Ejemplo n.º 1
0
unsigned long combine_large_primes(QS_t * qs_inf, linalg_t * la_inf, poly_t * poly_inf, 
                                                       FILE *COMB, mpz_t factor)
{
  char new_relation[MPQS_STRING_LENGTH], buf[MPQS_STRING_LENGTH];
  mpqs_lp_entry e[2]; /* we'll use the two alternatingly */
  unsigned long *ei; 
  long ei_size = qs_inf->num_primes;
  mpz_t * N = &qs_inf->mpz_n;
  long old_q;
  mpz_t inv_q, Y1, Y2, new_Y, new_Y1;
  mpz_init(inv_q); mpz_init(Y1); mpz_init(Y2); mpz_init(new_Y); mpz_init(new_Y1);
  long i, l, c = 0;
  unsigned long newrels = 0;

  if (!fgets(buf, MPQS_STRING_LENGTH, COMB)) return 0; /* should not happen */

  ei = (unsigned long *) malloc(sizeof(unsigned long)*ei_size);
  
  /* put first lp relation in row 0 of e */
  set_lp_entry(&e[0], buf);

  i = 1; /* second relation will go into row 1 */
  old_q = e[0].q;
  mpz_set_ui(inv_q, old_q);
  while (!mpz_invert(inv_q, inv_q, *N)) /* can happen */
  {
    /* We have found a factor. It could be N when N is quite small;  
       or we might just have found a divisor by sheer luck. */
    mpz_gcd_ui(inv_q, *N, old_q);
    if (!mpz_cmp(inv_q, *N)) /* pity */
    {
      if (!fgets(buf, MPQS_STRING_LENGTH, COMB)) { return 0; }
      set_lp_entry(&e[0], buf);
      old_q = e[0].q; 
      mpz_set_ui(inv_q, old_q);
      continue;
    }
    mpz_set(factor, inv_q);
    free(ei);
    mpz_clear(inv_q); mpz_clear(Y1); mpz_clear(Y2); mpz_clear(new_Y); mpz_clear(new_Y1);
    return c;
  }
  gmp_sscanf(e[0].Y, "%Zd", Y1);
  
  while (fgets(buf, MPQS_STRING_LENGTH, COMB))
  {
    set_lp_entry(&e[i], buf);
    if (e[i].q != old_q)
    {
      /* switch to combining a new bunch, swapping the rows */
      old_q = e[i].q;
      mpz_set_ui(inv_q, old_q);
      while (!mpz_invert(inv_q, inv_q, *N)) /* can happen */
      {
        mpz_gcd_ui(inv_q, *N, old_q);
        if (!mpz_cmp(inv_q, *N)) /* pity */
        {
          old_q = -1; /* sentinel */
          continue; /* discard this combination */
        }
        mpz_set(factor, inv_q);
        free(ei);
        mpz_clear(inv_q); mpz_clear(Y1); mpz_clear(Y2); mpz_clear(new_Y); mpz_clear(new_Y1);
        return c;
      }
      gmp_sscanf(e[i].Y, "%Zd", Y1);
      i = 1 - i; /* subsequent relations go to other row */
      continue;
    }
    /* count and combine the two we've got, and continue in the same row */
    memset((void *)ei, 0, ei_size * sizeof(long));
    set_exponents(ei, e[0].E);
    set_exponents(ei, e[1].E);
    gmp_sscanf(e[i].Y, "%Zd", Y2);
    
    if (mpz_cmpabs(Y1,Y2)!=0)
    {
       unsigned long * small = la_inf->small;
       fac_t * factor = la_inf->factor;
       unsigned long num_factors = 0;
       unsigned long small_primes = qs_inf->small_primes;
       unsigned long num_primes = qs_inf->num_primes;
       
       c++;
       mpz_mul(new_Y, Y1, Y2);
       mpz_mul(new_Y, new_Y, inv_q);
       mpz_mod(new_Y, new_Y, *N);
    
       mpz_sub(new_Y1, *N, new_Y);
       if (mpz_cmpabs(new_Y1, new_Y) < 0) mpz_set(new_Y, new_Y1);
    
       for (l = 0; l < small_primes; l++)
       {
          small[l] = ei[l];
       }
       for (l = small_primes; l < num_primes; l++)
       {
          if (ei[l])
          {
             factor[num_factors].ind = l;
             factor[num_factors].exp = ei[l];
             num_factors++;
          }
       }
       la_inf->num_factors = num_factors;
          
       newrels += insert_relation(qs_inf, la_inf, poly_inf, new_Y); 
    }
  } /* while */

  free(ei);
  mpz_clear(inv_q); mpz_clear(Y1); mpz_clear(Y2); mpz_clear(new_Y); mpz_clear(new_Y1);

  return newrels;
}
Ejemplo n.º 2
0
void
one_test (mpz_t op1, mpz_t op2, mpz_t ref, int i)
{
  /*
  printf ("%ld %ld %ld\n", SIZ (op1), SIZ (op2), SIZ (ref));
  fflush (stdout);
  */

  /*
  fprintf (stderr, "op1=");  debug_mp (op1, -16);
  fprintf (stderr, "op2=");  debug_mp (op2, -16);
  */

  mpz_gcdext (gcd1, s, NULL, op1, op2);

  if (ref && mpz_cmp (ref, gcd1) != 0)
    {
      fprintf (stderr, "ERROR in test %d\n", i);
      fprintf (stderr, "mpz_gcdext returned incorrect result\n");
      fprintf (stderr, "op1=");                 debug_mp (op1, -16);
      fprintf (stderr, "op2=");                 debug_mp (op2, -16);
      fprintf (stderr, "expected result:\n");   debug_mp (ref, -16);
      fprintf (stderr, "mpz_gcdext returns:\n");debug_mp (gcd1, -16);
      abort ();
    }

  if (!gcdext_valid_p(op1, op2, gcd1, s))
    {
      fprintf (stderr, "ERROR in test %d\n", i);
      fprintf (stderr, "mpz_gcdext returned invalid result\n");
      fprintf (stderr, "op1=");                 debug_mp (op1, -16);
      fprintf (stderr, "op2=");                 debug_mp (op2, -16);
      fprintf (stderr, "mpz_gcdext returns:\n");debug_mp (gcd1, -16);
      abort ();
    }

  mpz_gcd (gcd2, op1, op2);
  if (mpz_cmp (gcd2, gcd1) != 0)
    {
      fprintf (stderr, "ERROR in test %d\n", i);
      fprintf (stderr, "mpz_gcd returned incorrect result\n");
      fprintf (stderr, "op1=");                 debug_mp (op1, -16);
      fprintf (stderr, "op2=");                 debug_mp (op2, -16);
      fprintf (stderr, "expected result:\n");   debug_mp (gcd1, -16);
      fprintf (stderr, "mpz_gcd returns:\n");   debug_mp (gcd2, -16);
      abort ();
    }

  /* This should probably move to t-gcd_ui.c */
  if (mpz_fits_ulong_p (op1) || mpz_fits_ulong_p (op2))
    {
      if (mpz_fits_ulong_p (op1))
	mpz_gcd_ui (gcd2, op2, mpz_get_ui (op1));
      else
	mpz_gcd_ui (gcd2, op1, mpz_get_ui (op2));
      if (mpz_cmp (gcd2, gcd1))
	{
	  fprintf (stderr, "ERROR in test %d\n", i);
	  fprintf (stderr, "mpz_gcd_ui returned incorrect result\n");
	  fprintf (stderr, "op1=");                 debug_mp (op1, -16);
	  fprintf (stderr, "op2=");                 debug_mp (op2, -16);
	  fprintf (stderr, "expected result:\n");   debug_mp (gcd1, -16);
	  fprintf (stderr, "mpz_gcd_ui returns:\n");   debug_mp (gcd2, -16);
	  abort ();
	}
    }

  mpz_gcdext (gcd2, temp1, temp2, op1, op2);
  mpz_mul (temp1, temp1, op1);
  mpz_mul (temp2, temp2, op2);
  mpz_add (temp1, temp1, temp2);
  
  if (mpz_cmp (gcd1, gcd2) != 0
      || mpz_cmp (gcd2, temp1) != 0)
    {
      fprintf (stderr, "ERROR in test %d\n", i);
      fprintf (stderr, "mpz_gcdext returned incorrect result\n");
      fprintf (stderr, "op1=");                 debug_mp (op1, -16);
      fprintf (stderr, "op2=");                 debug_mp (op2, -16);
      fprintf (stderr, "expected result:\n");   debug_mp (gcd1, -16);
      fprintf (stderr, "mpz_gcdext returns:\n");debug_mp (gcd2, -16);
      abort ();
    }
}
Ejemplo n.º 3
0
/*------------------------------------------------------------------------*/
uint32
handle_collision(poly_coeff_t *c, uint64 p, uint32 special_q,
		uint64 special_q_root, int64 res)
{
	/* the proposed rational coefficient is p*special_q;
	   p and special_q must be coprime. The 'trivial
	   special q' has special_q = 1 and special_q_root = 0 */

	uint64_2gmp(p, c->p);
	mpz_gcd_ui(c->tmp1, c->p, special_q);
	if (mpz_cmp_ui(c->tmp1, 1))
		return 0;

	mpz_mul_ui(c->p, c->p, (unsigned long)special_q);

	/* the corresponding correction to trans_m0 is 
	   special_q_root + res * special_q^2, and can be
	   positive or negative */

	uint64_2gmp(special_q_root, c->tmp1);
	int64_2gmp(res, c->tmp2);
	mpz_set_ui(c->tmp3, special_q);

	mpz_mul(c->tmp3, c->tmp3, c->tmp3);
	mpz_addmul(c->tmp1, c->tmp2, c->tmp3);
	mpz_add(c->m, c->trans_m0, c->tmp1);

	/* a lot can go wrong before this function is called!
	   Check that Kleinjung's modular condition is satisfied */

	mpz_pow_ui(c->tmp1, c->m, c->degree);
	mpz_mul(c->tmp2, c->p, c->p);
	mpz_sub(c->tmp1, c->trans_N, c->tmp1);
	mpz_tdiv_r(c->tmp3, c->tmp1, c->tmp2);
	if (mpz_cmp_ui(c->tmp3, 0)) {
		gmp_printf("crap %Zd %Zd %Zd\n", c->high_coeff, c->p, c->m);
		return 0;
	}

	/* the pair works, now translate the computed m back
	   to the original polynomial. We have

	   computed_m = degree * high_coeff * real_m +
	   			(second_highest_coeff) * p

	   and need to solve for real_m and second_highest_coeff.
	   Per the CADO code: reducing the above modulo
	   degree*high_coeff causes the first term on the right
	   to disappear, so second_highest_coeff can be found
	   modulo degree*high_coeff and real_m then follows */

	mpz_mul_ui(c->tmp1, c->high_coeff, c->degree);
	mpz_tdiv_r(c->tmp2, c->m, c->tmp1);
	mpz_invert(c->tmp3, c->p, c->tmp1);
	mpz_mul(c->tmp2, c->tmp3, c->tmp2);
	mpz_tdiv_r(c->tmp2, c->tmp2, c->tmp1);

	/* make second_highest_coeff as small as possible in
	   absolute value */

	mpz_tdiv_q_2exp(c->tmp3, c->tmp1, 1);
	if (mpz_cmp(c->tmp2, c->tmp3) > 0) {
		mpz_sub(c->tmp2, c->tmp2, c->tmp1);
	}

	/* solve for real_m */
	mpz_submul(c->m, c->tmp2, c->p);
	mpz_tdiv_q(c->m, c->m, c->tmp1);
	return 1;
}
Ejemplo n.º 4
0
int is_aks_prime(mpz_t n)
{
  mpz_t *px, *py;
  int retval;
  UV i, s, r, a;
  UV starta = 1;
  int _verbose = get_verbose_level();

  if (mpz_cmp_ui(n, 4) < 0)
    return (mpz_cmp_ui(n, 1) <= 0) ? 0 : 1;

  /* Just for performance: check small divisors: 2*3*5*7*11*13*17*19*23 */
  if (mpz_gcd_ui(0, n, 223092870UL) != 1 && mpz_cmp_ui(n, 23) > 0)
    return 0;

  if (mpz_perfect_power_p(n))
    return 0;

#if AKS_VARIANT == AKS_VARIANT_V6    /* From the V6 AKS paper */
  {
    mpz_t sqrtn, t;
    double log2n;
    UV limit, startr;
    PRIME_ITERATOR(iter);

    mpz_init(sqrtn);
    mpz_sqrt(sqrtn, n);

    log2n = mpz_log2(n);
    limit = (UV) floor( log2n * log2n );

    if (_verbose>1) gmp_printf("# AKS checking order_r(%Zd) to %"UVuf"\n", n, (unsigned long) limit);

    /* Using a native r limits us to ~2000 digits in the worst case (r ~ log^5n)
     * but would typically work for 100,000+ digits (r ~ log^3n).  This code is
     * far too slow to matter either way.  Composite r is ok here, but it will
     * always end up prime, so save time and just check primes. */
    retval = 0;
    /* Start order search at a good spot.  Idea from Nemana and Venkaiah. */
    startr = (mpz_sizeinbase(n,2)-1) * (mpz_sizeinbase(n,2)-1);
    startr = (startr < 1002) ? 2 : startr - 100;
    for (r = 2; /* */; r = prime_iterator_next(&iter)) {
      if (mpz_divisible_ui_p(n, r) ) /* r divides n.  composite. */
        { retval = 0; break; }
      if (mpz_cmp_ui(sqrtn, r) <= 0) /* no r <= sqrtn divides n.  prime. */
        { retval = 1; break; }
      if (r < startr) continue;
      if (mpz_order_ui(r, n, limit) > limit)
        { retval = 2; break; }
    }
    prime_iterator_destroy(&iter);
    mpz_clear(sqrtn);
    if (retval != 2) return retval;

    /* Since r is prime, phi(r) = r-1. */
    s = (UV) floor( sqrt(r-1) * log2n );
  }
#elif AKS_VARIANT == AKS_VARIANT_BORNEMANN /* Bernstein + Voloch */
  {
    UV slim;
    double c2, x;
    /* small t = few iters of big poly.  big t = many iters of small poly */
    double const t = (mpz_sizeinbase(n, 2) <= 64) ? 32 : 40;
    double const t1 = (1.0/((t+1)*log(t+1)-t*log(t)));
    double const dlogn = mpz_logn(n);
    mpz_t tmp;
    PRIME_ITERATOR(iter);

    mpz_init(tmp);
    prime_iterator_setprime(&iter, (UV) (t1*t1 * dlogn*dlogn) );
    r = prime_iterator_next(&iter);
    while (!is_primitive_root_uiprime(n,r))
      r = prime_iterator_next(&iter);
    prime_iterator_destroy(&iter);

    slim = (UV) (2*t*(r-1));
    c2 = dlogn * floor(sqrt(r));
    { /* Binary search for first s in [1,slim] where x >= 0 */
      UV bi = 1;
      UV bj = slim;
      while (bi < bj) {
        s = bi + (bj-bi)/2;
        mpz_bin_uiui(tmp, r+s-1, s);
        x = mpz_logn(tmp) / c2 - 1.0;
        if (x < 0)  bi = s+1;
        else        bj = s;
      }
      s = bi-1;
    }
    s = (s+3) >> 1;
    /* Bornemann checks factors up to (s-1)^2, we check to max(r,s) */
    /* slim = (s-1)*(s-1); */
    slim = (r > s) ? r : s;
    if (_verbose > 1) printf("# aks trial to %"UVuf"\n", slim);
    if (_GMP_trial_factor(n, 2, slim) > 1)
      { mpz_clear(tmp); return 0; }
    mpz_sqrt(tmp, n);
    if (mpz_cmp_ui(tmp, slim) <= 0)
      { mpz_clear(tmp); return 1; }
    mpz_clear(tmp);
  }
#elif AKS_VARIANT == AKS_VARIANT_BERN21
  { /* Bernstein 2003, theorem 2.1 (simplified) */
    UV q;
    double slim, scmp, x;
    mpz_t t, t2;
    PRIME_ITERATOR(iter);
    mpz_init(t);  mpz_init(t2);
    r = s = 0;
    while (1) {
      /* todo: Check r|n and r >= sqrt(n) here instead of waiting */
      if (mpz_cmp_ui(n, r) <= 0) break;
      r = prime_iterator_next(&iter);
      q = largest_factor(r-1);
      mpz_set_ui(t, r);
      mpz_powm_ui(t, n, (r-1)/q, t);
      if (mpz_cmp_ui(t, 1) <= 0) continue;
      scmp = 2 * floor(sqrt(r)) * mpz_log2(n);

      slim = 20 * (r-1);

      /* Check viability */
      mpz_bin_uiui(t, q+slim-1, slim); if (mpz_log2(t) < scmp) continue;

      for (s = 2; s < slim; s++) {
        mpz_bin_uiui(t, q+s-1, s);
        if (mpz_log2(t) > scmp) break;
      }
      if (s < slim) break;
    }
    mpz_clear(t);  mpz_clear(t2);
    prime_iterator_destroy(&iter);
    if (_GMP_trial_factor(n, 2, s) > 1)
      return 0;
  }
#elif AKS_VARIANT == AKS_VARIANT_BERN22
  { /* Bernstein 2003, theorem 2.2 (simplified) */
    UV q;
    double slim, scmp, x;
    mpz_t t, t2;
    PRIME_ITERATOR(iter);
    mpz_init(t);  mpz_init(t2);
    r = s = 0;
    while (1) {
      /* todo: Check r|n and r >= sqrt(n) here instead of waiting */
      if (mpz_cmp_ui(n, r) <= 0) break;
      r = prime_iterator_next(&iter);
      if (!is_primitive_root_uiprime(n,r)) continue;
      q = r-1;   /* Since r is prime, phi(r) = r-1 */
      scmp = 2 * floor(sqrt(r-1)) * mpz_log2(n);

      slim = 20 * (r-1);

      /* Check viability */
      mpz_bin_uiui(t, q+slim-1, slim); if (mpz_log2(t) < scmp) continue;

      for (s = 2; s < slim; s++) {
        mpz_bin_uiui(t, q+s-1, s);
        if (mpz_log2(t) > scmp) break;
      }
      if (s < slim) break;
    }
    mpz_clear(t);  mpz_clear(t2);
    prime_iterator_destroy(&iter);
    if (_GMP_trial_factor(n, 2, s) > 1)
      return 0;
  }
#elif AKS_VARIANT == AKS_VARIANT_BERN23
  { /* Bernstein 2003, theorem 2.3 (simplified) */
    UV q, d, limit;
    double slim, scmp, sbin, x, log2n;
    mpz_t t, t2;
    PRIME_ITERATOR(iter);
    mpz_init(t);  mpz_init(t2);
    log2n = mpz_log2(n);
    limit = (UV) floor( log2n * log2n );
    r = 2;
    s = 0;
    while (1) {
      /* todo: Check r|n and r >= sqrt(n) here instead of waiting */
      if (mpz_cmp_ui(n, r) <= 0) break;
      r++;
      UV gcd = mpz_gcd_ui(NULL, n, r);
      if (gcd != 1) { mpz_clear(t); mpz_clear(t2); return 0; }
      UV v = mpz_order_ui(r, n, limit);
      if (v >= limit) continue;

      mpz_set_ui(t2, r);
      totient(t, t2);
      q = mpz_get_ui(t);
      UV phiv = q/v;
      /* printf("phi(%lu)/v = %lu/%lu = %lu\n", r, q, v, phiv); */

      /* This is extremely inefficient. */

      /* Choose an s value we'd be happy with */
      slim = 20 * (r-1);

      /* Quick check to see if it could work with s=slim, d=1 */
      mpz_bin_uiui(t, q+slim-1, slim);
      sbin = mpz_log2(t);
      if (sbin < 2*floor(sqrt(q))*log2n)
        continue;

      for (s = 2; s < slim; s++) {
        mpz_bin_uiui(t, q+s-1, s);
        sbin = mpz_log2(t);
        if (sbin < 2*floor(sqrt(q))*log2n) continue;   /* d=1 */
        /* Check each number dividing phi(r)/v */
        for (d = 2; d < phiv; d++) {
          if ((phiv % d) != 0) continue;
          scmp = 2 * d * floor(sqrt(q/d)) * log2n;
          if (sbin < scmp) break;
        }
        /* if we did not exit early, this s worked for each d.  This s wins. */
        if (d >= phiv) break;
      }
      if (s < slim) break;
    }
    mpz_clear(t);  mpz_clear(t2);
    prime_iterator_destroy(&iter);
    if (_GMP_trial_factor(n, 2, s) > 1)
      return 0;
  }
#elif AKS_VARIANT == AKS_VARIANT_BERN41
  {
    double const log2n = mpz_log2(n);
    /* Tuning: Initial 'r' selection */
    double const r0 = 0.008 * log2n * log2n;
    /* Tuning: Try a larger 'r' if 's' looks very large */
    UV const rmult = 8;
    UV slim;
    mpz_t tmp, tmp2;
    PRIME_ITERATOR(iter);

    mpz_init(tmp);  mpz_init(tmp2);
    /* r has to be at least 3. */
    prime_iterator_setprime(&iter, (r0 < 2) ? 2 : (UV) r0);
    r = prime_iterator_next(&iter);

    /* r must be a primitive root.  For performance, skip if s looks too big. */
    while ( !is_primitive_root_uiprime(n, r) ||
            !bern41_acceptable(n, r, rmult*(r-1), tmp, tmp2) )
      r = prime_iterator_next(&iter);
    prime_iterator_destroy(&iter);

    { /* Binary search for first s in [1,lim] where conditions met */
      UV bi = 1;
      UV bj = rmult * (r-1);
      while (bi < bj) {
        s = bi + (bj-bi)/2;
        if (!bern41_acceptable(n,r,s,tmp,tmp2))  bi = s+1;
        else                                     bj = s;
      }
      s = bj;
      /* Our S goes from 2 to s+1. */
      starta = 2;
      s = s+1;
    }
    /* printf("chose r=%lu s=%lu d = %lu i = %lu j = %lu\n", r, s, d, i, j); */

    /* Check divisibility to s(s-1) to cover both gcd conditions */
    slim = s * (s-1);
    if (_verbose > 1) printf("# aks trial to %"UVuf"\n", slim);
    if (_GMP_trial_factor(n, 2, slim) > 1)
      { mpz_clear(tmp); mpz_clear(tmp2); return 0; }
    /* If we checked divisibility to sqrt(n), then it is prime. */
    mpz_sqrt(tmp, n);
    if (mpz_cmp_ui(tmp, slim) <= 0)
      { mpz_clear(tmp); mpz_clear(tmp2); return 1; }

    /* Check b^(n-1) = 1 mod n for b in [2..s] */
    if (_verbose > 1) printf("# aks checking fermat to %"UVuf"\n", s);
    mpz_sub_ui(tmp2, n, 1);
    for (i = 2; i <= s; i++) {
      mpz_set_ui(tmp, i);
      mpz_powm(tmp, tmp, tmp2, n);
      if (mpz_cmp_ui(tmp, 1) != 0)
        { mpz_clear(tmp); mpz_clear(tmp2); return 0; }
    }

    mpz_clear(tmp);  mpz_clear(tmp2);
  }

#endif

  if (_verbose) gmp_printf("# AKS %Zd.  r = %"UVuf" s = %"UVuf"\n", n, (unsigned long) r, (unsigned long) s);

  /* Create the three polynomials we will use */
  New(0, px, r, mpz_t);
  New(0, py, r, mpz_t);
  if ( !px || !py )
    croak("allocation failure\n");
  for (i = 0; i < r; i++) {
    mpz_init(px[i]);
    mpz_init(py[i]);
  }

  retval = 1;
  for (a = starta; a <= s; a++) {
    retval = test_anr(a, n, r, px, py);
    if (!retval) break;
    if (_verbose>1) { printf("."); fflush(stdout); }
  }
  if (_verbose>1) { printf("\n"); fflush(stdout); };

  /* Free the polynomials */
  for (i = 0; i < r; i++) {
    mpz_clear(px[i]);
    mpz_clear(py[i]);
  }
  Safefree(px);
  Safefree(py);

  return retval;
}
Ejemplo n.º 5
0
int
main (int argc, char **argv)
{
  int i;
  int pass, reps = 400;
  mpz_t in1, in2, in3;
  unsigned long int in2i;
  mp_size_t size;
  mpz_t res1, res2, res3;
  mpz_t ref1, ref2, ref3;
  mpz_t t;
  unsigned long int r1, r2;
  gmp_randstate_ptr rands;
  mpz_t bs;
  unsigned long bsi, size_range;

  tests_start ();
  TESTS_REPS (reps, argv, argc);

  rands = RANDS;

  mpz_init (bs);

  mpz_init (in1);
  mpz_init (in2);
  mpz_init (in3);
  mpz_init (ref1);
  mpz_init (ref2);
  mpz_init (ref3);
  mpz_init (res1);
  mpz_init (res2);
  mpz_init (res3);
  mpz_init (t);

  for (pass = 1; pass <= reps; pass++)
    {
      if (isatty (fileno (stdout)))
	{
	  printf ("\r%d/%d passes", pass, reps);
	  fflush (stdout);
	}

      mpz_urandomb (bs, rands, 32);
      size_range = mpz_get_ui (bs) % 21 + 2;

      if ((pass & 1) == 0)
	{
	  /* Make all input operands have quite different sizes */
	  mpz_urandomb (bs, rands, 32);
	  size = mpz_get_ui (bs) % size_range;
	  mpz_rrandomb (in1, rands, size);

	  mpz_urandomb (bs, rands, 32);
	  size = mpz_get_ui (bs) % size_range;
	  mpz_rrandomb (in2, rands, size);

	  mpz_urandomb (bs, rands, 32);
	  size = mpz_get_ui (bs) % size_range;
	  mpz_rrandomb (in3, rands, size);
	}
      else
	{
	  /* Make all input operands have about the same size */
	  mpz_urandomb (bs, rands, size_range);
	  size = mpz_get_ui (bs);
	  mpz_rrandomb (in1, rands, size);

	  mpz_urandomb (bs, rands, size_range);
	  size = mpz_get_ui (bs);
	  mpz_rrandomb (in2, rands, size);

	  mpz_urandomb (bs, rands, size_range);
	  size = mpz_get_ui (bs);
	  mpz_rrandomb (in3, rands, size);
	}

      mpz_urandomb (bs, rands, 3);
      bsi = mpz_get_ui (bs);
      if ((bsi & 1) != 0)
	mpz_neg (in1, in1);
      if ((bsi & 2) != 0)
	mpz_neg (in2, in2);
      if ((bsi & 4) != 0)
	mpz_neg (in3, in3);

      for (i = 0; i < numberof (dss); i++)
	{
	  if (dss[i].isdivision && mpz_sgn (in2) == 0)
	    continue;
	  if (dss[i].isslow && size_range > 19)
	    continue;

	  (dss[i].fptr) (ref1, in1, in2);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  INVOKE_RSS (dss[i], res1, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL (dss, i, in1, in2, NULL);

	  mpz_set (res1, in2);
	  INVOKE_RSS (dss[i], res1, in1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL (dss, i, in1, in2, NULL);
	}

      for (i = 0; i < numberof (ddss_div); i++)
	{
	  if (mpz_sgn (in2) == 0)
	    continue;

	  (ddss_div[i].fptr) (ref1, ref2, in1, in2);
	  MPZ_CHECK_FORMAT (ref1);
	  MPZ_CHECK_FORMAT (ref2);

	  mpz_set (res1, in1);
	  INVOKE_RRSS (ddss_div[i], res1, res2, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL (ddss_div, i, in1, in2, NULL);

	  mpz_set (res2, in1);
	  INVOKE_RRSS (ddss_div[i], res1, res2, res2, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL (ddss_div, i, in1, in2, NULL);

	  mpz_set (res1, in2);
	  INVOKE_RRSS (ddss_div[i], res1, res2, in1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL (ddss_div, i, in1, in2, NULL);

	  mpz_set (res2, in2);
	  INVOKE_RRSS (ddss_div[i], res1, res2, in1, res2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL (ddss_div, i, in1, in2, NULL);
	}

      for (i = 0; i < numberof (ds); i++)
	{
	  if (ds[i].nonneg && mpz_sgn (in1) < 0)
	    continue;

	  (ds[i].fptr) (ref1, in1);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  INVOKE_RS (ds[i], res1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL (ds, i, in1, in2, NULL);
	}

      in2i = mpz_get_ui (in2);

      for (i = 0; i < numberof (dsi); i++)
	{
	  if (dsi[i].mod != 0)
	    in2i = mpz_get_ui (in2) % dsi[i].mod;

	  (dsi[i].fptr) (ref1, in1, in2i);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  INVOKE_RRS (dsi[i], res1, res1, in2i);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL (dsi, i, in1, in2, NULL);
	}

      if (in2i != 0)	  /* Don't divide by 0.  */
	{
	  for (i = 0; i < numberof (dsi_div); i++)
	    {
	      r1 = (dsi_div[i].fptr) (ref1, in1, in2i);
	      MPZ_CHECK_FORMAT (ref1);

	      mpz_set (res1, in1);
	      r2 = (dsi_div[i].fptr) (res1, res1, in2i);
	      MPZ_CHECK_FORMAT (res1);
	      if (mpz_cmp (ref1, res1) != 0 || r1 != r2)
		FAIL (dsi_div, i, in1, in2, NULL);
	    }

	  for (i = 0; i < numberof (ddsi_div); i++)
	    {
	      r1 = (ddsi_div[i].fptr) (ref1, ref2, in1, in2i);
	      MPZ_CHECK_FORMAT (ref1);

	      mpz_set (res1, in1);
	      r2 = (ddsi_div[i].fptr) (res1, res2, res1, in2i);
	      MPZ_CHECK_FORMAT (res1);
	      if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0 || r1 != r2)
		FAIL (ddsi_div, i, in1, in2, NULL);

	      mpz_set (res2, in1);
	      (ddsi_div[i].fptr) (res1, res2, res2, in2i);
	      MPZ_CHECK_FORMAT (res1);
	      if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0 || r1 != r2)
		FAIL (ddsi_div, i, in1, in2, NULL);
	    }
	}

      if (mpz_sgn (in1) >= 0)
	{
	  mpz_sqrtrem (ref1, ref2, in1);
	  MPZ_CHECK_FORMAT (ref1);
	  MPZ_CHECK_FORMAT (ref2);

	  mpz_set (res1, in1);
	  mpz_sqrtrem (res1, res2, res1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL2 (mpz_sqrtrem, in1, NULL, NULL);

	  mpz_set (res2, in1);
	  mpz_sqrtrem (res1, res2, res2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL2 (mpz_sqrtrem, in1, NULL, NULL);

	  mpz_set (res1, in1);
	  mpz_sqrtrem (res1, res1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref2, res1) != 0)
	    FAIL2 (mpz_sqrtrem, in1, NULL, NULL);
	}

      if (mpz_sgn (in1) >= 0)
	{
	  mpz_root (ref1, in1, in2i % 0x100 + 1);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  mpz_root (res1, res1, in2i % 0x100 + 1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_root, in1, in2, NULL);
	}

      if (mpz_sgn (in1) >= 0)
	{
	  mpz_rootrem (ref1, ref2, in1, in2i % 0x100 + 1);
	  MPZ_CHECK_FORMAT (ref1);
	  MPZ_CHECK_FORMAT (ref2);

	  mpz_set (res1, in1);
	  mpz_rootrem (res1, res2, res1, in2i % 0x100 + 1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL2 (mpz_rootrem, in1, in2, NULL);

	  mpz_set (res2, in1);
	  mpz_rootrem (res1, res2, res2, in2i % 0x100 + 1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0)
	    FAIL2 (mpz_rootrem, in1, in2, NULL);
	}

      if (size_range < 18)	/* run fewer tests since gcdext lots of time */
	{
	  mpz_gcdext (ref1, ref2, ref3, in1, in2);
	  MPZ_CHECK_FORMAT (ref1);
	  MPZ_CHECK_FORMAT (ref2);
	  MPZ_CHECK_FORMAT (ref3);

	  mpz_set (res1, in1);
	  mpz_gcdext (res1, res2, res3, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res2, in1);
	  mpz_gcdext (res1, res2, res3, res2, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res3, in1);
	  mpz_gcdext (res1, res2, res3, res3, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res1, in2);
	  mpz_gcdext (res1, res2, res3, in1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res2, in2);
	  mpz_gcdext (res1, res2, res3, in1, res2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res3, in2);
	  mpz_gcdext (res1, res2, res3, in1, res3);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  MPZ_CHECK_FORMAT (res3);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res1, in1);
	  mpz_gcdext (res1, res2, NULL, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res2, in1);
	  mpz_gcdext (res1, res2, NULL, res2, in2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res1, in2);
	  mpz_gcdext (res1, res2, NULL, in1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);

	  mpz_set (res2, in2);
	  mpz_gcdext (res1, res2, NULL, in1, res2);
	  MPZ_CHECK_FORMAT (res1);
	  MPZ_CHECK_FORMAT (res2);
	  if (mpz_cmp (ref1, res1) != 0 || mpz_cmp (ref2, res2) != 0
	      || mpz_cmp (ref3, res3) != 0)
	    FAIL2 (mpz_gcdext, in1, in2, NULL);
	}

      /* Don't run mpz_powm for huge exponents or when undefined.  */
      if (size_range < 17 && mpz_sizeinbase (in2, 2) < 250 && mpz_sgn (in3) != 0
	  && (mpz_sgn (in2) >= 0 || mpz_invert (t, in1, in3)))
	{
	  mpz_powm (ref1, in1, in2, in3);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  mpz_powm (res1, res1, in2, in3);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_powm, in1, in2, in3);

	  mpz_set (res1, in2);
	  mpz_powm (res1, in1, res1, in3);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_powm, in1, in2, in3);

	  mpz_set (res1, in3);
	  mpz_powm (res1, in1, in2, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_powm, in1, in2, in3);
	}

      /* Don't run mpz_powm_ui when undefined.  */
      if (size_range < 17 && mpz_sgn (in3) != 0)
	{
	  mpz_powm_ui (ref1, in1, in2i, in3);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  mpz_powm_ui (res1, res1, in2i, in3);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_powm_ui, in1, in2, in3);

	  mpz_set (res1, in3);
	  mpz_powm_ui (res1, in1, in2i, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_powm_ui, in1, in2, in3);
	}

      {
	r1 = mpz_gcd_ui (ref1, in1, in2i);
	MPZ_CHECK_FORMAT (ref1);

	mpz_set (res1, in1);
	r2 = mpz_gcd_ui (res1, res1, in2i);
	MPZ_CHECK_FORMAT (res1);
	if (mpz_cmp (ref1, res1) != 0)
	  FAIL2 (mpz_gcd_ui, in1, in2, NULL);
      }

      if (mpz_sgn (in2) != 0)
	{
	  /* Test mpz_remove */
	  mp_bitcnt_t refretval, retval;
	  refretval = mpz_remove (ref1, in1, in2);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, in1);
	  retval = mpz_remove (res1, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0 || refretval != retval)
	    FAIL2 (mpz_remove, in1, in2, NULL);

	  mpz_set (res1, in2);
	  retval = mpz_remove (res1, in1, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0 || refretval != retval)
	    FAIL2 (mpz_remove, in1, in2, NULL);
	}

      if (mpz_sgn (in2) != 0)
	{
	  /* Test mpz_divexact */
	  mpz_mul (t, in1, in2);
	  mpz_divexact (ref1, t, in2);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, t);
	  mpz_divexact (res1, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_divexact, t, in2, NULL);

	  mpz_set (res1, in2);
	  mpz_divexact (res1, t, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_divexact, t, in2, NULL);
	}

      if (mpz_sgn (in2) > 0)
	{
	  /* Test mpz_divexact_gcd, same as mpz_divexact */
	  mpz_mul (t, in1, in2);
	  mpz_divexact_gcd (ref1, t, in2);
	  MPZ_CHECK_FORMAT (ref1);

	  mpz_set (res1, t);
	  mpz_divexact_gcd (res1, res1, in2);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_divexact_gcd, t, in2, NULL);

	  mpz_set (res1, in2);
	  mpz_divexact_gcd (res1, t, res1);
	  MPZ_CHECK_FORMAT (res1);
	  if (mpz_cmp (ref1, res1) != 0)
	    FAIL2 (mpz_divexact_gcd, t, in2, NULL);
	}
    }

  if (isatty (fileno (stdout)))
    printf ("\r%20s", "");

  mpz_clear (bs);
  mpz_clear (in1);
  mpz_clear (in2);
  mpz_clear (in3);
  mpz_clear (ref1);
  mpz_clear (ref2);
  mpz_clear (ref3);
  mpz_clear (res1);
  mpz_clear (res2);
  mpz_clear (res3);
  mpz_clear (t);

  if (isatty (fileno (stdout)))
    printf ("\r");

  tests_end ();
  exit (0);
}
Ejemplo n.º 6
0
int
main (int argc, char **argv)
{
  mpz_t op1, op2, x;
  mpz_t gcd, gcd2, s, t;
  mpz_t temp1, temp2;
  mp_size_t op1_size, op2_size, x_size;
  int i;
  int reps = 2000;
  gmp_randstate_ptr rands;
  mpz_t bs;
  unsigned long bsi, size_range;

  tests_start ();
  rands = RANDS;

  mpz_init (bs);

  if (argc == 2)
    reps = atoi (argv[1]);

  mpz_init (op1);
  mpz_init (op2);
  mpz_init (x);
  mpz_init (gcd);
  mpz_init (gcd2);
  mpz_init (temp1);
  mpz_init (temp2);
  mpz_init (s);
  mpz_init (t);

  for (i = 0; i < reps; i++)
    {
      mpz_urandomb (bs, rands, 32);
      size_range = mpz_get_ui (bs) % 12 + 2; /* 0..8191 bit operands */

      mpz_urandomb (bs, rands, size_range);
      op1_size = mpz_get_ui (bs);
      mpz_rrandomb (op1, rands, op1_size);

      mpz_urandomb (bs, rands, size_range);
      op2_size = mpz_get_ui (bs);
      mpz_rrandomb (op2, rands, op2_size);

      mpz_urandomb (bs, rands, size_range);
      x_size = mpz_get_ui (bs);
      mpz_rrandomb (x, rands, x_size);

      mpz_urandomb (bs, rands, 2);
      bsi = mpz_get_ui (bs);
      if ((bsi & 1) != 0)
	mpz_neg (op1, op1);
      if ((bsi & 2) != 0)
	mpz_neg (op2, op2);

      /* printf ("%ld %ld\n", SIZ (op1), SIZ (op2)); */

      mpz_mul (op1, op1, x);
      mpz_mul (op2, op2, x);

      mpz_gcd (gcd, op1, op2);
      /* We know GCD will be at least X, since we multiplied both operands
	 with it.  */
      if (mpz_cmp (gcd, x) < 0 && mpz_sgn (op1) != 0 && mpz_sgn (op2) != 0)
	dump_abort (i, op1, op2);

      if (mpz_fits_ulong_p (op2))
	{
	  mpz_gcd_ui (gcd2, op1, mpz_get_ui (op2));
	  if (mpz_cmp (gcd, gcd2))
	    dump_abort (i, op1, op2);
	}

      mpz_gcdext (gcd2, s, t, op1, op2);
      if (mpz_cmp (gcd, gcd2))
	dump_abort (i, op1, op2);

      mpz_gcdext (gcd2, s, NULL, op1, op2);
      if (mpz_cmp (gcd, gcd2))
	dump_abort (i, op1, op2);

      mpz_mul (temp1, s, op1);
      mpz_mul (temp2, t, op2);
      mpz_add (gcd2, temp1, temp2);
      if (mpz_cmp (gcd, gcd2))
	dump_abort (i, op1, op2);
    }

  mpz_clear (bs);
  mpz_clear (op1);
  mpz_clear (op2);
  mpz_clear (x);
  mpz_clear (gcd);
  mpz_clear (gcd2);
  mpz_clear (temp1);
  mpz_clear (temp2);
  mpz_clear (s);
  mpz_clear (t);

  tests_end ();
  exit (0);
}