXIS] = 0;
            newMagData = true;
        }
        
        if (frame_100Hz)
        {
            frame_100Hz = false;
            computeAxisCommands(dt100Hz);
            mixTable();
            writeServos();
            writeMotors();
        }
        
        if (frame_200Hz)
        {
        	frame_200Hz = false;

       	    currentTime       = micros();
       	    deltaTime200Hz    = currentTime - previous200HzTime;
       	    previous200HzTime = currentTime;

       	    dt200Hz = (float)deltaTime200Hz * 0.000001f;  // For integrations in 200 Hz loop

            #if defined(USE_MADGWICK_AHRS) | defined(USE_MARG_AHRS)
                sensors.accel200Hz[XAXIS] = -((float)accelSummedSamples200Hz[XAXIS] / 5.0f - accelRTBias[XAXIS] - sensorConfig.accelBias[XAXIS]) * sensorConfig.accelScaleFactor[XAXIS];
			    sensors.accel200Hz[YAXIS] = -((float)accelSummedSamples200Hz[YAXIS] / 5.0f - accelRTBias[YAXIS] - sensorConfig.accelBias[YAXIS]) * sensorConfig.accelScaleFactor[YAXIS];
			    sensors.accel200Hz[ZAXIS] = -((float)accelSummedSamples200Hz[ZAXIS] / 5.0f - accelRTBias[ZAXIS] - sensorConfig.accelBias[ZAXIS]) * sensorConfig.accelScaleFactor[ZAXIS];

                sensors.accel200Hz[XAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[XAXIS], &fourthOrder200Hz[AX_FILTER]);
                sensors.accel200Hz[YAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[YAXIS], &fourthOrder200Hz[AY_FILTER]);
                sensors.accel200Hz[ZAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[ZAXIS], &fourthOrder200Hz[AZ_FILTER]);

                computeGyroTCBias();
                sensors.gyro200Hz[ROLL ] =  ((float)gyroSummedSamples200Hz[ROLL]  / 5.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			    sensors.gyro200Hz[PITCH] = -((float)gyroSummedSamples200Hz[PITCH] / 5.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
                sensors.gyro200Hz[YAW  ] = -((float)gyroSummedSamples200Hz[YAW]   / 5.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;
            #endif

            #if defined(USE_MADGWICK_AHRS)
                MadgwickAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                    sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                    sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                    sensorConfig.accelCutoff,
                                    newMagData,
                                    dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            #if defined(USE_MARG_AHRS)
                MargAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                sensorConfig.accelCutoff,
                                newMagData,
                                dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            executionTime200Hz = micros() - currentTime;
        }
    }
    systemInit();
    systemReady = true;
    while (1)
    {
    	///////////////////////////////

        if (frame_50Hz)
        {
        	frame_50Hz = false;

        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;

			processFlightCommands();

			executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            LED0_TOGGLE;
        	frame_10Hz = false;

        	currentTime      = micros();
			deltaTime10Hz    = currentTime - previous10HzTime;
			previous10HzTime = currentTime;

			sensors.mag10Hz[XAXIS] = -((float)magSum[XAXIS] / 5.0f * magScaleFactor[XAXIS] - sensorConfig.magBias[XAXIS]);
			sensors.mag10Hz[YAXIS] =   (float)magSum[YAXIS] / 5.0f * magScaleFactor[YAXIS] - sensorConfig.magBias[YAXIS];
			sensors.mag10Hz[ZAXIS] = -((float)magSum[ZAXIS] / 5.0f * magScaleFactor[ZAXIS] - sensorConfig.magBias[ZAXIS]);

			magSum[XAXIS] = 0;
			magSum[YAXIS] = 0;
			magSum[ZAXIS] = 0;

			newMagData = true;

        	pressureAverage = pressureSum / 10;
        	pressureSum = 0;
        	calculateTemperature();
        	calculatePressureAltitude();
        	sensors.pressureAltitude10Hz = pressureAlt;

        	serialCom();

        	if ( EKF_Initialized == false ) EKF_Init( sensors.accel100Hz[XAXIS], sensors.accel100Hz[YAXIS], sensors.accel100Hz[ZAXIS],
                                                      sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS] );

            executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
			frame_500Hz = false;

       	    currentTime       = micros();
       	    deltaTime500Hz    = currentTime - previous500HzTime;
       	    previous500HzTime = currentTime;

       	    dt500Hz = (float)deltaTime500Hz * 0.000001f;  // For integrations in 500 Hz loop

            computeGyroTCBias();
            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            #if defined(USE_CHR6DM_AHRS)
                if ( EKF_Initialized == true ) EKF_Predict( sensors.gyro500Hz[ROLL], sensors.gyro500Hz[PITCH], sensors.gyro500Hz[YAW],
                                                            dt500Hz );

                sensors.attitude200Hz[ROLL ] = gEstimatedStates.phi;
                sensors.attitude200Hz[PITCH] = gEstimatedStates.theta;
                sensors.attitude200Hz[YAW  ] = gEstimatedStates.psi;
            #endif

       	    executionTime500Hz = micros() - currentTime;
		}

        ///////////////////////////////

        if (frame_200Hz)
        {
        	frame_200Hz = false;

       	    currentTime       = micros();
       	    deltaTime200Hz    = currentTime - previous200HzTime;
       	    previous200HzTime = currentTime;

       	    dt200Hz = (float)deltaTime200Hz * 0.000001f;  // For integrations in 200 Hz loop

            #if defined(USE_MADGWICK_AHRS) | defined(USE_MARG_AHRS)
                sensors.accel200Hz[XAXIS] = -((float)accelSummedSamples200Hz[XAXIS] / 5.0f - accelRTBias[XAXIS] - sensorConfig.accelBias[XAXIS]) * sensorConfig.accelScaleFactor[XAXIS];
			    sensors.accel200Hz[YAXIS] = -((float)accelSummedSamples200Hz[YAXIS] / 5.0f - accelRTBias[YAXIS] - sensorConfig.accelBias[YAXIS]) * sensorConfig.accelScaleFactor[YAXIS];
			    sensors.accel200Hz[ZAXIS] = -((float)accelSummedSamples200Hz[ZAXIS] / 5.0f - accelRTBias[ZAXIS] - sensorConfig.accelBias[ZAXIS]) * sensorConfig.accelScaleFactor[ZAXIS];

                sensors.accel200Hz[XAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[XAXIS], &fourthOrder200Hz[AX_FILTER]);
                sensors.accel200Hz[YAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[YAXIS], &fourthOrder200Hz[AY_FILTER]);
                sensors.accel200Hz[ZAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[ZAXIS], &fourthOrder200Hz[AZ_FILTER]);

                computeGyroTCBias();
                sensors.gyro200Hz[ROLL ] =  ((float)gyroSummedSamples200Hz[ROLL]  / 5.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			    sensors.gyro200Hz[PITCH] = -((float)gyroSummedSamples200Hz[PITCH] / 5.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
                sensors.gyro200Hz[YAW  ] = -((float)gyroSummedSamples200Hz[YAW]   / 5.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;
            #endif

            #if defined(USE_MADGWICK_AHRS)
                MadgwickAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                    sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                    sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                    sensorConfig.accelCutoff,
                                    newMagData,
                                    dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            #if defined(USE_MARG_AHRS)
                MargAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                sensorConfig.accelCutoff,
                                newMagData,
                                dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            executionTime200Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
        	frame_100Hz = false;

        	currentTime       = micros();
			deltaTime100Hz    = currentTime - previous100HzTime;
			previous100HzTime = currentTime;

			dt100Hz = (float)deltaTime100Hz * 0.000001f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] = -((float)accelSummedSamples100Hz[XAXIS] / 10.0f - accelRTBias[XAXIS] - sensorConfig.accelBias[XAXIS]) * sensorConfig.accelScaleFactor[XAXIS];
			sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] / 10.0f - accelRTBias[YAXIS] - sensorConfig.accelBias[YAXIS]) * sensorConfig.accelScaleFactor[YAXIS];
			sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] / 10.0f - accelRTBias[ZAXIS] - sensorConfig.accelBias[ZAXIS]) * sensorConfig.accelScaleFactor[ZAXIS];

        	sensors.accel100Hz[XAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[XAXIS], &fourthOrder100Hz[AX_FILTER]);
            sensors.accel100Hz[YAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[YAXIS], &fourthOrder100Hz[AY_FILTER]);
            sensors.accel100Hz[ZAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[ZAXIS], &fourthOrder100Hz[AZ_FILTER]);

            computeGyroTCBias();
            sensors.gyro100Hz[ROLL ] =  ((float)gyroSummedSamples100Hz[ROLL]  / 10.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro100Hz[PITCH] = -((float)gyroSummedSamples100Hz[PITCH] / 10.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro100Hz[YAW  ] = -((float)gyroSummedSamples100Hz[YAW]   / 10.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            #if defined(USE_CHR6DM_AHRS)
                if ( EKF_Initialized == true ) EKF_Update( sensors.accel100Hz[XAXIS], sensors.accel100Hz[YAXIS], sensors.accel100Hz[ZAXIS],
					                                       sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
					                                       sensorConfig.accelCutoff,
                                                           newMagData );
                newMagData = false;

		        sensors.attitude200Hz[ROLL ] = gEstimatedStates.phi;
    	        sensors.attitude200Hz[PITCH] = gEstimatedStates.theta;
    	        sensors.attitude200Hz[YAW  ] = gEstimatedStates.psi;
            #endif

            computeAxisCommands(dt100Hz);
            mixTable();
            writeServos();
            writeMotors();

            // High Speed Telemetry Test Code Begin
            if ( highSpeedAccelTelemEnabled == true )
            {
            	// 100 Hz Accels
            	ftoa(sensors.accel100Hz[XAXIS], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.accel100Hz[YAXIS], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.accel100Hz[ZAXIS], numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedGyroTelemEnabled == true )
            {
            	// 100 Hz Gyros
            	ftoa(sensors.gyro100Hz[ROLL ], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.gyro100Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.gyro100Hz[YAW  ], numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedRollRateTelemEnabled == true )
            {
            	// Roll Rate, Roll Rate Command
            	ftoa(sensors.gyro100Hz[ROLL], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[ROLL],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedPitchRateTelemEnabled == true )
            {
            	// Pitch Rate, Pitch Rate Command
            	ftoa(sensors.gyro100Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[PITCH],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedYawRateTelemEnabled == true )
            {
            	// Yaw Rate, Yaw Rate Command
            	ftoa(sensors.gyro100Hz[YAW], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[YAW],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedAttitudeTelemEnabled == true )
            {
            	// 200 Hz Attitudes
            	ftoa(sensors.attitude200Hz[ROLL ], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.attitude200Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.attitude200Hz[YAW  ], numberString); uartPrint(numberString); uartPrint("\n");
            }
            // High Speed Telemetry Test Code End
            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
        	frame_5Hz = false;

        	currentTime     = micros();
			deltaTime5Hz    = currentTime - previous5HzTime;
			previous5HzTime = currentTime;

        	executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
        	frame_1Hz = false;

        	currentTime     = micros();
			deltaTime1Hz    = currentTime - previous1HzTime;
			previous1HzTime = currentTime;

        	executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }
}
Ejemplo n.º 11
0
Archivo: main.c Proyecto: kh4/AQ32Plus
int main(void)
{
    ///////////////////////////////////////////////////////////////////////////

    uint32_t currentTime;

    #ifdef _DTIMING

        #define LA1_ENABLE       GPIO_SetBits(GPIOA,   GPIO_Pin_4)
        #define LA1_DISABLE      GPIO_ResetBits(GPIOA, GPIO_Pin_4)
        #define LA4_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_5)
        #define LA4_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_5)
        #define LA2_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_2)
        #define LA2_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_2)
        #define LA3_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_3)
        #define LA3_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_3)

        GPIO_InitTypeDef GPIO_InitStructure;

        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC,   ENABLE);

        GPIO_StructInit(&GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_4;
        GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOA, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_0 | GPIO_Pin_1;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOB, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_5;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOC, &GPIO_InitStructure);

        // PB0_DISABLE;
        LA4_DISABLE;
        LA2_DISABLE;
        LA3_DISABLE;
        LA1_DISABLE;

    #endif

    systemInit();

    systemReady = true;

    evrPush(EVR_StartingMain, 0);

    while (1)
    {
        evrCheck();

        ///////////////////////////////

        if (frame_50Hz)
        {
            #ifdef _DTIMING
                LA2_ENABLE;
            #endif

            frame_50Hz = false;

            currentTime      = micros();
            deltaTime50Hz    = currentTime - previous50HzTime;
            previous50HzTime = currentTime;

            processFlightCommands();

            if (newTemperatureReading && newPressureReading)
            {
                d1Value = d1.value;
                d2Value = d2.value;

                calculateTemperature();
                calculatePressureAltitude();

                newTemperatureReading = false;
                newPressureReading    = false;
            }

            sensors.pressureAlt50Hz = firstOrderFilter(sensors.pressureAlt50Hz, &firstOrderFilters[PRESSURE_ALT_LOWPASS]);

            rssiMeasure();

            updateMax7456(currentTime, 0);

            executionTime50Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA2_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            #ifdef _DTIMING
                LA4_ENABLE;
            #endif

            frame_10Hz = false;

            currentTime      = micros();
            deltaTime10Hz    = currentTime - previous10HzTime;
            previous10HzTime = currentTime;

            if (newMagData == true)
            {
                sensors.mag10Hz[XAXIS] =   (float)rawMag[XAXIS].value * magScaleFactor[XAXIS + eepromConfig.externalHMC5883] - eepromConfig.magBias[XAXIS + eepromConfig.externalHMC5883];
                sensors.mag10Hz[YAXIS] =   (float)rawMag[YAXIS].value * magScaleFactor[YAXIS + eepromConfig.externalHMC5883] - eepromConfig.magBias[YAXIS + eepromConfig.externalHMC5883];
                sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS + eepromConfig.externalHMC5883] - eepromConfig.magBias[ZAXIS + eepromConfig.externalHMC5883]);

                newMagData = false;
                magDataUpdate = true;
            }

            decodeUbloxMsg();

            batMonTick();

            cliCom();

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendAttitude();
				mavlinkSendVfrHud();
			}

            executionTime10Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA4_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
            #ifdef _DTIMING
                LA1_ENABLE;
            #endif

            frame_500Hz = false;

            currentTime       = micros();
            deltaTime500Hz    = currentTime - previous500HzTime;
            previous500HzTime = currentTime;

            TIM_Cmd(TIM10, DISABLE);
            timerValue = TIM_GetCounter(TIM10);
            TIM_SetCounter(TIM10, 0);
            TIM_Cmd(TIM10, ENABLE);

            dt500Hz = (float)timerValue * 0.0000005f;  // For integrations in 500 Hz loop

            computeMPU6000TCBias();

            sensors.accel500Hz[XAXIS] =  ((float)accelSummedSamples500Hz[XAXIS] * 0.5f - eepromConfig.accelBiasMPU[XAXIS] - accelTCBias[XAXIS]) * eepromConfig.accelScaleFactorMPU[XAXIS];
            sensors.accel500Hz[YAXIS] = -((float)accelSummedSamples500Hz[YAXIS] * 0.5f - eepromConfig.accelBiasMPU[YAXIS] - accelTCBias[YAXIS]) * eepromConfig.accelScaleFactorMPU[YAXIS];
            sensors.accel500Hz[ZAXIS] = -((float)accelSummedSamples500Hz[ZAXIS] * 0.5f - eepromConfig.accelBiasMPU[ZAXIS] - accelTCBias[ZAXIS]) * eepromConfig.accelScaleFactorMPU[ZAXIS];

            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            MargAHRSupdate(sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                           sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                           sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                           eepromConfig.accelCutoff,
                           magDataUpdate,
                           dt500Hz);

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeServos();
            writeMotors();

            executionTime500Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA1_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
            #ifdef _DTIMING
                LA3_ENABLE;
            #endif

            frame_100Hz = false;

            currentTime       = micros();
            deltaTime100Hz    = currentTime - previous100HzTime;
            previous100HzTime = currentTime;

            TIM_Cmd(TIM11, DISABLE);
            timerValue = TIM_GetCounter(TIM11);
            TIM_SetCounter(TIM11, 0);
            TIM_Cmd(TIM11, ENABLE);

            dt100Hz = (float)timerValue * 0.0000005f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] =  ((float)accelSummedSamples100Hz[XAXIS] * 0.1f - eepromConfig.accelBiasMPU[XAXIS] - accelTCBias[XAXIS]) * eepromConfig.accelScaleFactorMPU[XAXIS];
            sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] * 0.1f - eepromConfig.accelBiasMPU[YAXIS] - accelTCBias[YAXIS]) * eepromConfig.accelScaleFactorMPU[YAXIS];
            sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] * 0.1f - eepromConfig.accelBiasMPU[ZAXIS] - accelTCBias[ZAXIS]) * eepromConfig.accelScaleFactorMPU[ZAXIS];

            createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            if (armed == true)
            {
				if ( eepromConfig.activeTelemetry == 1 )
                {
            	    // 500 Hz Accels
					telemPortPrintF("%9.4f, %9.4f, %9.4f, %9.4f, %9.4f, %9.4f\n", sensors.accel500Hz[XAXIS],
					        			                                          sensors.accel500Hz[YAXIS],
					        			                                          sensors.accel500Hz[ZAXIS]);
                }

                if ( eepromConfig.activeTelemetry == 2 )
                {
            	    // 500 Hz Gyros
            	    telemPortPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro500Hz[ROLL ],
            	            			                     sensors.gyro500Hz[PITCH],
            	            					             sensors.gyro500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 4 )
                {
            	    // 500 Hz Attitudes
            	    telemPortPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude500Hz[ROLL ],
            	            			                     sensors.attitude500Hz[PITCH],
            	            			                     sensors.attitude500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 8 )
                {
               	    // Vertical Variables
            	    telemPortPrintF("%9.4f, %9.4f, %9.4f, %9.4f, %4ld\n", earthAxisAccels[ZAXIS],
            	    		                                              sensors.pressureAlt50Hz,
            	    		                                              hDotEstimate,
            	    		                                              hEstimate,
            	    		                                              ms5611Temperature);
                }

                if ( eepromConfig.activeTelemetry == 16)
                {
               	    // Vertical Variables
            	    telemPortPrintF("%9.4f, %9.4f, %9.4f, %4ld, %1d, %9.4f, %9.4f\n", verticalVelocityCmd,
            	    		                                                          hDotEstimate,
            	    		                                                          hEstimate,
            	    		                                                          ms5611Temperature,
            	    		                                                          verticalModeState,
            	    		                                                          throttleCmd,
            	    		                                                          eepromConfig.PID[HDOT_PID].iTerm);
                }
		    }

            executionTime100Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA3_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
            frame_5Hz = false;

            currentTime     = micros();
            deltaTime5Hz    = currentTime - previous5HzTime;
            previous5HzTime = currentTime;

            gpsUpdated();

            //if (eepromConfig.mavlinkEnabled == true)
            //{
			//	mavlinkSendGpsRaw();
			//}

			if (batMonVeryLowWarning > 0)
			{
				LED1_TOGGLE;
				batMonVeryLowWarning--;
			}

            if (execUp == true)
                BLUE_LED_TOGGLE;

			executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
            frame_1Hz = false;

            currentTime     = micros();
            deltaTime1Hz    = currentTime - previous1HzTime;
            previous1HzTime = currentTime;

            if (execUp == true)
                GREEN_LED_TOGGLE;

            if (execUp == false)
                execUpCount++;

            if ((execUpCount == 5) && (execUp == false))
            {
				execUp = true;

                pwmEscInit();

                homeData.magHeading = sensors.attitude500Hz[YAW];
			}

            if (batMonLowWarning > 0)
			{
				LED1_TOGGLE;
				batMonLowWarning--;
			}

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendHeartbeat();
				mavlinkSendSysStatus();
			}

            executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}
Ejemplo n.º 12
0
int main(void)
{
	///////////////////////////////////////////////////////////////////////////

	uint32_t currentTime;

    systemReady = false;

    systemInit();

    systemReady = true;

    evrPush(EVR_StartingMain, 0);

    while (1)
    {
    	evrCheck();

    	///////////////////////////////

        if (frame_50Hz)
        {
        	frame_50Hz = false;

        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;

			processFlightCommands();

            if (newTemperatureReading && newPressureReading)
            {
                d1Value = d1.value;
                d2Value = d2.value;

                calculateTemperature();
                calculatePressureAltitude();

                newTemperatureReading = false;
                newPressureReading    = false;
            }

            sensors.pressureAlt50Hz = firstOrderFilter(sensors.pressureAlt50Hz, &firstOrderFilters[PRESSURE_ALT_LOWPASS]);

			executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
        	frame_10Hz = false;

        	currentTime      = micros();
			deltaTime10Hz    = currentTime - previous10HzTime;
			previous10HzTime = currentTime;

			if (newMagData == true)
			{
				sensors.mag10Hz[XAXIS] =   (float)rawMag[XAXIS].value * magScaleFactor[XAXIS] - eepromConfig.magBias[XAXIS];
			    sensors.mag10Hz[YAXIS] = -((float)rawMag[YAXIS].value * magScaleFactor[YAXIS] - eepromConfig.magBias[YAXIS]);
			    sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS] - eepromConfig.magBias[ZAXIS]);

			    newMagData = false;
			    magDataUpdate = true;
            }

        	decodeUbloxMsg();

        	batMonTick();

            cliCom();

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendAttitude();
				mavlinkSendVfrHud();
			}
			else
			{
				rfCom();
			}

        	executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
			frame_500Hz = false;

       	    currentTime       = micros();
       	    deltaTime500Hz    = currentTime - previous500HzTime;
       	    previous500HzTime = currentTime;

       	    TIM_Cmd(TIM6, DISABLE);
       	 	timerValue = TIM_GetCounter(TIM6);
       	 	TIM_SetCounter(TIM6, 0);
       	 	TIM_Cmd(TIM6, ENABLE);

       	 	dt500Hz = (float)timerValue * 0.0000005f;  // For integrations in 500 Hz loop

       	    computeMPU6000TCBias();

       	    sensors.accel500Hz[XAXIS] = -((float)accelSummedSamples500Hz[XAXIS] * 0.5f - eepromConfig.accelBiasMPU[XAXIS] - accelTCBias[XAXIS]) * eepromConfig.accelScaleFactorMPU[XAXIS];
            sensors.accel500Hz[YAXIS] =  ((float)accelSummedSamples500Hz[YAXIS] * 0.5f - eepromConfig.accelBiasMPU[YAXIS] - accelTCBias[YAXIS]) * eepromConfig.accelScaleFactorMPU[YAXIS];
            sensors.accel500Hz[ZAXIS] = -((float)accelSummedSamples500Hz[ZAXIS] * 0.5f - eepromConfig.accelBiasMPU[ZAXIS] - accelTCBias[ZAXIS]) * eepromConfig.accelScaleFactorMPU[ZAXIS];

            //sensors.accel500Hz[XAXIS] = firstOrderFilter(sensors.accel500Hz[XAXIS], &firstOrderFilters[ACCEL500HZ_X_LOWPASS]);
            //sensors.accel500Hz[YAXIS] = firstOrderFilter(sensors.accel500Hz[YAXIS], &firstOrderFilters[ACCEL500HZ_Y_LOWPASS]);
            //sensors.accel500Hz[ZAXIS] = firstOrderFilter(sensors.accel500Hz[ZAXIS], &firstOrderFilters[ACCEL500HZ_Z_LOWPASS]);

            sensors.gyro500Hz[ROLL ] = -((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[PITCH] =  ((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            MargAHRSupdate( sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                            sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                            sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                            eepromConfig.accelCutoff,
                            magDataUpdate,
                            dt500Hz );

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeServos();
            writeMotors();

       	    executionTime500Hz = micros() - currentTime;
		}

        ///////////////////////////////

        if (frame_100Hz)
        {
        	frame_100Hz = false;

        	currentTime       = micros();
			deltaTime100Hz    = currentTime - previous100HzTime;
			previous100HzTime = currentTime;

			TIM_Cmd(TIM7, DISABLE);
			timerValue = TIM_GetCounter(TIM7);
			TIM_SetCounter(TIM7, 0);
			TIM_Cmd(TIM7, ENABLE);

			dt100Hz = (float)timerValue * 0.0000005f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] = -((float)accelSummedSamples100Hz[XAXIS] * 0.1f - eepromConfig.accelBiasMPU[XAXIS] - accelTCBias[XAXIS]) * eepromConfig.accelScaleFactorMPU[XAXIS];
            sensors.accel100Hz[YAXIS] =  ((float)accelSummedSamples100Hz[YAXIS] * 0.1f - eepromConfig.accelBiasMPU[YAXIS] - accelTCBias[YAXIS]) * eepromConfig.accelScaleFactorMPU[YAXIS];
            sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] * 0.1f - eepromConfig.accelBiasMPU[ZAXIS] - accelTCBias[ZAXIS]) * eepromConfig.accelScaleFactorMPU[ZAXIS];

			//sensors.accel100Hz[XAXIS] = firstOrderFilter(sensors.accel100Hz[XAXIS], &firstOrderFilters[ACCEL100HZ_X_LOWPASS]);
			//sensors.accel100Hz[YAXIS] = firstOrderFilter(sensors.accel100Hz[YAXIS], &firstOrderFilters[ACCEL100HZ_Y_LOWPASS]);
			//sensors.accel100Hz[ZAXIS] = firstOrderFilter(sensors.accel100Hz[ZAXIS], &firstOrderFilters[ACCEL100HZ_Z_LOWPASS]);

			createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            if (armed == true)
            {
				if ( eepromConfig.activeTelemetry == 1 )
                {
            	    // 500 Hz Accels
            	    telemetryPrintF("%9.4f, %9.4f, %9.4f\n", sensors.accel500Hz[XAXIS],
            	            			                     sensors.accel500Hz[YAXIS],
            	            			                     sensors.accel500Hz[ZAXIS]);
                }

                if ( eepromConfig.activeTelemetry == 2 )
                {
            	    // 500 Hz Gyros
            	    telemetryPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro500Hz[ROLL ],
            	            			                     sensors.gyro500Hz[PITCH],
            	            					             sensors.gyro500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 4 )
                {
            	    // 500 Hz Attitudes
            	    telemetryPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude500Hz[ROLL ],
            	            			                     sensors.attitude500Hz[PITCH],
            	            			                     sensors.attitude500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 8 )
                {
               	    // Vertical Variables
            	    telemetryPrintF("%9.4f, %9.4f, %9.4f, %9.4f, %4ld\n", earthAxisAccels[ZAXIS],
            	    		                                              sensors.pressureAlt50Hz,
            	    		                                              hDotEstimate,
            	    		                                              hEstimate,
            	    		                                              ms5611Temperature);
                }

                if ( eepromConfig.activeTelemetry == 16 )
                {
               	    // Vertical Variables
            	    telemetryPrintF("%9.4f, %9.4f, %9.4f, %4ld, %1d, %9.4f, %9.4f\n", verticalVelocityCmd,
            	    		                                                          hDotEstimate,
            	    		                                                          hEstimate,
            	    		                                                          ms5611Temperature,
            	    		                                                          verticalModeState,
            	    		                                                          throttleCmd,
            	    		                                                          eepromConfig.PID[HDOT_PID].iTerm);
                }

            }

            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
        	frame_5Hz = false;

        	currentTime     = micros();
			deltaTime5Hz    = currentTime - previous5HzTime;
			previous5HzTime = currentTime;

			gpsUpdated();

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendGpsRaw();
			}

			if (batMonVeryLowWarning > 0)
			{
				BEEP_TOGGLE;
				batMonVeryLowWarning--;
			}

			if (execUp == true)
			    LED0_TOGGLE;

			executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
        	frame_1Hz = false;

        	currentTime     = micros();
			deltaTime1Hz    = currentTime - previous1HzTime;
			previous1HzTime = currentTime;

			if (execUp == false)
			    execUpCount++;

			if ((execUpCount == 5) && (execUp == false))
			{
			    execUp = true;

			    pwmEscInit();

			    homeData.magHeading = sensors.attitude500Hz[YAW];
			}

			if (batMonLowWarning > 0)
			{
				BEEP_TOGGLE;
				batMonLowWarning--;
			}

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendHeartbeat();
				mavlinkSendSysStatus();
			}

			executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}
Ejemplo n.º 13
0
int main(void)
{
	uint32_t currentTime;

    // High Speed Telemetry Test Code Begin
    char numberString[12];
    // High Speed Telemetry Test Code End

    systemInit();

    systemReady = true;

    while (1)
    {
    	///////////////////////////////

        if (frame_50Hz)
        {
        	frame_50Hz = false;

        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;

			processFlightCommands();

			executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
        	frame_10Hz = false;

        	currentTime      = micros();
			deltaTime10Hz    = currentTime - previous10HzTime;
			previous10HzTime = currentTime;

			sensors.mag10Hz[XAXIS] = -((float)magSum[XAXIS] / 5.0f * magScaleFactor[XAXIS] - sensorConfig.magBias[XAXIS]);
			sensors.mag10Hz[YAXIS] =   (float)magSum[YAXIS] / 5.0f * magScaleFactor[YAXIS] - sensorConfig.magBias[YAXIS];
			sensors.mag10Hz[ZAXIS] = -((float)magSum[ZAXIS] / 5.0f * magScaleFactor[ZAXIS] - sensorConfig.magBias[ZAXIS]);

			magSum[XAXIS] = 0;
			magSum[YAXIS] = 0;
			magSum[ZAXIS] = 0;

			newMagData = true;

        	pressureAverage = pressureSum / 10;
        	pressureSum = 0;
        	calculateTemperature();
        	calculatePressureAltitude();
        	sensors.pressureAltitude10Hz = pressureAlt;

        	serialCom();

        	if ( EKF_Initialized == false ) EKF_Init( sensors.accel100Hz[XAXIS], sensors.accel100Hz[YAXIS], sensors.accel100Hz[ZAXIS],
                                                      sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS] );

            executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
			frame_500Hz = false;

       	    currentTime       = micros();
       	    deltaTime500Hz    = currentTime - previous500HzTime;
       	    previous500HzTime = currentTime;

       	    dt500Hz = (float)deltaTime500Hz * 0.000001f;  // For integrations in 500 Hz loop

            computeGyroTCBias();
            sensors.gyro500Hz[ROLL ] =  ((float)gyroSummedSamples500Hz[ROLL]  / 2.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro500Hz[PITCH] = -((float)gyroSummedSamples500Hz[PITCH] / 2.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro500Hz[YAW  ] = -((float)gyroSummedSamples500Hz[YAW]   / 2.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            #if defined(USE_CHR6DM_AHRS)
                if ( EKF_Initialized == true ) EKF_Predict( sensors.gyro500Hz[ROLL], sensors.gyro500Hz[PITCH], sensors.gyro500Hz[YAW],
                                                            dt500Hz );

                sensors.attitude200Hz[ROLL ] = gEstimatedStates.phi;
                sensors.attitude200Hz[PITCH] = gEstimatedStates.theta;
                sensors.attitude200Hz[YAW  ] = gEstimatedStates.psi;
            #endif

       	    executionTime500Hz = micros() - currentTime;
		}

        ///////////////////////////////

        if (frame_200Hz)
        {
        	frame_200Hz = false;

       	    currentTime       = micros();
       	    deltaTime200Hz    = currentTime - previous200HzTime;
       	    previous200HzTime = currentTime;

       	    dt200Hz = (float)deltaTime200Hz * 0.000001f;  // For integrations in 200 Hz loop

            #if defined(USE_MADGWICK_AHRS) | defined(USE_MARG_AHRS)
                sensors.accel200Hz[XAXIS] = -((float)accelSummedSamples200Hz[XAXIS] / 5.0f - accelRTBias[XAXIS] - sensorConfig.accelBias[XAXIS]) * sensorConfig.accelScaleFactor[XAXIS];
			    sensors.accel200Hz[YAXIS] = -((float)accelSummedSamples200Hz[YAXIS] / 5.0f - accelRTBias[YAXIS] - sensorConfig.accelBias[YAXIS]) * sensorConfig.accelScaleFactor[YAXIS];
			    sensors.accel200Hz[ZAXIS] = -((float)accelSummedSamples200Hz[ZAXIS] / 5.0f - accelRTBias[ZAXIS] - sensorConfig.accelBias[ZAXIS]) * sensorConfig.accelScaleFactor[ZAXIS];

                sensors.accel200Hz[XAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[XAXIS], &fourthOrder200Hz[AX_FILTER]);
                sensors.accel200Hz[YAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[YAXIS], &fourthOrder200Hz[AY_FILTER]);
                sensors.accel200Hz[ZAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[ZAXIS], &fourthOrder200Hz[AZ_FILTER]);

                computeGyroTCBias();
                sensors.gyro200Hz[ROLL ] =  ((float)gyroSummedSamples200Hz[ROLL]  / 5.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			    sensors.gyro200Hz[PITCH] = -((float)gyroSummedSamples200Hz[PITCH] / 5.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
                sensors.gyro200Hz[YAW  ] = -((float)gyroSummedSamples200Hz[YAW]   / 5.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;
            #endif

            #if defined(USE_MADGWICK_AHRS)
                MadgwickAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                    sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                    sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                    sensorConfig.accelCutoff,
                                    newMagData,
                                    dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            #if defined(USE_MARG_AHRS)
                MargAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                                sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                                sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                                sensorConfig.accelCutoff,
                                newMagData,
                                dt200Hz );

                newMagData = false;

		        q0q0 = q0 * q0;
		        q1q1 = q1 * q1;
		        q2q2 = q2 * q2;
		        q3q3 = q3 * q3;

    	        sensors.attitude200Hz[ROLL ] = atan2f( 2.0f * (q0 * q1 + q2 * q3), q0q0 - q1q1 - q2q2 + q3q3 );
    	        sensors.attitude200Hz[PITCH] = -asinf( 2.0f * (q1 * q3 - q0 * q2) );
    	        sensors.attitude200Hz[YAW  ] = atan2f( 2.0f * (q1 * q2 + q0 * q3), q0q0 + q1q1 - q2q2 - q3q3 );
            #endif

            executionTime200Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
        	frame_100Hz = false;

        	currentTime       = micros();
			deltaTime100Hz    = currentTime - previous100HzTime;
			previous100HzTime = currentTime;

			dt100Hz = (float)deltaTime100Hz * 0.000001f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] = -((float)accelSummedSamples100Hz[XAXIS] / 10.0f - accelRTBias[XAXIS] - sensorConfig.accelBias[XAXIS]) * sensorConfig.accelScaleFactor[XAXIS];
			sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] / 10.0f - accelRTBias[YAXIS] - sensorConfig.accelBias[YAXIS]) * sensorConfig.accelScaleFactor[YAXIS];
			sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] / 10.0f - accelRTBias[ZAXIS] - sensorConfig.accelBias[ZAXIS]) * sensorConfig.accelScaleFactor[ZAXIS];

        	sensors.accel100Hz[XAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[XAXIS], &fourthOrder100Hz[AX_FILTER]);
            sensors.accel100Hz[YAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[YAXIS], &fourthOrder100Hz[AY_FILTER]);
            sensors.accel100Hz[ZAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[ZAXIS], &fourthOrder100Hz[AZ_FILTER]);

            computeGyroTCBias();
            sensors.gyro100Hz[ROLL ] =  ((float)gyroSummedSamples100Hz[ROLL]  / 10.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro100Hz[PITCH] = -((float)gyroSummedSamples100Hz[PITCH] / 10.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro100Hz[YAW  ] = -((float)gyroSummedSamples100Hz[YAW]   / 10.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            #if defined(USE_CHR6DM_AHRS)
                if ( EKF_Initialized == true ) EKF_Update( sensors.accel100Hz[XAXIS], sensors.accel100Hz[YAXIS], sensors.accel100Hz[ZAXIS],
					                                       sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
					                                       sensorConfig.accelCutoff,
                                                           newMagData );
                newMagData = false;

		        sensors.attitude200Hz[ROLL ] = gEstimatedStates.phi;
    	        sensors.attitude200Hz[PITCH] = gEstimatedStates.theta;
    	        sensors.attitude200Hz[YAW  ] = gEstimatedStates.psi;
            #endif

            computeAxisCommands(dt100Hz);
            mixTable();
            writeServos();
            writeMotors();

            // High Speed Telemetry Test Code Begin
            if ( highSpeedAccelTelemEnabled == true )
            {
            	// 100 Hz Accels
            	ftoa(sensors.accel100Hz[XAXIS], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.accel100Hz[YAXIS], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.accel100Hz[ZAXIS], numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedGyroTelemEnabled == true )
            {
            	// 100 Hz Gyros
            	ftoa(sensors.gyro100Hz[ROLL ], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.gyro100Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.gyro100Hz[YAW  ], numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedRollRateTelemEnabled == true )
            {
            	// Roll Rate, Roll Rate Command
            	ftoa(sensors.gyro100Hz[ROLL], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[ROLL],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedPitchRateTelemEnabled == true )
            {
            	// Pitch Rate, Pitch Rate Command
            	ftoa(sensors.gyro100Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[PITCH],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedYawRateTelemEnabled == true )
            {
            	// Yaw Rate, Yaw Rate Command
            	ftoa(sensors.gyro100Hz[YAW], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(rxCommand[YAW],         numberString); uartPrint(numberString); uartPrint("\n");
            }

            if ( highSpeedAttitudeTelemEnabled == true )
            {
            	// 200 Hz Attitudes
            	ftoa(sensors.attitude200Hz[ROLL ], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.attitude200Hz[PITCH], numberString); uartPrint(numberString); uartPrint(",");
            	ftoa(sensors.attitude200Hz[YAW  ], numberString); uartPrint(numberString); uartPrint("\n");
            }
            // High Speed Telemetry Test Code End
            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
        	frame_5Hz = false;

        	currentTime     = micros();
			deltaTime5Hz    = currentTime - previous5HzTime;
			previous5HzTime = currentTime;

        	executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
        	frame_1Hz = false;

        	currentTime     = micros();
			deltaTime1Hz    = currentTime - previous1HzTime;
			previous1HzTime = currentTime;

        	executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }
}
Ejemplo n.º 14
0
int main(void)
{
	uint32_t currentTime;

    systemInit();

    systemReady = true;

    while (1)
    {
    	///////////////////////////////

        if (frame_50Hz)
        {
        	frame_50Hz = false;

        	currentTime      = micros();
			deltaTime50Hz    = currentTime - previous50HzTime;
			previous50HzTime = currentTime;

			processFlightCommands();

			executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
        	frame_10Hz = false;

        	currentTime      = micros();
			deltaTime10Hz    = currentTime - previous10HzTime;
			previous10HzTime = currentTime;

			sensors.mag10Hz[XAXIS] = -((float)rawMag[XAXIS].value * magScaleFactor[XAXIS] - eepromConfig.magBias[XAXIS]);
			sensors.mag10Hz[YAXIS] =   (float)rawMag[YAXIS].value * magScaleFactor[YAXIS] - eepromConfig.magBias[YAXIS];
			sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS] - eepromConfig.magBias[ZAXIS]);

			newMagData = false;
			magDataUpdate = true;

        	pressureAverage = pressureSum / 10;
        	pressureSum = 0;
        	calculateTemperature();
        	calculatePressureAltitude();
        	sensors.pressureAlt10Hz = pressureAlt;

        	cliCom();

        	executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_200Hz)
        {
        	frame_200Hz = false;

       	    currentTime       = micros();
       	    deltaTime200Hz    = currentTime - previous200HzTime;
       	    previous200HzTime = currentTime;

       	    dt200Hz = (float)deltaTime200Hz * 0.000001f;  // For integrations in 200 Hz loop

            sensors.accel200Hz[XAXIS] = -((float)accelSummedSamples200Hz[XAXIS] / 5.0f - accelRTBias[XAXIS] - eepromConfig.accelBias[XAXIS]) * eepromConfig.accelScaleFactor[XAXIS];
			sensors.accel200Hz[YAXIS] = -((float)accelSummedSamples200Hz[YAXIS] / 5.0f - accelRTBias[YAXIS] - eepromConfig.accelBias[YAXIS]) * eepromConfig.accelScaleFactor[YAXIS];
			sensors.accel200Hz[ZAXIS] = -((float)accelSummedSamples200Hz[ZAXIS] / 5.0f - accelRTBias[ZAXIS] - eepromConfig.accelBias[ZAXIS]) * eepromConfig.accelScaleFactor[ZAXIS];

            sensors.accel200Hz[XAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[XAXIS], &fourthOrder200Hz[AX_FILTER]);
            sensors.accel200Hz[YAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[YAXIS], &fourthOrder200Hz[AY_FILTER]);
            sensors.accel200Hz[ZAXIS] = computeFourthOrder200Hz(sensors.accel200Hz[ZAXIS], &fourthOrder200Hz[AZ_FILTER]);

            computeGyroTCBias();
            sensors.gyro200Hz[ROLL ] =  ((float)gyroSummedSamples200Hz[ROLL]  / 5.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			sensors.gyro200Hz[PITCH] = -((float)gyroSummedSamples200Hz[PITCH] / 5.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            sensors.gyro200Hz[YAW  ] = -((float)gyroSummedSamples200Hz[YAW]   / 5.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            MargAHRSupdate( sensors.gyro200Hz[ROLL],   sensors.gyro200Hz[PITCH],  sensors.gyro200Hz[YAW],
                            sensors.accel200Hz[XAXIS], sensors.accel200Hz[YAXIS], sensors.accel200Hz[ZAXIS],
                            sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                            eepromConfig.accelCutoff,
                            magDataUpdate,
                            dt200Hz );

            magDataUpdate = false;

            computeAxisCommands(dt200Hz);
            mixTable();
            writeServos();
            writeMotors();

            executionTime200Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
        	frame_100Hz = false;

        	currentTime       = micros();
			deltaTime100Hz    = currentTime - previous100HzTime;
			previous100HzTime = currentTime;

			dt100Hz = (float)deltaTime100Hz * 0.000001f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] = -((float)accelSummedSamples100Hz[XAXIS] / 10.0f - accelRTBias[XAXIS] - eepromConfig.accelBias[XAXIS]) * eepromConfig.accelScaleFactor[XAXIS];
			sensors.accel100Hz[YAXIS] = -((float)accelSummedSamples100Hz[YAXIS] / 10.0f - accelRTBias[YAXIS] - eepromConfig.accelBias[YAXIS]) * eepromConfig.accelScaleFactor[YAXIS];
			sensors.accel100Hz[ZAXIS] = -((float)accelSummedSamples100Hz[ZAXIS] / 10.0f - accelRTBias[ZAXIS] - eepromConfig.accelBias[ZAXIS]) * eepromConfig.accelScaleFactor[ZAXIS];

        	sensors.accel100Hz[XAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[XAXIS], &fourthOrder100Hz[AX_FILTER]);
            sensors.accel100Hz[YAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[YAXIS], &fourthOrder100Hz[AY_FILTER]);
            sensors.accel100Hz[ZAXIS] = computeFourthOrder100Hz(sensors.accel100Hz[ZAXIS], &fourthOrder100Hz[AZ_FILTER]);

            //computeGyroTCBias();
            //sensors.gyro100Hz[ROLL ] =  ((float)gyroSummedSamples100Hz[ROLL]  / 10.0f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
			//sensors.gyro100Hz[PITCH] = -((float)gyroSummedSamples100Hz[PITCH] / 10.0f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            //sensors.gyro100Hz[YAW  ] = -((float)gyroSummedSamples100Hz[YAW]   / 10.0f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

            createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            //computeAxisCommands(dt100Hz);
            //mixTable();
            //writeServos();
            //writeMotors();

            if ( rfTelem1Enabled == true )
            {
            	// 200 Hz Accels
            	cliPrintF("%9.4f, %9.4f, %9.4f\n", sensors.accel200Hz[XAXIS],
            	        			               sensors.accel200Hz[YAXIS],
            	        			               sensors.accel200Hz[ZAXIS]);
            }

            if ( rfTelem2Enabled == true )
            {
            	// 200 Hz Gyros
            	cliPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro200Hz[ROLL ],
            	        			               sensors.gyro200Hz[PITCH],
            	        					       sensors.gyro200Hz[YAW  ]);
            }

            if ( rfTelem3Enabled == true )
            {
            	// Roll Rate, Roll Rate Command
            	cliPrintF("%9.4f, %9.4f\n", sensors.gyro200Hz[ROLL],
            			                    rxCommand[ROLL]);
            }

            if ( rfTelem4Enabled == true )
            {
            	// Pitch Rate, Pitch Rate Command
            	cliPrintF("%9.4f, %9.4f\n", sensors.gyro200Hz[PITCH],
            	            			    rxCommand[PITCH]);
            }

            if ( rfTelem5Enabled == true )
            {
            	// Yaw Rate, Yaw Rate Command
            	cliPrintF("%9.4f, %9.4f\n", sensors.gyro200Hz[YAW],
            	            	            rxCommand[YAW]);
            }

            if ( rfTelem6Enabled == true )
            {
            	// 200 Hz Attitudes
            	cliPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude200Hz[ROLL ],
            	        			               sensors.attitude200Hz[PITCH],
            	        			               sensors.attitude200Hz[YAW  ]);
            }

            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
        	frame_5Hz = false;

        	currentTime     = micros();
			deltaTime5Hz    = currentTime - previous5HzTime;
			previous5HzTime = currentTime;

        	executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
        	frame_1Hz = false;

        	currentTime     = micros();
			deltaTime1Hz    = currentTime - previous1HzTime;
			previous1HzTime = currentTime;

			if (execUp == false)
			    execUpCount++;

			if ((execUpCount == 5) && (execUp == false))
			{
				execUp = true;
				LED0_OFF;
				LED1_OFF;
			}

			executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }
}
Ejemplo n.º 15
0
void loop(void)
{
    static uint32_t loopTime;
#ifdef BARO
    static bool haveProcessedAnnexCodeOnce = false;
#endif

    updateRx();

    if (shouldProcessRx(currentTime)) {
        processRx();

#ifdef BARO
        // the 'annexCode' initialses rcCommand, updateAltHoldState depends on valid rcCommand data.
        if (haveProcessedAnnexCodeOnce) {
            if (sensors(SENSOR_BARO)) {
                updateAltHoldState();
            }
        }
#endif
    } else {
        // not processing rx this iteration
        executePeriodicTasks();
    }

    currentTime = micros();
    if (masterConfig.looptime == 0 || (int32_t)(currentTime - loopTime) >= 0) {
        loopTime = currentTime + masterConfig.looptime;

        computeIMU(&currentProfile.accelerometerTrims, masterConfig.mixerConfiguration);

        // Measure loop rate just after reading the sensors
        currentTime = micros();
        cycleTime = (int32_t)(currentTime - previousTime);
        previousTime = currentTime;

        annexCode();
#ifdef BARO
        haveProcessedAnnexCodeOnce = true;
#endif

#ifdef AUTOTUNE
        updateAutotuneState();
#endif

#ifdef MAG
        if (sensors(SENSOR_MAG)) {
        	updateMagHold();
        }
#endif

#ifdef BARO
        if (sensors(SENSOR_BARO)) {
            if (f.BARO_MODE) {
                updateAltHold();
            }
            debug[0] = rcCommand[THROTTLE];
        }
#endif

        if (currentProfile.throttle_correction_value && (f.ANGLE_MODE || f.HORIZON_MODE)) {
            rcCommand[THROTTLE] += calculateThrottleAngleCorrection(currentProfile.throttle_correction_value);
        }

#ifdef GPS
        if (sensors(SENSOR_GPS)) {
            if ((f.GPS_HOME_MODE || f.GPS_HOLD_MODE) && f.GPS_FIX_HOME) {
                updateGpsStateForHomeAndHoldMode();
            }
        }
#endif

        // PID - note this is function pointer set by setPIDController()
        pid_controller(
			&currentProfile.pidProfile,
			&currentProfile.controlRateConfig,
			masterConfig.max_angle_inclination,
			&currentProfile.accelerometerTrims
        );

        mixTable();
        writeServos();
        writeMotors();
    }

#ifdef TELEMETRY
    if (!cliMode && feature(FEATURE_TELEMETRY)) {
        handleTelemetry();
    }
#endif

#ifdef LED_STRIP
    if (feature(FEATURE_LED_STRIP)) {
        updateLedStrip();
    }
#endif
}
Ejemplo n.º 16
0
int main(void)
{
    ///////////////////////////////////////////////////////////////////////////

    uint32_t currentTime;

    systemReady = false;

    systemInit();

    systemReady = true;

    evrPush(EVR_StartingMain, 0);

    while (1)
    {
        evrCheck();

        ///////////////////////////////

        if (frame_50Hz)
        {
            frame_50Hz = false;

            currentTime      = micros();
            deltaTime50Hz    = currentTime - previous50HzTime;
            previous50HzTime = currentTime;

            processFlightCommands();

            if (eepromConfig.useMs5611 == true)
            {
                if (newTemperatureReading && newPressureReading)
                {
                    d1Value = d1.value;
                    d2Value = d2.value;

                    calculateMs5611Temperature();
                    calculateMs5611PressureAltitude();

                    newTemperatureReading = false;
                    newPressureReading    = false;
                }
            }
            else
            {
                if (newTemperatureReading && newPressureReading)
                {
                    uncompensatedTemperatureValue = uncompensatedTemperature.value;
                    uncompensatedPressureValue    = uncompensatedPressure.value;

                    calculateBmp085Temperature();
                    calculateBmp085PressureAltitude();

                    newTemperatureReading = false;
                    newPressureReading    = false;
                }
            }

            sensors.pressureAlt50Hz = firstOrderFilter(sensors.pressureAlt50Hz, &firstOrderFilters[PRESSURE_ALT_LOWPASS]);

            executionTime50Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            frame_10Hz = false;

            currentTime      = micros();
            deltaTime10Hz    = currentTime - previous10HzTime;
            previous10HzTime = currentTime;

            sensors.mag10Hz[XAXIS] = -((float)rawMag[XAXIS].value * magScaleFactor[XAXIS] - eepromConfig.magBias[XAXIS]);
            sensors.mag10Hz[YAXIS] =   (float)rawMag[YAXIS].value * magScaleFactor[YAXIS] - eepromConfig.magBias[YAXIS];
            sensors.mag10Hz[ZAXIS] = -((float)rawMag[ZAXIS].value * magScaleFactor[ZAXIS] - eepromConfig.magBias[ZAXIS]);

            newMagData = false;
            magDataUpdate = true;

            batMonTick();

            cliCom();

            if (eepromConfig.mavlinkEnabled == true)
            {
                mavlinkSendAttitude();
                mavlinkSendVfrHud();
            }

            executionTime10Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
            frame_500Hz = false;

            currentTime       = micros();
            deltaTime500Hz    = currentTime - previous500HzTime;
            previous500HzTime = currentTime;

            dt500Hz = (float)deltaTime500Hz * 0.000001f;  // For integrations in 500 Hz loop

            if (eepromConfig.useMpu6050 == true)
            {
                computeMpu6050TCBias();

                sensors.accel500Hz[XAXIS] =  ((float)accelData500Hz[XAXIS] - accelTCBias[XAXIS]) * MPU6050_ACCEL_SCALE_FACTOR;
                sensors.accel500Hz[YAXIS] = -((float)accelData500Hz[YAXIS] - accelTCBias[YAXIS]) * MPU6050_ACCEL_SCALE_FACTOR;
                sensors.accel500Hz[ZAXIS] = -((float)accelData500Hz[ZAXIS] - accelTCBias[ZAXIS]) * MPU6050_ACCEL_SCALE_FACTOR;

                sensors.gyro500Hz[ROLL ] =  ((float)gyroData500Hz[ROLL ] - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * MPU6050_GYRO_SCALE_FACTOR;
                sensors.gyro500Hz[PITCH] = -((float)gyroData500Hz[PITCH] - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * MPU6050_GYRO_SCALE_FACTOR;
                sensors.gyro500Hz[YAW  ] = -((float)gyroData500Hz[YAW  ] - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * MPU6050_GYRO_SCALE_FACTOR;
            }
            else
            {
                sensors.accel500Hz[XAXIS] = -((float)accelData500Hz[XAXIS] - eepromConfig.accelBias[XAXIS]) * eepromConfig.accelScaleFactor[XAXIS];
                sensors.accel500Hz[YAXIS] = -((float)accelData500Hz[YAXIS] - eepromConfig.accelBias[YAXIS]) * eepromConfig.accelScaleFactor[YAXIS];
                sensors.accel500Hz[ZAXIS] = -((float)accelData500Hz[ZAXIS] - eepromConfig.accelBias[ZAXIS]) * eepromConfig.accelScaleFactor[ZAXIS];

                // HJI sensors.accel500Hz[XAXIS] = firstOrderFilter(sensors.accel500Hz[XAXIS], &firstOrderFilters[ACCEL500HZ_X_LOWPASS]);
                // HJI sensors.accel500Hz[YAXIS] = firstOrderFilter(sensors.accel500Hz[YAXIS], &firstOrderFilters[ACCEL500HZ_Y_LOWPASS]);
                // HJI sensors.accel500Hz[ZAXIS] = firstOrderFilter(sensors.accel500Hz[ZAXIS], &firstOrderFilters[ACCEL500HZ_Z_LOWPASS]);

                computeMpu3050TCBias();

                sensors.gyro500Hz[ROLL ] =  ((float)gyroData500Hz[ROLL ]  - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * MPU3050_GYRO_SCALE_FACTOR;
                sensors.gyro500Hz[PITCH] = -((float)gyroData500Hz[PITCH]  - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * MPU3050_GYRO_SCALE_FACTOR;
                sensors.gyro500Hz[YAW  ] = -((float)gyroData500Hz[YAW  ]  - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * MPU3050_GYRO_SCALE_FACTOR;
            }

            MargAHRSupdate( sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                            sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                            sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                            magDataUpdate,
                            dt500Hz );

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeMotors();

            if (eepromConfig.receiverType == SPEKTRUM)
                writeServos();

            executionTime500Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
            frame_100Hz = false;

            currentTime       = micros();
            deltaTime100Hz    = currentTime - previous100HzTime;
            previous100HzTime = currentTime;

            dt100Hz = (float)deltaTime100Hz * 0.000001f;  // For integrations in 100 Hz loop

            sensors.accel100Hz[XAXIS] = sensors.accel500Hz[XAXIS];  // No sensor averaging so use the 500 Hz value
            sensors.accel100Hz[YAXIS] = sensors.accel500Hz[YAXIS];  // No sensor averaging so use the 500 Hz value
            sensors.accel100Hz[ZAXIS] = sensors.accel500Hz[ZAXIS];  // No sensor averaging so use the 500 Hz value

            // HJI sensors.accel100Hz[XAXIS] = firstOrderFilter(sensors.accel100Hz[XAXIS], &firstOrderFilters[ACCEL100HZ_X_LOWPASS]);
            // HJI sensors.accel100Hz[YAXIS] = firstOrderFilter(sensors.accel100Hz[YAXIS], &firstOrderFilters[ACCEL100HZ_Y_LOWPASS]);
            // HJI sensors.accel100Hz[ZAXIS] = firstOrderFilter(sensors.accel100Hz[ZAXIS], &firstOrderFilters[ACCEL100HZ_Z_LOWPASS]);

            createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            if (armed == true)
            {
                if ( eepromConfig.activeTelemetry == 1 )
                {
                    // 500 Hz Accels
                    telemPortPrintF("%9.4f, %9.4f, %9.4f\n", sensors.accel500Hz[XAXIS],
                                    sensors.accel500Hz[YAXIS],
                                    sensors.accel500Hz[ZAXIS]);
                }

                if ( eepromConfig.activeTelemetry == 2 )
                {
                    // 500 Hz Gyros
                    telemPortPrintF("%9.4f, %9.4f, %9.4f\n", sensors.gyro500Hz[ROLL ],
                                    sensors.gyro500Hz[PITCH],
                                    sensors.gyro500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 4 )
                {
                    // 500 Hz Attitudes
                    telemPortPrintF("%9.4f, %9.4f, %9.4f\n", sensors.attitude500Hz[ROLL ],
                                    sensors.attitude500Hz[PITCH],
                                    sensors.attitude500Hz[YAW  ]);
                }

                if ( eepromConfig.activeTelemetry == 8 )
                {
                    // Vertical Variables
                    telemPortPrintF("%9.4f, %9.4f, %9.4f, %9.4f\n", earthAxisAccels[ZAXIS],
                                    sensors.pressureAlt50Hz,
                                    hDotEstimate,
                                    hEstimate);
                }

                if ( eepromConfig.activeTelemetry == 16 )
                {
                    // Vertical Variables
                    telemPortPrintF("%9.4f, %9.4f, %9.4f,%1d, %9.4f, %9.4f\n", verticalVelocityCmd,
                                    hDotEstimate,
                                    hEstimate,
                                    verticalModeState,
                                    throttleCmd,
                                    eepromConfig.PID[HDOT_PID].iTerm);
                }

            }

            executionTime100Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
            frame_5Hz = false;

            currentTime     = micros();
            deltaTime5Hz    = currentTime - previous5HzTime;
            previous5HzTime = currentTime;

            if (batMonVeryLowWarning > 0)
            {
                BEEP_TOGGLE;
                batMonVeryLowWarning--;
            }

            executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
            frame_1Hz = false;

            currentTime     = micros();
            deltaTime1Hz    = currentTime - previous1HzTime;
            previous1HzTime = currentTime;

            if (execUp == false)
                execUpCount++;

            if ((execUpCount == 5) && (execUp == false))
            {
                execUp = true;

                LED0_OFF;
                LED1_OFF;

                pwmEscInit();

                homeData.magHeading = sensors.attitude500Hz[YAW];
            }

            if (batMonLowWarning > 0)
            {
                BEEP_TOGGLE;
                batMonLowWarning--;
            }

            if (eepromConfig.mavlinkEnabled == true)
            {
                mavlinkSendHeartbeat();
                mavlinkSendSysStatus();
            }

            executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}
Ejemplo n.º 17
0
int main(void)
{
    ///////////////////////////////////////////////////////////////////////////

    uint32_t currentTime;

	arm_matrix_instance_f32 a;
	arm_matrix_instance_f32 b;
	arm_matrix_instance_f32 x;

    systemReady = false;

    systemInit();

    systemReady = true;

    evrPush(EVR_StartingMain, 0);

    #ifdef _DTIMING

        #define LA1_ENABLE       GPIO_SetBits(GPIOA,   GPIO_Pin_4)
        #define LA1_DISABLE      GPIO_ResetBits(GPIOA, GPIO_Pin_4)
        #define LA4_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_5)
        #define LA4_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_5)
        #define LA2_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_2)
        #define LA2_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_2)
        #define LA3_ENABLE       GPIO_SetBits(GPIOC,   GPIO_Pin_3)
        #define LA3_DISABLE      GPIO_ResetBits(GPIOC, GPIO_Pin_3)

        GPIO_InitTypeDef GPIO_InitStructure;

        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB,   ENABLE);
        RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC,   ENABLE);

        GPIO_StructInit(&GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_4;
        GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
        GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
        GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOA, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_0 | GPIO_Pin_1;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOB, &GPIO_InitStructure);

        // Init pins
        GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_5;
      //GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_OUT;
      //GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
      //GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
      //GPIO_InitStructure.GPIO_PuPd  = GPIO_PuPd_NOPULL;

        GPIO_Init(GPIOC, &GPIO_InitStructure);

        // PB0_DISABLE;
        LA4_DISABLE;
        LA2_DISABLE;
        LA3_DISABLE;
        LA1_DISABLE;

    #endif

    while (1)
    {
        checkUsbActive(false);

        evrCheck();

        ///////////////////////////////

        if (frame_50Hz)
        {
            #ifdef _DTIMING
                LA2_ENABLE;
            #endif

            frame_50Hz = false;

            currentTime      = micros();
            deltaTime50Hz    = currentTime - previous50HzTime;
            previous50HzTime = currentTime;

            processFlightCommands();

            if (newTemperatureReading && newPressureReading)
            {
                d1Value = d1.value;
                d2Value = d2.value;

                calculateTemperature();
                calculatePressureAltitude();

                newTemperatureReading = false;
                newPressureReading    = false;
            }

            sensors.pressureAlt50Hz = firstOrderFilter(sensors.pressureAlt50Hz, &firstOrderFilters[PRESSURE_ALT_LOWPASS]);

            rssiMeasure();

            updateMax7456(currentTime, 0);

            executionTime50Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA2_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_10Hz)
        {
            #ifdef _DTIMING
                LA4_ENABLE;
            #endif

            frame_10Hz = false;

            currentTime      = micros();
            deltaTime10Hz    = currentTime - previous10HzTime;
            previous10HzTime = currentTime;

            if (newMagData == true)
            {
			    nonRotatedMagData[XAXIS] = (rawMag[XAXIS].value * magScaleFactor[XAXIS]) - eepromConfig.magBias[XAXIS + eepromConfig.externalHMC5883];
			    nonRotatedMagData[YAXIS] = (rawMag[YAXIS].value * magScaleFactor[YAXIS]) - eepromConfig.magBias[YAXIS + eepromConfig.externalHMC5883];
			    nonRotatedMagData[ZAXIS] = (rawMag[ZAXIS].value * magScaleFactor[ZAXIS]) - eepromConfig.magBias[ZAXIS + eepromConfig.externalHMC5883];

			    arm_mat_init_f32(&a, 3, 3, (float *)hmcOrientationMatrix);

			    arm_mat_init_f32(&b, 3, 1, (float *)nonRotatedMagData);

			    arm_mat_init_f32(&x, 3, 1,          sensors.mag10Hz);

			    arm_mat_mult_f32(&a, &b, &x);

				newMagData = false;
			    magDataUpdate = true;
            }

            decodeUbloxMsg();

            batMonTick();

            cliCom();

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendAttitude();
				mavlinkSendVfrHud();
			}

            executionTime10Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA4_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_500Hz)
        {
            #ifdef _DTIMING
                LA1_ENABLE;
            #endif

            frame_500Hz = false;

            currentTime       = micros();
            deltaTime500Hz    = currentTime - previous500HzTime;
            previous500HzTime = currentTime;

            TIM_Cmd(TIM10, DISABLE);
            timerValue = TIM_GetCounter(TIM10);
            TIM_SetCounter(TIM10, 0);
            TIM_Cmd(TIM10, ENABLE);

            dt500Hz = (float)timerValue * 0.0000005f;  // For integrations in 500 Hz loop

            computeMPU6000TCBias();

       	    nonRotatedAccelData[XAXIS] = ((float)accelSummedSamples500Hz[XAXIS] * 0.5f - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
       	    nonRotatedAccelData[YAXIS] = ((float)accelSummedSamples500Hz[YAXIS] * 0.5f - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
       	    nonRotatedAccelData[ZAXIS] = ((float)accelSummedSamples500Hz[ZAXIS] * 0.5f - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;

		    arm_mat_init_f32(&a, 3, 3, (float *)mpuOrientationMatrix);

		    arm_mat_init_f32(&b, 3, 1, (float *)nonRotatedAccelData);

		    arm_mat_init_f32(&x, 3, 1,          sensors.accel500Hz);

		    arm_mat_mult_f32(&a, &b, &x);

            nonRotatedGyroData[ROLL ] = ((float)gyroSummedSamples500Hz[ROLL]  * 0.5f - gyroRTBias[ROLL ] - gyroTCBias[ROLL ]) * GYRO_SCALE_FACTOR;
            nonRotatedGyroData[PITCH] = ((float)gyroSummedSamples500Hz[PITCH] * 0.5f - gyroRTBias[PITCH] - gyroTCBias[PITCH]) * GYRO_SCALE_FACTOR;
            nonRotatedGyroData[YAW  ] = ((float)gyroSummedSamples500Hz[YAW]   * 0.5f - gyroRTBias[YAW  ] - gyroTCBias[YAW  ]) * GYRO_SCALE_FACTOR;

		    arm_mat_init_f32(&a, 3, 3, (float *)mpuOrientationMatrix);

		    arm_mat_init_f32(&b, 3, 1, (float *)nonRotatedGyroData);

		    arm_mat_init_f32(&x, 3, 1,          sensors.gyro500Hz);

		    arm_mat_mult_f32(&a, &b, &x);

            MargAHRSupdate(sensors.gyro500Hz[ROLL],   sensors.gyro500Hz[PITCH],  sensors.gyro500Hz[YAW],
                           sensors.accel500Hz[XAXIS], sensors.accel500Hz[YAXIS], sensors.accel500Hz[ZAXIS],
                           sensors.mag10Hz[XAXIS],    sensors.mag10Hz[YAXIS],    sensors.mag10Hz[ZAXIS],
                           eepromConfig.accelCutoff,
                           magDataUpdate,
                           dt500Hz);

            magDataUpdate = false;

            computeAxisCommands(dt500Hz);
            mixTable();
            writeServos();
            writeMotors();

            executionTime500Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA1_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_100Hz)
        {
            #ifdef _DTIMING
                LA3_ENABLE;
            #endif

            frame_100Hz = false;

            currentTime       = micros();
            deltaTime100Hz    = currentTime - previous100HzTime;
            previous100HzTime = currentTime;

            TIM_Cmd(TIM11, DISABLE);
            timerValue = TIM_GetCounter(TIM11);
            TIM_SetCounter(TIM11, 0);
            TIM_Cmd(TIM11, ENABLE);

            dt100Hz = (float)timerValue * 0.0000005f;  // For integrations in 100 Hz loop

       	    nonRotatedAccelData[XAXIS] = ((float)accelSummedSamples100Hz[XAXIS] * 0.1f - accelTCBias[XAXIS]) * ACCEL_SCALE_FACTOR;
       	    nonRotatedAccelData[YAXIS] = ((float)accelSummedSamples100Hz[YAXIS] * 0.1f - accelTCBias[YAXIS]) * ACCEL_SCALE_FACTOR;
       	    nonRotatedAccelData[ZAXIS] = ((float)accelSummedSamples100Hz[ZAXIS] * 0.1f - accelTCBias[ZAXIS]) * ACCEL_SCALE_FACTOR;

		    arm_mat_init_f32(&a, 3, 3, (float *)mpuOrientationMatrix);

		    arm_mat_init_f32(&b, 3, 1, (float *)nonRotatedAccelData);

		    arm_mat_init_f32(&x, 3, 1,          sensors.accel100Hz);

		    arm_mat_mult_f32(&a, &b, &x);

            createRotationMatrix();
            bodyAccelToEarthAccel();
            vertCompFilter(dt100Hz);

            if (armed == true)
            {
				if ( eepromConfig.activeTelemetry == 1 )
                {
            	    // Roll Loop
					openLogPortPrintF("1,%1d,%9.4f,%9.4f,%9.4f,%9.4f,%9.4f,%9.4f\n", flightMode,
					        			                                             rateCmd[ROLL],
					        			                                             sensors.gyro500Hz[ROLL],
					        			                                             ratePID[ROLL],
                                                                                     attCmd[ROLL],
		                                                                             sensors.attitude500Hz[ROLL],
		                                                                             attPID[ROLL]);
                }

                if ( eepromConfig.activeTelemetry == 2 )
                {
            	    // Pitch Loop
					openLogPortPrintF("2,%1d,%9.4f,%9.4f,%9.4f,%9.4f,%9.4f,%9.4f\n", flightMode,
					        			                                             rateCmd[PITCH],
					        			                                             sensors.gyro500Hz[PITCH],
					        			                                             ratePID[PITCH],
                                                                                     attCmd[PITCH],
	                                                                                 sensors.attitude500Hz[PITCH],
	                                                                                 attPID[PITCH]);
                }

                if ( eepromConfig.activeTelemetry == 4 )
                {
            	    // Sensors
					openLogPortPrintF("3,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,%8.4f,\n", sensors.accel500Hz[XAXIS],
					        			                                                                              sensors.accel500Hz[YAXIS],
					        			                                                                              sensors.accel500Hz[ZAXIS],
					        			                                                                              sensors.gyro500Hz[ROLL],
                                                                                                                      sensors.gyro500Hz[PITCH],
	                                                                                                                  sensors.gyro500Hz[YAW],
	                                                                                                                  sensors.mag10Hz[XAXIS],
	                                                                                                                  sensors.mag10Hz[YAXIS],
	                                                                                                                  sensors.mag10Hz[ZAXIS],
	                                                                                                                  sensors.attitude500Hz[ROLL],
	                                                                                                                  sensors.attitude500Hz[PITCH],
	                                                                                                                  sensors.attitude500Hz[YAW]);

                }

                if ( eepromConfig.activeTelemetry == 8 )
                {

                }

                if ( eepromConfig.activeTelemetry == 16)
                {
               	    // Vertical Variables
            	    openLogPortPrintF("%9.4f, %9.4f, %9.4f, %4ld, %1d, %9.4f\n", verticalVelocityCmd,
            	    		                                                     hDotEstimate,
            	    		                                                     hEstimate,
            	    		                                                     ms5611Temperature,
            	    		                                                     verticalModeState,
            	    		                                                     throttleCmd);
                }
		    }

            executionTime100Hz = micros() - currentTime;

            #ifdef _DTIMING
                LA3_DISABLE;
            #endif
        }

        ///////////////////////////////

        if (frame_5Hz)
        {
            frame_5Hz = false;

            currentTime     = micros();
            deltaTime5Hz    = currentTime - previous5HzTime;
            previous5HzTime = currentTime;

            if (gpsValid() == true)
            {

			}

            //if (eepromConfig.mavlinkEnabled == true)
            //{
			//	mavlinkSendGpsRaw();
			//}

			if (batMonVeryLowWarning > 0)
			{
				LED1_TOGGLE;
				batMonVeryLowWarning--;
			}

            if (execUp == true)
                BLUE_LED_TOGGLE;

			executionTime5Hz = micros() - currentTime;
        }

        ///////////////////////////////

        if (frame_1Hz)
        {
            frame_1Hz = false;

            currentTime     = micros();
            deltaTime1Hz    = currentTime - previous1HzTime;
            previous1HzTime = currentTime;

            if (execUp == true)
                GREEN_LED_TOGGLE;

            if (execUp == false)
                execUpCount++;

            // Initialize sensors after being warmed up
            if ((execUpCount == 20) && (execUp == false))
            {
            	computeMPU6000RTData();
                initMag();
                initPressure();
			}

            // Initialize PWM and set mag after sensor warmup
            if ((execUpCount == 25) && (execUp == false))
            {
    			execUp = true;
    			pwmEscInit();
                homeData.magHeading = sensors.attitude500Hz[YAW];
			}

            if (batMonLowWarning > 0)
			{
				LED1_TOGGLE;
				batMonLowWarning--;
			}

            if (eepromConfig.mavlinkEnabled == true)
            {
				mavlinkSendHeartbeat();
				mavlinkSendSysStatus();
			}

            executionTime1Hz = micros() - currentTime;
        }

        ////////////////////////////////
    }

    ///////////////////////////////////////////////////////////////////////////
}