Ejemplo n.º 1
0
static DD4hep::Geometry::Ref_t createHCal (
  DD4hep::Geometry::LCDD& lcdd,
  xml_h xmlElement,
  DD4hep::Geometry::SensitiveDetector sensDet
  ) {
  // Get the Gaudi message service and message stream:
  ServiceHandle<IMessageSvc> msgSvc("MessageSvc", "HCalConstruction");
  MsgStream lLog(&(*msgSvc), "HCalConstruction");

  xml_det_t xmlDet = xmlElement;
  std::string detName = xmlDet.nameStr();
  //Make DetElement
  DetElement hCal(detName, xmlDet.id());
  // Get status for the RecoGeometry what is status?
  // xml_comp_t xmlStatus = xmlDet.child(_U(status));
  // int status = xmlStatus.id();
  // add Extension to Detlement for the RecoGeometry
  // Let's skip this for now...
  // Det::DetCylinderVolume* detVolume = new Det::DetCylinderVolume(status);
  // hCal.addExtension<Det::IDetExtension>(detVolume);

  // Make volume that envelopes the whole barrel; set material to air
  Dimension dimensions(xmlDet.dimensions());
  DD4hep::Geometry::Tube envelopeShape(dimensions.rmin(), dimensions.rmax(), dimensions.dz());
  Volume envelopeVolume(detName, envelopeShape, lcdd.air());
  // Invisibility seems to be broken in visualisation tags, have to hardcode that
  // envelopeVolume.setVisAttributes(lcdd, dimensions.visStr());
  envelopeVolume.setVisAttributes(lcdd.invisible());

  // set the sensitive detector type to the DD4hep calorimeter
  sensDet.setType("SimpleCalorimeterSD");

  // Add structural support made of steel inside of HCal
  xml_comp_t xFacePlate = xmlElement.child("face_plate");
  double dRhoFacePlate = xFacePlate.thickness();
  double sensitiveBarrelRmin = dimensions.rmin() + dRhoFacePlate;
  DetElement facePlate("facePlate", 0);
  DD4hep::Geometry::Tube facePlateShape(dimensions.rmin(), sensitiveBarrelRmin, dimensions.dz());
  Volume facePlateVol("facePlate", facePlateShape, lcdd.material(xFacePlate.materialStr()));
  facePlateVol.setVisAttributes(lcdd, xFacePlate.visStr());
  PlacedVolume placedFacePlate = envelopeVolume.placeVolume(facePlateVol);
  placedFacePlate.addPhysVolID("facePlate", facePlate.id());
  facePlate.setPlacement(placedFacePlate);


  // Add structural support made of steel at both ends of HCal
  xml_comp_t xEndPlate = xmlElement.child("end_plate");
  double dZEndPlate = xEndPlate.thickness();

  DD4hep::Geometry::Tube endPlateShape(dimensions.rmin(), dimensions.rmax(), dZEndPlate);
  Volume endPlateVol("endPlate", endPlateShape, lcdd.material(xEndPlate.materialStr()));
  endPlateVol.setVisAttributes(lcdd, xEndPlate.visStr());

  DetElement endPlatePos("endPlate", 0);
  DD4hep::Geometry::Position posOffset(0, 0, dimensions.dz() -  dZEndPlate);
  PlacedVolume placedEndPlatePos = envelopeVolume.placeVolume(endPlateVol, posOffset);
  placedEndPlatePos.addPhysVolID("endPlatePos", endPlatePos.id());
  endPlatePos.setPlacement(placedEndPlatePos);

  DetElement endPlateNeg("endPlate", 1);
  DD4hep::Geometry::Position negOffset(0, 0, -dimensions.dz() +  dZEndPlate);
  PlacedVolume placedEndPlateNeg = envelopeVolume.placeVolume(endPlateVol, negOffset);
  placedEndPlateNeg.addPhysVolID("endPlateNeg", endPlateNeg.id());
  endPlateNeg.setPlacement(placedEndPlateNeg);


  // Hard-coded assumption that we have two different sequences for the modules
  std::vector<xml_comp_t> sequences = {xmlElement.child("sequence_a"), xmlElement.child("sequence_b")};
  // NOTE: This assumes that both have the same dimensions!
  Dimension moduleDimensions(sequences[0].dimensions());
  double dzModule = moduleDimensions.dz();

  // calculate the number of modules fitting in phi, Z and Rho
  unsigned int numModulesPhi = moduleDimensions.phiBins();
  unsigned int numModulesZ = static_cast<unsigned>(dimensions.dz() / dzModule);
  unsigned int numModulesR = static_cast<unsigned>((dimensions.rmax() - sensitiveBarrelRmin) / moduleDimensions.dr());
  lLog << MSG::DEBUG << "constructing " << numModulesPhi << " modules per ring in phi, "
                     << numModulesZ << " rings in Z, "
                     << numModulesR << " rings (layers) in Rho"
                     << numModulesR*numModulesZ*numModulesPhi << " modules" << endmsg;

  // Calculate correction along z based on the module size (can only have natural number of modules)
  double dzDetector = numModulesZ * dzModule + dZEndPlate;
  lLog << MSG::INFO << "correction of dz:" << dimensions.dz() - dzDetector << endmsg;

  // calculate the dimensions of one module:
  double dphi = 2 * dd4hep::pi / static_cast<double>(numModulesPhi);
  double tn = tan(dphi / 2.);
  double spacing = moduleDimensions.x();
  double dy0 = moduleDimensions.dz();
  double dz0 = moduleDimensions.dr() / 2.;

  double drWedge = cos(dphi / 2.) * (dimensions.rmax() - sensitiveBarrelRmin) * 0.5;

  double dxWedge1 = tn * sensitiveBarrelRmin - spacing;
  double dxWedge2 = tn * cos(dphi / 2.) * dimensions.rmax() - spacing;

  // First we construct one wedge with width of one module:
  Volume subWedgeVolume("subWedge", DD4hep::Geometry::Trapezoid(
        dxWedge1, dxWedge2, dzModule, dzModule, drWedge
      ), lcdd.material("Air")
  );
  for (unsigned int idxLayer = 0; idxLayer < numModulesR; ++idxLayer) {
    auto layerName = std::string("wedge") + DD4hep::XML::_toString(idxLayer, "layer%d");
    unsigned int sequenceIdx = idxLayer % 2;
    double rminLayer = idxLayer * moduleDimensions.dr();
    double rmaxLayer = (idxLayer + 1) * cos(dphi / 2.) * moduleDimensions.dr();
    double dx1 = tn * (rminLayer + sensitiveBarrelRmin) - spacing;
    double dx2 = tn * cos(dphi / 2.) * (rmaxLayer + sensitiveBarrelRmin) - spacing;
    // -drWedge to place it in the middle of the wedge-volume
    double rMiddle = rminLayer + 0.5 * moduleDimensions.dr() - drWedge;
    Volume moduleVolume(layerName, DD4hep::Geometry::Trapezoid(
        dx1, dx2, dy0, dy0, dz0
      ), lcdd.material("Air")
    );
    moduleVolume.setVisAttributes(lcdd.invisible());
    unsigned int idxSubMod = 0;
    // DetElement moduleDet(wedgeDet, layerName, idxLayer);
    double modCompZOffset = -moduleDimensions.dz();
    for (xml_coll_t xCompColl(sequences[sequenceIdx], _U(module_component)); xCompColl; ++xCompColl, ++idxSubMod) {
      xml_comp_t xComp = xCompColl;
      std::string subModuleName = layerName+DD4hep::XML::_toString(idxSubMod, "module_component%d");
      double dyComp = xComp.thickness();
      Volume modCompVol(subModuleName, DD4hep::Geometry::Trapezoid(
          dx1, dx2, dyComp, dyComp, dz0
        ), lcdd.material(xComp.materialStr())
      );
      if (xComp.isSensitive()) {
        modCompVol.setSensitiveDetector(sensDet);
      }
      modCompVol.setVisAttributes(lcdd, xComp.visStr());
      // modCompVol.setVisAttributes(lcdd.invisible());
      // DetElement modCompDet(wedgeDet, subModuleName, idxSubMod);
      DD4hep::Geometry::Position offset(0, modCompZOffset + dyComp + xComp.y_offset()*2, 0);
      PlacedVolume placedModCompVol = moduleVolume.placeVolume(modCompVol, offset);
      placedModCompVol.addPhysVolID("sub_module", idxSubMod);
      // modCompDet.setPlacement(placedModCompVol);
      modCompZOffset += xComp.thickness()*2 + xComp.y_offset()*2;
    }
    DD4hep::Geometry::Position modOffset(0, 0, rMiddle);
    PlacedVolume placedModuleVol = subWedgeVolume.placeVolume(moduleVolume, modOffset);
    placedModuleVol.addPhysVolID("layer", idxLayer);
    // moduleDet.setPlacement(placedModuleVol);
  }

  // Now we place the components along z within the wedge
  Volume wedgeVolume("wedge", DD4hep::Geometry::Trapezoid(
        dxWedge1, dxWedge2, dzDetector, dzDetector, drWedge
      ), lcdd.material("Air")
  );
  wedgeVolume.setVisAttributes(lcdd.invisible());

  for (unsigned int idxZRow = 0; idxZRow < numModulesZ; ++idxZRow) {
    double zOffset = -dzDetector + dZEndPlate * 2 + (2*idxZRow + 1) * dzModule;
    auto wedgeRowName = DD4hep::XML::_toString(idxZRow, "row%d");
    DD4hep::Geometry::Position wedgeOffset(0, zOffset, 0);
    PlacedVolume placedRowVolume = wedgeVolume.placeVolume(subWedgeVolume, wedgeOffset);
    placedRowVolume.addPhysVolID("row", idxZRow);
    // wedgeDet.setPlacement(placedWedgeVol);
  }

  // Finally we place all the wedges around phi
  for (unsigned int idxPhi = 0; idxPhi < numModulesPhi; ++idxPhi) {
    auto modName = DD4hep::XML::_toString(idxPhi, "mod%d");
    // Volume and DetElement for one row in Z
    DetElement wedgeDet(hCal, modName, idxPhi);
    // moduleVolume.setVisAttributes(lcdd, sequences[sequenceIdx].visStr());
    // moduleVolume.setVisAttributes(lcdd.invisible());
    // calculate position and rotation of this wedge;
    // first rotation due to default rotation of trapezoid
    double phi = 0.5 * dphi - idxPhi * dphi; // 0.5*dphi for middle of module
    double yPosModule = (sensitiveBarrelRmin + drWedge) * cos(phi);
    double xPosModule = (sensitiveBarrelRmin + drWedge) * sin(phi);
    DD4hep::Geometry::Position moduleOffset(xPosModule, yPosModule, 0);
    DD4hep::Geometry::Transform3D trans(
      DD4hep::Geometry::RotationX(-0.5*dd4hep::pi)*
      DD4hep::Geometry::RotationY(phi),
      moduleOffset
    );
    PlacedVolume placedWedgeVol = envelopeVolume.placeVolume(wedgeVolume, trans);
    placedWedgeVol.addPhysVolID("wedge", idxPhi);
    wedgeDet.setPlacement(placedWedgeVol);
  }

  //Place envelope (or barrel) volume
  Volume motherVol = lcdd.pickMotherVolume(hCal);
  PlacedVolume placedHCal = motherVol.placeVolume(envelopeVolume);
  placedHCal.addPhysVolID("system", hCal.id());
  hCal.setPlacement(placedHCal);
  return hCal;

}
Ejemplo n.º 2
0
static DD4hep::Geometry::Ref_t createTkLayoutTrackerBarrel(DD4hep::Geometry::LCDD& lcdd,
                                                           DD4hep::XML::Handle_t xmlElement,
                                                           DD4hep::Geometry::SensitiveDetector sensDet) {
  // shorthands
  DD4hep::XML::DetElement xmlDet = static_cast<DD4hep::XML::DetElement>(xmlElement);
  Dimension dimensions(xmlDet.dimensions());
  // get sensitive detector type from xml
  DD4hep::XML::Dimension sdTyp = xmlElement.child(_Unicode(sensitive));
  // sensitive detector used for all sensitive parts of this detector
  sensDet.setType(sdTyp.typeStr());

  // definition of top volume
  // has min/max dimensions of tracker for visualization etc.
  std::string detectorName = xmlDet.nameStr();
  DetElement topDetElement(detectorName, xmlDet.id());
  Acts::ActsExtension::Config barrelConfig;
  barrelConfig.isBarrel = true;
  // detElement owns extension
  Acts::ActsExtension* detWorldExt = new Acts::ActsExtension(barrelConfig);
  topDetElement.addExtension<Acts::IActsExtension>(detWorldExt);
  DD4hep::Geometry::Tube topVolumeShape(
      dimensions.rmin(), dimensions.rmax(), (dimensions.zmax() - dimensions.zmin()) * 0.5);
  Volume topVolume(detectorName, topVolumeShape, lcdd.air());
  topVolume.setVisAttributes(lcdd.invisible());

  // counts all layers - incremented in the inner loop over repeat - tags
  unsigned int layerCounter = 0;
  double integratedModuleComponentThickness = 0;
  double phi = 0;
  // loop over 'layer' nodes in xml
  DD4hep::XML::Component xLayers = xmlElement.child(_Unicode(layers));
  for (DD4hep::XML::Collection_t xLayerColl(xLayers, _U(layer)); nullptr != xLayerColl; ++xLayerColl) {
    DD4hep::XML::Component xLayer = static_cast<DD4hep::XML::Component>(xLayerColl);
    DD4hep::XML::Component xRods = xLayer.child("rods");
    DD4hep::XML::Component xRodEven = xRods.child("rodOdd");
    DD4hep::XML::Component xRodOdd = xRods.child("rodEven");
    DD4hep::XML::Component xModulesEven = xRodEven.child("modules");
    DD4hep::XML::Component xModulePropertiesOdd = xRodOdd.child("moduleProperties");
    DD4hep::XML::Component xModulesOdd = xRodOdd.child("modules");
    DD4hep::Geometry::Tube layerShape(xLayer.rmin(), xLayer.rmax(), dimensions.zmax());
    Volume layerVolume("layer", layerShape, lcdd.material("Air"));
    layerVolume.setVisAttributes(lcdd.invisible());
    PlacedVolume placedLayerVolume = topVolume.placeVolume(layerVolume);
    placedLayerVolume.addPhysVolID("layer", layerCounter);
    DetElement lay_det(topDetElement, "layer" + std::to_string(layerCounter), layerCounter);
    Acts::ActsExtension::Config layConfig;
    layConfig.isLayer = true;
    // the local coordinate systems of modules in dd4hep and acts differ
    // see http://acts.web.cern.ch/ACTS/latest/doc/group__DD4hepPlugins.html
    layConfig.axes = "XzY"; // correct translation of local x axis in dd4hep to local x axis in acts
    // detElement owns extension
    Acts::ActsExtension* layerExtension = new Acts::ActsExtension(layConfig);
    lay_det.addExtension<Acts::IActsExtension>(layerExtension);
    lay_det.setPlacement(placedLayerVolume);
    DD4hep::XML::Component xModuleComponentsOdd = xModulePropertiesOdd.child("components");
    integratedModuleComponentThickness = 0;
    int moduleCounter = 0;
    Volume moduleVolume;
    for (DD4hep::XML::Collection_t xModuleComponentOddColl(xModuleComponentsOdd, _U(component));
         nullptr != xModuleComponentOddColl;
         ++xModuleComponentOddColl) {
      DD4hep::XML::Component xModuleComponentOdd = static_cast<DD4hep::XML::Component>(xModuleComponentOddColl);
      moduleVolume = Volume("module",
                            DD4hep::Geometry::Box(0.5 * xModulePropertiesOdd.attr<double>("modWidth"),
                                                  0.5 * xModuleComponentOdd.thickness(),
                                                  0.5 * xModulePropertiesOdd.attr<double>("modLength")),
                            lcdd.material(xModuleComponentOdd.materialStr()));
      unsigned int nPhi = xRods.repeat();
      DD4hep::XML::Handle_t currentComp;
      for (unsigned int phiIndex = 0; phiIndex < nPhi; ++phiIndex) {
        double lX = 0;
        double lY = 0;
        double lZ = 0;
        if (0 == phiIndex % 2) {
          phi = 2 * M_PI * static_cast<double>(phiIndex) / static_cast<double>(nPhi);
          currentComp = xModulesEven;
        } else {
          currentComp = xModulesOdd;
        }
        for (DD4hep::XML::Collection_t xModuleColl(currentComp, _U(module)); nullptr != xModuleColl; ++xModuleColl) {
          DD4hep::XML::Component xModule = static_cast<DD4hep::XML::Component>(xModuleColl);
          double currentPhi = atan2(xModule.Y(), xModule.X());
          double componentOffset =  integratedModuleComponentThickness - 0.5 * xModulePropertiesOdd.attr<double>("modThickness") + 0.5 * xModuleComponentOdd.thickness();
          lX = xModule.X() + cos(currentPhi) * componentOffset;
          lY = xModule.Y() + sin(currentPhi) * componentOffset;
          lZ = xModule.Z();
          DD4hep::Geometry::Translation3D moduleOffset(lX, lY, lZ);
          DD4hep::Geometry::Transform3D lTrafo(DD4hep::Geometry::RotationZ(atan2(lY,  lX) + 0.5 * M_PI), moduleOffset);
          DD4hep::Geometry::RotationZ lRotation(phi);
          PlacedVolume placedModuleVolume = layerVolume.placeVolume(moduleVolume, lRotation * lTrafo);
          if (xModuleComponentOdd.isSensitive()) {
            placedModuleVolume.addPhysVolID("module", moduleCounter);
            moduleVolume.setSensitiveDetector(sensDet);
            DetElement mod_det(lay_det, "module" + std::to_string(moduleCounter), moduleCounter);
            mod_det.setPlacement(placedModuleVolume);
            ++moduleCounter;
          }
        }
      }
      integratedModuleComponentThickness += xModuleComponentOdd.thickness();
    }
    ++layerCounter;
  }
  Volume motherVol = lcdd.pickMotherVolume(topDetElement);
  PlacedVolume placedGenericTrackerBarrel = motherVol.placeVolume(topVolume);
  placedGenericTrackerBarrel.addPhysVolID("system", topDetElement.id());
  topDetElement.setPlacement(placedGenericTrackerBarrel);
  return topDetElement;
}
Ejemplo n.º 3
0
static DD4hep::Geometry::Ref_t createGenericTrackerBarrel(DD4hep::Geometry::LCDD& lcdd,
                                                          DD4hep::XML::Handle_t xmlElement,
                                                          DD4hep::Geometry::SensitiveDetector sensDet) {
  // shorthands
  DD4hep::XML::DetElement xmlDet = static_cast<DD4hep::XML::DetElement>(xmlElement);
  Dimension dimensions(xmlDet.dimensions());
  // get sensitive detector type from xml
  DD4hep::XML::Dimension sdTyp = xmlElement.child("sensitive");
  if (xmlDet.isSensitive()) {
    // sensitive detector used for all sensitive parts of this detector
    sensDet.setType(sdTyp.typeStr());
  }
  // definition of top volume
  // has min/max dimensions of tracker for visualization etc.
  std::string detectorName = xmlDet.nameStr();
  DetElement topDetElement(detectorName, xmlDet.id());
  DD4hep::Geometry::Tube topVolumeShape(dimensions.rmin(), dimensions.rmax(), dimensions.dz());
  Volume topVolume(detectorName, topVolumeShape, lcdd.air());
  topVolume.setVisAttributes(lcdd.invisible());

  // counts all layers - incremented in the inner loop over repeat - tags
  unsigned int layerCounter = 0;
  // loop over 'layer' nodes in xml
  for (DD4hep::XML::Collection_t xLayerColl(xmlElement, _U(layers)); nullptr != xLayerColl; ++xLayerColl) {
    DD4hep::XML::Component xLayer = static_cast<DD4hep::XML::Component>(xLayerColl);

    DD4hep::XML::Component xModuleComponents = xmlElement.child("module_components");
    DD4hep::XML::Component xModule =
        utils::getNodeByStrAttr(xmlElement, "module", "name", xLayer.attr<std::string>("module"));

    // optional parameters
    double stereo_offset = utils::getAttrValueWithFallback(xLayer, "stereo_offset", 0.0);
    double module_twist_angle = utils::getAttrValueWithFallback(xLayer, "module_twist_angle", 0.1 * M_PI);
    double stereo_module_overlap = utils::getAttrValueWithFallback(xLayer, "stereo_module_overlap", 0.0);

    // get total thickness of module
    unsigned int idxSubMod = 0;
    double totalModuleComponentThickness = 0;
    for (DD4hep::XML::Collection_t xCompColl(xModuleComponents, _U(module_component)); nullptr != xCompColl;
         ++xCompColl, ++idxSubMod) {
      DD4hep::XML::Component xComp = static_cast<DD4hep::XML::Component>(xCompColl);
      totalModuleComponentThickness += xComp.thickness();
    }
    // now that thickness is known: define module components volumes
    idxSubMod = 0;
    double integratedModuleComponentThickness = 0;
    std::vector<Volume> moduleComponentVector;
    for (DD4hep::XML::Collection_t xCompColl(xModuleComponents, _U(module_component)); nullptr != xCompColl;
         ++xCompColl, ++idxSubMod) {
      DD4hep::XML::Component xComp = static_cast<DD4hep::XML::Component>(xCompColl);
      std::string moduleComponentName = "layer" + std::to_string(layerCounter) + "_rod_module_component" +
          std::to_string(idxSubMod) + "_" + xComp.materialStr();
      Volume moduleComponentVolume(moduleComponentName,
                                   DD4hep::Geometry::Box(xModule.width(), xComp.thickness(), xModule.length()),
                                   lcdd.material(xComp.materialStr()));
      moduleComponentVolume.setVisAttributes(lcdd, xComp.visStr());
      if (xComp.isSensitive()) {
        moduleComponentVolume.setSensitiveDetector(sensDet);
      }
      moduleComponentVector.push_back(moduleComponentVolume);
    }

    // definition of module volume (smallest independent subdetector)
    // define the module whose name was given in the "layer" xml Element
    Volume moduleVolume("module", DD4hep::Geometry::Box(xModule.width(), xModule.thickness(), xModule.length()),
                        lcdd.material("Air"));
    moduleVolume.setVisAttributes(lcdd, xModule.visStr());

    // definition of rod volume (longitudinal arrangement of modules)
    Volume rodVolume("GenericTrackerBarrel_layer" + std::to_string(layerCounter) + "_rod",
                     DD4hep::Geometry::Box(xModule.width(), xModule.thickness(), xLayer.dz()),
                     lcdd.material("Air"));
    rodVolume.setVisAttributes(lcdd.invisible());

    /// @todo: allow for more than one type of module components
    // analogous to module
    // place module substructure in module
    std::string moduleComponentName = "moduleComponent";
    idxSubMod = 0;
    for (DD4hep::XML::Collection_t xCompColl(xModuleComponents, _U(module_component)); nullptr != xCompColl;
         ++xCompColl, ++idxSubMod) {
      DD4hep::XML::Component xComp = static_cast<DD4hep::XML::Component>(xCompColl);
      DD4hep::Geometry::Position offset(0, -0.5 * totalModuleComponentThickness + integratedModuleComponentThickness,
                                        0);
      integratedModuleComponentThickness += xComp.thickness();
      PlacedVolume placedModuleComponentVolume = moduleVolume.placeVolume(moduleComponentVector[idxSubMod], offset);
      placedModuleComponentVolume.addPhysVolID("module_component", idxSubMod);
    }

    // handle repeat attribute in xml
    // "repeat" layers  equidistant between rmin and rmax
    double numRepeat = xLayer.repeat();
    double layerThickness = (xLayer.rmax() - xLayer.rmin()) / numRepeat;
    double layer_rmin = xLayer.rmin();
    unsigned int nPhi = 0;
    double r = 0;
    double phi = 0;
    // loop over repeated layers defined by one layer tag
    for (unsigned int repeatIndex = 0; repeatIndex < numRepeat; ++repeatIndex) {
      ++layerCounter;
      // let r be the middle between two equidistant layer boundaries
      r = layer_rmin + (0.5 + repeatIndex) * layerThickness;
      // definition of layer volumes
      DD4hep::Geometry::Tube layerShape(r - 0.5*layerThickness, r + 0.5*layerThickness, xLayer.dz());
      std::string layerName = "layer" + std::to_string(layerCounter);
      Volume layerVolume(layerName, layerShape, lcdd.material("Silicon"));
      layerVolume.setVisAttributes(lcdd.invisible());
      PlacedVolume placedLayerVolume = topVolume.placeVolume(layerVolume);
      placedLayerVolume.addPhysVolID("layer", layerCounter);
      // approximation of tklayout values
      double phiOverlapFactor = utils::getAttrValueWithFallback(xLayer, "phi_overlap_factor", 1.15);
      nPhi = static_cast<unsigned int>( phiOverlapFactor * 2 * M_PI * r / (2 * xModule.width()));
      for (unsigned int phiIndex = 0; phiIndex < nPhi; ++phiIndex) {
        phi = 2 * M_PI * static_cast<double>(phiIndex) / static_cast<double>(nPhi);
        DD4hep::Geometry::Translation3D lTranslation(r * cos(phi), r * sin(phi), 0);
        DD4hep::Geometry::RotationZ lRotation(phi + module_twist_angle + 0.5 * M_PI);
        PlacedVolume placedRodVolume = layerVolume.placeVolume(rodVolume, lTranslation * lRotation);
        placedRodVolume.addPhysVolID("rod", phiIndex);
      }
    }
    // placement of modules within rods
    unsigned int zRepeat = static_cast<int>(xLayer.dz() / (xModule.length() - stereo_module_overlap));
    // stereo overlap
    for (unsigned int zIndex = 0; zIndex < zRepeat; ++zIndex) {
      stereo_offset *= -1.;
      DD4hep::Geometry::Position moduleOffset(0, stereo_offset,
                                              zIndex * 2 * (xModule.length() - stereo_module_overlap) - xLayer.dz() +
                                                  xModule.length() - stereo_module_overlap);
      PlacedVolume placedModuleVolume = rodVolume.placeVolume(moduleVolume, moduleOffset);
      placedModuleVolume.addPhysVolID("module", zIndex);
    }
  }
  Volume motherVol = lcdd.pickMotherVolume(topDetElement);
  PlacedVolume placedGenericTrackerBarrel = motherVol.placeVolume(topVolume);
  placedGenericTrackerBarrel.addPhysVolID("system", topDetElement.id());
  topDetElement.setPlacement(placedGenericTrackerBarrel);
  return topDetElement;
}