Ejemplo n.º 1
0
void pre_compute() {
	for(int i = 0; i < MAX; ++i) {
		invp[i] = mod_inverse(i, MOD);
	}
	for(int i = 0; i < MAX; ++i) {
		invp2[i] = mod_inverse(MOD-i, MOD);
	}
}
Ejemplo n.º 2
0
void generateKeys(long a, long b, long *e, long *d, long *c) {
  while((*c < 2) || (*c > 10000) || (*e < 2) || (*e > 10000) || (*d < 2) || (*d > 10000)) {
    *c = a * b;
    *e = coprime( (a - 1) * (b - 1));
    *d = mod_inverse(*e,  ((a - 1) * (b - 1)));
  }
}
Ejemplo n.º 3
0
// nCk mod p ; O(log_p n)
// nCk = n! / (k!(n-k)!)
int mod_comb(int n, int k, int p){
  if (n<0 || k<0 || n<k) return 0;
  int e1, e2, e3;
  int a1 = mod_fact(n, p, e1), a2 = mod_fact(k, p, e2), a3 = mod_fact(n-k, p, e3);
  if (e1 > e2+e3) return 0; // nCk is divided by p
  return a1 * mod_inverse(a2 * a3 % p, p) % p;
}
Ejemplo n.º 4
0
//Uses Lagrange interpolation method
//Complexity : O(klog k)
inline int summation(long long n, int k) {
	int sum = 0;
	vals.push_back(sum);
	for(int i = 0; i <= k; ++i) {
		sum = add(sum , power(i + 1, k, MOD), MOD);
		vals.push_back(sum);
	}
	if (n < vals.size()) return vals[n];
	n %= MOD;
	int ans = 0;
	int store = 1, temp;
	// Lagrange interpolation pre-computation
	for(int j = 1; j < vals.size(); ++j) {
		store = mul(store, mod_neg(n, j, MOD), MOD);
		store = mul(store, invp2[j], MOD);
	}
	for(int i = 0; i < vals.size(); ++i) {
		ans = add(ans, mul(vals[i], store, MOD), MOD);
		temp = mul(mod_neg(n, i, MOD), mod_inverse(mod_neg(n, (i + 1), MOD), MOD), MOD);
		store = mul(store, temp, MOD);
		temp = mul(mod_neg(i, ((int)vals.size() - 1), MOD), invp[i + 1], MOD);
		store = mul(store, temp, MOD);
	}
	return ans;
}
 long long chinese_remainder(vector <long long> ar, vector <long long> mods){
     long long x, y, res = 0, M = 1;
     for (int i = 0; i < ar.size(); i++) M *= mods[i];
     for (int i = 0; i < ar.size(); i++){
         x = M / mods[i], y = mod_inverse(x, mods[i]);
         res = (res + (((x * ar[i]) % M) * y)) % M;
     }
     return res;
 }
Ejemplo n.º 6
0
// computes x and y such that ax + by = c; on failure, x = y =-1
void linear_diophantine(int a, int b, int c, int &x, int &y) {
  int d = gcd(a,b);
  if (c%d) {
    x = y = -1;
  } else {
    x = c/d * mod_inverse(a/d, b/d);
    y = (c-a*x)/b;
  }
}
Ejemplo n.º 7
0
//A[i] * x % M[i] = B[i];
std::pair<int, int> linear_congruence(const std::vector<int> &A, const std::vector<int> &B, const std::vector<int> &M) {
        int x = 0, m = 1;
        for(int i = 0; i < A.size(); i++) {
                int a = A[i] * m, b = B[i] - A[i] * x, d = gcd(M[i], a);
                if(b % d != 0) return std::make_pair(0, -1); // no solutioin
                int t = b / d * mod_inverse(a / d, M[i] / d) % (M[i] / d);
                x = x + m * t;
                m *= M[i] / d;
        }
        x = (x + m)  % m;
        return std::make_pair(x % m, m);
}
Ejemplo n.º 8
0
void main() {
srand(time(NULL));
char *input = "Hello";
int *encOutput = (int *)malloc(sizeof(int) * strlen(input) + 1);
int c = 13 * 17;
int i; 
int a = 13;
int b = 17;
int e = coprime(12 * 16);
int m = totient(13 * 17);
int d = mod_inverse(e, 12 * 16); 
printf("totient = %d", totient(13 * 17));
printf("e = %d\n", coprime(12 * 16));



printf("d = %d\n", mod_inverse(coprime(12 * 16), 12 * 16));
int enc = encrypt(50, e,c);
int dec = decrypt(enc, d, c);
printf("enc = %d\n", enc);
printf("dec = %d\n", dec);


for(i = 0; i < strlen(input); i++) {
    encOutput[i] = encrypt(input[i], e, c);
     
  
}

printf("Hello has been translated into %d %d %d %d %d\n", encOutput[0], encOutput[1], encOutput[2], encOutput[3], encOutput[4]);


//    printf("coprime=%d\n",mod_inverse(3, 30));
//printf("%d", modulo(2349723,423424,12345));
//printf("mod inv = %d\n", extendedEuclid(442, 2278, &d, &x, &y));
//printf("d = %d \t x = %d \t y = %d\n", d,x,y);
//coprime(5);

}
T chinese_remainder_theorem(const std::vector<T>& a, const std::vector<T>& m) {
  auto solve2 = [](T a0, T m0, T a1, T m1) {
    T t = mod_inverse(m0 % m1, m1);
    assert(t != m1); // Otherwise no solution exists.
    t = mod_mul(mod_sub(a1, a0 % m1, m1), t, m1);
    return std::make_pair(a0 + m0 * t, m0 * m1);
  };
  std::pair<T, T> reduced{a[0], m[0]};
  for (size_t i = 1; i < a.size(); ++i) {
    reduced = solve2(reduced.first, reduced.second, a[i], m[i]);
    assert(reduced.first >= 0 && reduced.first < reduced.second);
  }
  return reduced.first;
}
Ejemplo n.º 10
0
void generate() {
	for(int i = 0; i < MAX; ++i) {
		invp[i] = mod_inverse(i, MOD);
	}
	S[0][0] = 1;
	for (int i = 1; i < MAX; ++i) {
		S[i][0] = 0;
		for (int j = 1; j <= i; ++j) {
			S[i][j] = mod((long long)S[i - 1][j] * j, (long long)MOD);
			S[i][j] = add(S[i][j], S[i-1][j-1], MOD);
		}
	}
	for(int i = 1; i < MAX; ++i) {
		for(int j = 1; j <= i; ++j) {
			S[i][j] = mod((long long)S[i][j] * invp[j + 1], (long long)MOD);
		}
	}
}
Ejemplo n.º 11
0
void generateKeys(long a, long b, long *e, long *d, long *c) {
    *c = a * b;
    *e = coprime( (a - 1) * (b - 1));
    *d = mod_inverse(*e,  ((a - 1) * (b - 1)));
}