/*-------------------------------------------------------------------------*/
static void 
xydata_init(xydata_t *xydata, uint32 num_lattice_primes, 
		lattice_t *lattice_xyz, int64 z_base)
{
	uint32 i, j, k, m, n;

	for (i = 0; i < num_lattice_primes; i++) {

		xydata_t *curr_xydata = xydata + i;
		uint32 num_powers = curr_xydata->num_powers;

		for (j = 0; j < num_powers; j++) {
			xypower_t *curr_xypower = curr_xydata->powers + j;
			uint32 num_roots = curr_xypower->num_roots;

			uint32 p = curr_xypower->power;
			uint32 latsize_mod = curr_xypower->latsize_mod;
			uint32 y_mod_p = lattice_xyz->y % p;
			int64 z_start = z_base + lattice_xyz->z;
			int32 z_start_mod = z_start % p;
			uint32 z_mod_p = (z_start_mod < 0) ? 
					(z_start_mod + (int32)p) : z_start_mod;

			for (k = 0; k < num_roots; k++) {
				xyprog_t *curr_xyprog = curr_xypower->roots + k;

				uint8 *invtable_y = curr_xyprog->invtable_y;
				uint32 start = curr_xyprog->base_start;
				uint32 resclass = curr_xyprog->resclass;
				uint32 resclass2 = mp_modmul_1(resclass, 
							resclass, p);
				uint32 ytmp = y_mod_p;
				uint32 stride_y = mp_modmul_1(resclass, 
							latsize_mod, p);

				curr_xyprog->stride_z = mp_modmul_1(resclass2, 
							latsize_mod, p);

				start = mp_modsub_1(start, 
						mp_modmul_1(resclass, 
							y_mod_p, p), p);
				curr_xyprog->start = mp_modsub_1(start, 
						mp_modmul_1(resclass2, 
							z_mod_p, p), p);

				for (m = n = 0; m < p; m++) {
					invtable_y[ytmp] = n;
					ytmp = mp_modadd_1(ytmp, 
							latsize_mod, p);
					n = mp_modadd_1(n, stride_y, p);
				}
			}
		}
	}
}
Ejemplo n.º 2
0
Archivo: makefb.c Proyecto: pstach/gls
/*------------------------------------------------------------------*/
u_int32_t poly_get_zeros_and_mult(u_int32_t *zeros, u_int32_t *mult, mpzpoly_t _f, u_int32_t p)
{
	u_int32_t i;
	u_int32_t num_roots;
	poly_t f;

	num_roots = poly_get_zeros(zeros, _f, p, 0);
	if (num_roots == 0)
		return num_roots;

	poly_reduce_mod_p(f, _f, p);
	for (i = 0; i < num_roots; i++)
		mult[i] = 0;
	if (f->degree == num_roots)
		return num_roots;

	for (i = 0; i < num_roots; i++) {

		poly_t g, r;
		u_int32_t root = zeros[i];

		g->degree = 2;
		g->coef[0] = mp_modmul_1(root, root, p);
		g->coef[1] = p - mp_modadd_1(root, root, p);
		g->coef[2] = 1;

		poly_mod(r, f, g, p);
		if (r->degree == 0)
			mult[i] = 1;
	}
	return num_roots;
}
Ejemplo n.º 3
0
Archivo: makefb.c Proyecto: pstach/gls
static void poly_modmul(poly_t res, poly_t a, poly_t b, poly_t mod, u_int32_t p)
{
	u_int32_t i, j;
	poly_t prod;

	for (i = 0; i <= a->degree; i++)
		prod->coef[i] = mp_modmul_1(a->coef[i], b->coef[0], p);

	for (i = 1; i <= b->degree; i++)
	{
		for (j = 0; j < a->degree; j++)
		{
			u_int32_t c = mp_modmul_1(a->coef[j], b->coef[i], p);
			prod->coef[i+j] = mp_modadd_1(prod->coef[i+j], c, p);
		}
		prod->coef[i+j] = mp_modmul_1(a->coef[j], b->coef[i], p);
	}

	prod->degree = a->degree + b->degree;
	poly_fix_degree(prod);
	poly_mod(res, prod, mod, p);
	return;
}
Ejemplo n.º 4
0
/*-------------------------------------------------------------------*/
static uint32 verify_product(gmp_poly_t *gmp_prod, abpair_t *abpairs, 
			uint32 num_relations, uint32 q, mp_t *c, 
			mp_poly_t *alg_poly) {

	/* a sanity check on the computed value of S(x): for
	   a small prime q for which alg_poly is irreducible,
	   verify that gmp_prod mod q equals the product
	   mod q of the relations in abpairs[]. The latter can
	   be computed very quickly */

	uint32 i, j;
	uint32 c_mod_q = mp_mod_1(c, q);
	uint32 d = alg_poly->degree;
	uint32 ref_prod[MAX_POLY_DEGREE];
	uint32 prod[MAX_POLY_DEGREE];
	uint32 mod[MAX_POLY_DEGREE];
	uint32 accum[MAX_POLY_DEGREE + 1];

	/* compute the product mod q directly. First initialize
	   and reduce the coefficients of alg_poly and gmp_prod mod q */

	for (i = 0; i < d; i++) {
		prod[i] = 0;
		ref_prod[i] = mpz_fdiv_ui(gmp_prod->coeff[i],
					(unsigned long)q);
		mod[i] = mp_mod_1(&alg_poly->coeff[i].num, q);
		if (alg_poly->coeff[i].sign == NEGATIVE && mod[i] > 0) {
			mod[i] = q - mod[i];
		}
	}
	prod[0] = 1;

	/* multiply the product by each relation in
	   turn, modulo q */

	for (i = 0; i < num_relations; i++) {
		int64 a = abpairs[i].a;
		uint32 b = q - (abpairs[i].b % q);
		uint32 ac;

		a = a % (int64)q;
		if (a < 0)
			a += q;
		ac = mp_modmul_1((uint32)a, c_mod_q, q);

		for (j = accum[0] = 0; j < d; j++) {
			accum[j+1] = mp_modmul_1(prod[j], b, q);
			accum[j] = mp_modadd_1(accum[j],
					mp_modmul_1(ac, prod[j], q), q);
		}

		for (j = 0; j < d; j++) {
			prod[j] = mp_modsub_1(accum[j],
					mp_modmul_1(accum[d], mod[j], q), q);
		}
	}

	/* do the polynomial compare */

	for (i = 0; i < d; i++) {
		if (ref_prod[i] != prod[i])
			break;
	}
	if (i == d)
		return 1;
	return 0;
}
Ejemplo n.º 5
0
Archivo: makefb.c Proyecto: pstach/gls
/*------------------------------------------------------------------*/
static void get_zeros_rec(u_int32_t *zeros, u_int32_t shift,
			u_int32_t *num_zeros, poly_t f, u_int32_t p) {

	/* get the zeros of a poly, f, that is known to split
	   completely over Z/pZ. Many thanks to Bob Silverman
	   for a neat implementation of Cantor-Zassenhaus splitting */

	poly_t g, xpow;
	u_int32_t degree1, degree2;

	/* base cases of the recursion: we can find the roots
	   of linear and quadratic polynomials immediately */

	if (f->degree == 1) {
		u_int32_t w = f->coef[1];
		if (w != 1) {
			w = mp_modinv_1(w, p);
			zeros[(*num_zeros)++] = mp_modmul_1(p - f->coef[0],w,p);
		}
		else {
			zeros[(*num_zeros)++] = (f->coef[0] == 0 ? 0 :
							p - f->coef[0]);
		}
		return;
	}
	else if (f->degree == 2) {

		/* if f is a quadratic polynomial, then it will
		   always have two distinct nonzero roots or else
		   we wouldn't have gotten to this point. The two
		   roots are the solution of a general quadratic
		   equation, mod p */

		u_int32_t d = mp_modmul_1(f->coef[0], f->coef[2], p);
		u_int32_t root1 = p - f->coef[1];
		u_int32_t root2 = root1;
		u_int32_t ainv = mp_modinv_1(
				mp_modadd_1(f->coef[2], f->coef[2], p),
				p);

		d = mp_modsub_1(mp_modmul_1(f->coef[1], f->coef[1], p),
				mp_modmul_1(4, d, p),
				p);
		d = mp_modsqrt_1(d, p);

		root1 = mp_modadd_1(root1, d, p);
		root2 = mp_modsub_1(root2, d, p);
		zeros[(*num_zeros)++] = mp_modmul_1(root1, ainv, p);
		zeros[(*num_zeros)++] = mp_modmul_1(root2, ainv, p);
		return;
	}

	/* For an increasing sequence of integers 's', compute
	   the polynomial gcd((x-s)^(p-1)/2 - 1, f). If the result is
	   not g = 1 or g = f, this is a nontrivial splitting
	   of f. References require choosing s randomly, but however
	   s is chosen there is a 50% chance that it will split f.
	   Since only 0 <= s < p is valid, we choose each s in turn;
	   choosing random s allows the possibility that the same
	   s gets chosen twice (mod p), which would waste time */

	while (shift < p) {
		poly_xpow(xpow, shift, (p-1)/2, f, p);

		poly_cp(g, xpow);
		g->coef[0] = mp_modsub_1(g->coef[0], 1, p);
		poly_fix_degree(g);

		poly_gcd(g, f, p);

		if (g->degree > 0)
			break;
		shift++;
	}

	/* f was split; repeat the splitting process on
	   the two halves of f. The linear factors of f are
	   either somewhere in x^((p-1)/2) - 1, in
	   x^((p-1)/2) + 1, or 'shift' itself is a linear
	   factor. Test each of these possibilities in turn.
	   In the first two cases, begin trying values of s
	   strictly greater than have been tried thus far */

	degree1 = g->degree;
	get_zeros_rec(zeros, shift + 1, num_zeros, g, p);

	poly_cp(g, xpow);
	g->coef[0] = mp_modadd_1(g->coef[0], 1, p);
	poly_fix_degree(g);
	poly_gcd(g, f, p);
	degree2 = g->degree;

	if (degree2 > 0)
		get_zeros_rec(zeros, shift + 1, num_zeros, g, p);

	if (degree1 + degree2 < f->degree)
		zeros[(*num_zeros)++] = (shift == 0 ? 0 : p - shift);
}