Ejemplo n.º 1
0
Archivo: unit.c Proyecto: rgjha/susy
// -----------------------------------------------------------------
// Take log of hermitian part of decomposition to define scalar field
void matrix_log(matrix *in, matrix *out) {
  char V = 'V';     // Ask LAPACK for both eigenvalues and eigenvectors
  char U = 'U';     // Have LAPACK store upper triangle of in
  int row, col, Npt = NCOL, stat = 0, Nwork = 2 * NCOL;
  matrix evecs, tmat;

  // Convert in to column-major double array used by LAPACK
  for (row = 0; row < NCOL; row++) {
    for (col = 0; col < NCOL; col++) {
      store[2 * (col * NCOL + row)] = in->e[row][col].real;
      store[2 * (col * NCOL + row) + 1] = in->e[row][col].imag;
    }
  }

  // Compute eigenvalues and eigenvectors of in
  zheev_(&V, &U, &Npt, store, &Npt, eigs, work, &Nwork, Rwork, &stat);

  if (stat != 0)
    printf("WARNING: zheev returned error message %d\n", stat);

  // Move the results back into matrix structures
  // Use evecs to hold the eigenvectors for projection
  clear_mat(out);
  for (row = 0; row < NCOL; row++) {
    for (col = 0; col < NCOL; col++) {
      evecs.e[row][col].real = store[2 * (col * NCOL + row)];
      evecs.e[row][col].imag = store[2 * (col * NCOL + row) + 1];
    }
    out->e[row][row].real = log(eigs[row]);
  }
  // Inverse of eigenvector matrix is simply adjoint
  mult_na(out, &evecs, &tmat);
  mult_nn(&evecs, &tmat, out);
}
Ejemplo n.º 2
0
// -----------------------------------------------------------------
// Calculate U = exp(A).U
// Goes to eighth order in the exponential:
//   exp(A) * U = ( 1 + A + A^2/2 + A^3/3 ...) * U
//              = U + A*(U + (A/2)*(U + (A/3)*( ... )))
void exp_mult(int dir, double eps, anti_hermitmat *A) {
  register int i;
  register site *s;
  matrix *link, temp1, temp2, htemp;
  register Real t2, t3, t4, t5, t6, t7, t8;

  // Take divisions out of site loop (can't be done by compiler)
  t2 = eps / 2.0;
  t3 = eps / 3.0;
  t4 = eps / 4.0;
  t5 = eps / 5.0;
  t6 = eps / 6.0;
  t7 = eps / 7.0;
  t8 = eps / 8.0;

  FORALLSITES(i, s) {
    uncompress_anti_hermitian(&(A[i]), &htemp);
    link = &(s->link[dir]);

    mult_nn(&htemp, link, &temp1);
    scalar_mult_add_matrix(link, &temp1, t8, &temp2);

    mult_nn(&htemp, &temp2, &temp1);
    scalar_mult_add_matrix(link, &temp1, t7, &temp2);

    mult_nn(&htemp, &temp2, &temp1);
    scalar_mult_add_matrix(link, &temp1, t6, &temp2);

    mult_nn(&htemp, &temp2, &temp1);
    scalar_mult_add_matrix(link, &temp1, t5, &temp2);

    mult_nn(&htemp, &temp2, &temp1);
    scalar_mult_add_matrix(link, &temp1, t4, &temp2);

    mult_nn(&htemp, &temp2, &temp1);
    scalar_mult_add_matrix(link, &temp1, t3, &temp2);

    mult_nn(&htemp, &temp2, &temp1);
    scalar_mult_add_matrix(link, &temp1, t2, &temp2);

    mult_nn(&htemp, &temp2, &temp1);
    scalar_mult_add_matrix(link, &temp1, eps, &temp2);

    mat_copy(&temp2, link);    // This step updates the link U[dir]
  }
Ejemplo n.º 3
0
void random_gauge_trans(Twist_Fermion *TF) {
  int a, b, i, j, x = 1, t = 1, s = node_index(x, t);
  complex tc;
  matrix Gmat, tmat, etamat, psimat[NUMLINK], chimat;

  if (this_node != 0) {
    printf("random_gauge_trans: only implemented in serial so far\n");
    fflush(stdout);
    terminate(1);
  }
  if (nx < 4 || nt < 4) {
    printf("random_gauge_trans: doesn't deal with boundaries, ");
    printf("needs to be run on larger volume\n");
    fflush(stdout);
    terminate(1);
  }

  // Set up random gaussian matrix, then unitarize it
  clear_mat(&tmat);
  for (j = 0; j < DIMF; j++) {
#ifdef SITERAND
    tc.real = gaussian_rand_no(&(lattice[0].site_prn));
    tc.imag = gaussian_rand_no(&(lattice[0].site_prn));
#else
    tc.real = gaussian_rand_no(&(lattice[0].node_prn));
    tc.imag = gaussian_rand_no(&(lattice[0].node_prn));
#endif
    c_scalar_mult_sum_mat(&(Lambda[j]), &tc, &tmat);
  }
  polar(&tmat, &Gmat);

  // Confirm unitarity or check invariance when Gmat = I
//  mult_na(&Gmat, &Gmat, &tmat);
//  dumpmat(&tmat);
//  mat_copy(&tmat, &Gmat);

  // Left side of local eta
  clear_mat(&etamat);
  // Construct G eta = sum_j eta^j G Lambda^j
  for (j = 0; j < DIMF; j++) {
    mult_nn(&Gmat, &(Lambda[j]), &tmat);
    tc = TF[s].Fsite.c[j];
    c_scalar_mult_sum_mat(&tmat, &tc, &etamat);
  }
  // Project out eta^j = -Tr[Lambda^j G eta]
  for (j = 0; j < DIMF; j++) {
    mult_nn(&(Lambda[j]), &etamat, &tmat);
    tc = trace(&tmat);
    CNEGATE(tc, TF[s].Fsite.c[j]);
  }

  // Right side of local eta
  clear_mat(&etamat);
  // Construct eta Gdag = sum_j eta^j Lambda^j Gdag
  for (j = 0; j < DIMF; j++) {
    mult_na(&(Lambda[j]), &Gmat, &tmat);
    tc = TF[s].Fsite.c[j];
    c_scalar_mult_sum_mat(&tmat, &tc, &etamat);
  }
  // Project out eta^j = -Tr[eta Gdag Lambda^j]
  for (j = 0; j < DIMF; j++) {
    mult_nn(&etamat, &(Lambda[j]), &tmat);
    tc = trace(&tmat);
    CNEGATE(tc, TF[s].Fsite.c[j]);
  }

  // Left side of local links and psis; right side of local chis
  FORALLDIR(a) {
    mult_nn(&Gmat, &(lattice[s].link[a]), &tmat);
    mat_copy(&tmat, &(lattice[s].link[a]));

    clear_mat(&(psimat[a]));
    for (j = 0; j < DIMF; j++) {
      mult_nn(&Gmat, &(Lambda[j]), &tmat);
      tc = TF[s].Flink[a].c[j];
      c_scalar_mult_sum_mat(&tmat, &tc, &(psimat[a]));
    }
    for (j = 0; j < DIMF; j++) {
      mult_nn(&(Lambda[j]), &(psimat[a]), &tmat);
      tc = trace(&tmat);
      CNEGATE(tc, TF[s].Flink[a].c[j]);
    }

    for (b = a + 1; b < NUMLINK; b++) {
      clear_mat(&(chimat));
      for (j = 0; j < DIMF; j++) {
        mult_na(&(Lambda[j]), &Gmat, &tmat);
        tc = TF[s].Fplaq.c[j];
        c_scalar_mult_sum_mat(&tmat, &tc, &(chimat));
      }
      for (j = 0; j < DIMF; j++) {
        mult_nn(&(chimat), &(Lambda[j]), &tmat);
        tc = trace(&tmat);
        CNEGATE(tc, TF[s].Fplaq[i].c[j]);
      }
    }
  }

  // Right side of neighboring links and psis
  // TODO: Presumably we can convert this to a loop...
  s = node_index(x - 1, t);
  mult_na(&(lattice[s].link[0]), &Gmat, &tmat);
  mat_copy(&tmat, &(lattice[s].link[0]));
  clear_mat(&(psimat[0]));
  for (j = 0; j < DIMF; j++) {
    mult_na(&(Lambda[j]), &Gmat, &tmat);
    tc = TF[s].Flink[0].c[j];
    c_scalar_mult_sum_mat(&tmat, &tc, &(psimat[0]));
  }
  for (j = 0; j < DIMF; j++) {
    mult_nn(&(psimat[0]), &(Lambda[j]), &tmat);
    tc = trace(&tmat);
    CNEGATE(tc, TF[s].Flink[0].c[j]);
  }

  s = node_index(x, t - 1);
  mult_na(&(lattice[s].link[3]), &Gmat, &tmat);
  mat_copy(&tmat, &(lattice[s].link[3]));
  clear_mat(&(psimat[3]));
  for (j = 0; j < DIMF; j++) {
    mult_na(&(Lambda[j]), &Gmat, &tmat);
    tc = TF[s].Flink[3].c[j];
    c_scalar_mult_sum_mat(&tmat, &tc, &(psimat[3]));
  }
  for (j = 0; j < DIMF; j++) {
    mult_nn(&(psimat[3]), &(Lambda[j]), &tmat);
    tc = trace(&tmat);
    CNEGATE(tc, TF[s].Flink[3].c[j]);
  }

  // Left side of neighboring chi
  s = node_index(x - 1, t - 1);
  i = plaq_index[0][3];
  clear_mat(&(chimat[i]));
  for (j = 0; j < DIMF; j++) {
    mult_nn(&Gmat, &(Lambda[j]), &tmat);
    tc = TF[s].Fplaq[i].c[j];
    c_scalar_mult_sum_mat(&tmat, &tc, &(chimat[i]));
  }
  for (j = 0; j < DIMF; j++) {
    mult_nn(&(Lambda[j]), &(chimat[i]), &tmat);
    tc = trace(&tmat);
    CNEGATE(tc, TF[s].Fplaq[i].c[j]);
  }
}
Ejemplo n.º 4
0
Archivo: hvy_pot.c Proyecto: rgjha/susy
void hvy_pot(int do_det) {
  register int i;
  register site *s;
  int t_dist, x_dist;
  double wloop;
  complex tc;
  matrix tmat, tmat2;
  msg_tag *mtag = NULL;

  node0_printf("hvy_pot: MAX_T = %d, MAX_X = %d\n", MAX_T, MAX_X);

  // Use staple to hold product of t_dist links at each point
  for (t_dist = 1; t_dist <= MAX_T; t_dist++) {
    if (t_dist == 1) {
      FORALLSITES(i, s)
        mat_copy(&(s->link[TUP]), &(staple[i]));
    }
    else {
      mtag = start_gather_field(staple, sizeof(matrix),
                                goffset[TUP], EVENANDODD, gen_pt[0]);

      // Be careful about overwriting staple;
      // gen_pt may just point to it for on-node "gathers"
      wait_gather(mtag);
      FORALLSITES(i, s)
        mult_nn(&(s->link[TUP]), (matrix *)gen_pt[0][i], &(tempmat2[i]));
      cleanup_gather(mtag);
      FORALLSITES(i, s)
        mat_copy(&(tempmat2[i]), &(staple[i]));
    }

    // Copy staple to tempmat
    // Will shoft at end of loop
    FORALLSITES(i, s)
      mat_copy(&(staple[i]), &(tempmat[i]));
    for (x_dist = 0; x_dist <= MAX_X; x_dist++) {
      // Evaluate potential at this separation
      wloop = 0.0;
      FORALLSITES(i, s) {
        // Compute the actual Coulomb gauge Wilson loop product
        mult_na(&(staple[i]), &(tempmat[i]), &tmat);

        if (do_det == 1)
          det_project(&tmat, &tmat2);
        else
          mat_copy(&tmat, &tmat2);

        tc = trace(&tmat2);
        wloop += tc.real;
      }
      g_doublesum(&wloop);

      if (do_det == 1) {  // Braces fix compiler error
        node0_printf("D_LOOP   ");
      }
      else
        node0_printf("POT_LOOP ");
      node0_printf("%d %d %.6g\n", x_dist, t_dist, wloop / volume);

      // As we increment x, shift in x direction
      shiftmat(tempmat, tempmat2, goffset[XUP]);
    } // x_dist
  } // t_dist
Ejemplo n.º 5
0
void setup_lambda() {
  int i, j, k, l, count;
  complex inv_sqrt = cmplx(1.0 / sqrt(2.0), 0.0);
  complex i_inv_sqrt = cmplx(0.0, 1.0 / sqrt(2.0));

#ifdef DEBUG_CHECK
  int a;
  complex trace, tt;
  node0_printf("Computing generators for U(N)\n");
#endif

  // Make sure Lambda matrices are initialized
  for (i = 0; i < DIMF; i++)
    clear_mat(&(Lambda[i]));

  // N * (N - 1) off-diagonal SU(N) generators
  // (T^{ij, +})_{kl} = i * (de_{ki} de_{lj} + de_{kj} de_{li}) / sqrt(2)
  // (T^{ij, -})_{kl} = (de_{ki} de_{lj} - de_{kj} de_{ki}) / sqrt(2)
  // Sign in second chosen to match previous values
  count = 0;
  for (i = 0; i < NCOL; i++) {
    for (j = i + 1; j < NCOL; j++) {
      for (k = 0; k < NCOL; k++) {
        for (l = 0; l < NCOL; l++) {
          if (k == i && l == j) {
            CSUM(Lambda[count].e[k][l], i_inv_sqrt);
            CSUM(Lambda[count + 1].e[k][l], inv_sqrt);
          }
          else if (k == j && l == i) {
            CSUM(Lambda[count].e[k][l], i_inv_sqrt);
            CDIF(Lambda[count + 1].e[k][l], inv_sqrt);
          }
        }
      }
      count += 2;
    }
  }
  if (count != NCOL * (NCOL - 1)) {
    node0_printf("ERROR: Wrong number of off-diagonal generators, ");
    node0_printf("%d vs. %d\n", count, NCOL * (NCOL - 1));
    terminate(1);
  }

  // N - 1 diagonal SU(N) generators
  // T^k = i * diag(1, 1, ..., -k, 0, ..., 0) / sqrt(k * (k + 1))
  for (i = 0; i < NCOL - 1; i++) {
    j = NCOL * (NCOL - 1) + i;    // Index after +/- above
    k = i + 1;
    i_inv_sqrt = cmplx(0.0, 1.0 / sqrt(k * (k + 1.0)));
    for (l = 0; l <= k; l++)
      Lambda[j].e[l][l] = i_inv_sqrt;
    CMULREAL(Lambda[j].e[k][k], -1.0 * k, Lambda[j].e[k][k]);
  }

  // U(1) generator i * I_N / sqrt(N)
  if (DIMF == NCOL * NCOL) {    // Allow SU(N) compilation for now
    i_inv_sqrt = cmplx(0.0, sqrt(one_ov_N));
    clear_mat(&(Lambda[DIMF - 1]));
    for (i = 0; i < NCOL; i++)
      Lambda[DIMF - 1].e[i][i] = i_inv_sqrt;
  }

#ifdef DEBUG_CHECK
  // Print Lambdas
  for (i = 0; i < DIMF; i++){
    node0_printf("Lambda[%d]\n",i);
    if (this_node == 0)
      dumpmat(&(Lambda[i]));
  }

  // Test group theory
  node0_printf("Check group theory ");
  node0_printf("Sum_a Lambda^a_{kl} Lambda^a_{ij} = -delta_kj delta_il\n");
  for (i = 0; i < NCOL; i++) {
    for (j = 0; j < NCOL; j++) {
      for (k = 0; k < NCOL; k++) {
        for (l = 0; l < NCOL; l++) {
          trace = cmplx(0, 0);
          for (a = 0; a < DIMF; a++) {
            CMUL(Lambda[a].e[k][l], Lambda[a].e[i][j], tt);
            CSUM(trace, tt);
          }
          if (cabs_sq(&trace) > IMAG_TOL)
            node0_printf("Sum_a La^a_{%d%d} La^a_{%d%d} = (%.4g, %.4g)\n",
                         k, j, i, l, trace.real, trace.imag);
        }
      }
    }
  }
#endif

  // Test orthogonality and compute products of Lambdas for fermion forces
#ifdef DEBUG_CHECK
  for (i = 0; i < DIMF; i++) {
    for (j = 0; j < DIMF; j++) {
      mult_nn(&(Lambda[i]), &(Lambda[j]), &tmat);
      trace = trace(&tmat);
      if (trace.real * trace.real > IMAG_TOL)
        node0_printf("Tr[T_%d T_%d] = (%.4g, %.4g)\n",
                     i, j, trace.real, trace.imag);
    }
  }
#endif
}
Ejemplo n.º 6
0
Archivo: unit.c Proyecto: rgjha/susy
// -----------------------------------------------------------------
// Given matrix in = P.u, calculate the unitary matrix u = [1 / P].in
//   and the positive P = sqrt[in.in^dag]
// We diagonalize PSq = in.in^dag using LAPACK,
// then project out its inverse square root
void polar(matrix *in, matrix *u, matrix *P) {
  char V = 'V';     // Ask LAPACK for both eigenvalues and eigenvectors
  char U = 'U';     // Have LAPACK store upper triangle of U.Ubar
  int row, col, Npt = NCOL, stat = 0, Nwork = 2 * NCOL;
  matrix PSq, Pinv, tmat;

  // Convert PSq to column-major double array used by LAPACK
  mult_na(in, in, &PSq);
  for (row = 0; row < NCOL; row++) {
    for (col = 0; col < NCOL; col++) {
      store[2 * (col * NCOL + row)] = PSq.e[row][col].real;
      store[2 * (col * NCOL + row) + 1] = PSq.e[row][col].imag;
    }
  }

  // Compute eigenvalues and eigenvectors of PSq
  zheev_(&V, &U, &Npt, store, &Npt, eigs, work, &Nwork, Rwork, &stat);

  // Check for degenerate eigenvalues (broke previous Jacobi algorithm)
  for (row = 0; row < NCOL; row++) {
    for (col = row + 1; col < NCOL; col++) {
      if (fabs(eigs[row] - eigs[col]) < IMAG_TOL)
        printf("WARNING: w[%d] = w[%d] = %.8g\n", row, col, eigs[row]);
    }
  }

  // Move the results back into matrix structures
  // Overwrite PSq to hold the eigenvectors for projection
  for (row = 0; row < NCOL; row++) {
    for (col = 0; col < NCOL; col++) {
      PSq.e[row][col].real = store[2 * (col * NCOL + row)];
      PSq.e[row][col].imag = store[2 * (col * NCOL + row) + 1];
      P->e[row][col] = cmplx(0.0, 0.0);
      Pinv.e[row][col] = cmplx(0.0, 0.0);
    }
    P->e[row][row].real = sqrt(eigs[row]);
    Pinv.e[row][row].real = 1.0 / sqrt(eigs[row]);
  }
  mult_na(P, &PSq, &tmat);
  mult_nn(&PSq, &tmat, P);

  // Now project out 1 / sqrt[in.in^dag] to find u = [1 / P].in
  mult_na(&Pinv, &PSq, &tmat);
  mult_nn(&PSq, &tmat, &Pinv);
  mult_nn(&Pinv, in, u);

#ifdef DEBUG_CHECK
  // Check unitarity of u
  mult_na(u, u, &PSq);
  c_scalar_add_diag(&PSq, &minus1);
  for (row = 0; row < NCOL; row++) {
    for (col = 0; col < NCOL; col++) {
      if (cabs_sq(&(PSq.e[row][col])) > SQ_TOL) {
        printf("Error getting unitary piece: ");
        printf("%.4g > %.4g for [%d, %d]\n",
               cabs(&(PSq.e[row][col])), IMAG_TOL, row, col);

        dumpmat(in);
        dumpmat(u);
        dumpmat(P);
        return;
      }
    }
  }
#endif

#ifdef DEBUG_CHECK
  // Check hermiticity of P
  adjoint(P, &tmat);
  sub_matrix(P, &tmat, &PSq);
  for (row = 0; row < NCOL; row++) {
    for (col = 0; col < NCOL; col++) {
      if (cabs_sq(&(PSq.e[row][col])) > SQ_TOL) {
        printf("Error getting hermitian piece: ");
        printf("%.4g > %.4g for [%d, %d]\n",
               cabs(&(PSq.e[row][col])), IMAG_TOL, row, col);

        dumpmat(in);
        dumpmat(u);
        dumpmat(P);
        return;
      }
    }
  }
#endif

#ifdef DEBUG_CHECK
  // Check that in = P.u
  mult_nn(P, u, &tmat);
  sub_matrix(in, &tmat, &PSq);
  for (row = 0; row < NCOL; row++) {
    for (col = 0; col < NCOL; col++) {
      if (cabs_sq(&(PSq.e[row][col])) > SQ_TOL) {
        printf("Error reconstructing initial matrix: ");
        printf("%.4g > %.4g for [%d, %d]\n",
               cabs(&(PSq.e[row][col])), IMAG_TOL, row, col);

        dumpmat(in);
        dumpmat(u);
        dumpmat(P);
        return;
      }
    }
  }
#endif
}
Ejemplo n.º 7
0
// -----------------------------------------------------------------
void meas_plaq() {
  register int i, dir1, dir2;
  register site *s;
  register matrix *m1, *m4;
  double plaq_ss = 0, plaq_e[5], plaq_o[5];    // st, x, y, z, a
  matrix mtmp, *tmat;         // Scratch space
  msg_tag *mtag0,*mtag1;

  tmat = (matrix *)malloc(sizeof(matrix) * sites_on_node);
  if (tmat == NULL) {
    node0_printf("ERROR: can't malloc tmat in plaq_diff()\n");
    fflush(stdout);
    terminate(1);
  }

  for (i = 0; i < 5; i++) {
    plaq_e[i] = 0;
    plaq_o[i] = 0;
  }

  for (dir1 = YUP; dir1 <= TUP; dir1++) {
    for (dir2 = XUP; dir2 < dir1; dir2++) {
      mtag0 = start_gather_site(F_OFFSET(link[dir2]), sizeof(matrix),
                                dir1, EVENANDODD, gen_pt[0]);
      mtag1 = start_gather_site(F_OFFSET(link[dir1]), sizeof(matrix),
                                dir2, EVENANDODD, gen_pt[1]);

      FORALLSITES(i, s) {
        m1 = &(s->link[dir1]);
        m4 = &(s->link[dir2]);
        mult_an(m4, m1, &tmat[i]);
      }
      wait_gather(mtag0);
      wait_gather(mtag1);
      FORALLSITES(i, s) {
        mult_nn(&tmat[i], (matrix *)(gen_pt[0][i]), &mtmp);

        if (dir1 == TUP) {
          if ((s->t) % 2 == 0)
            plaq_e[0] += (double)realtrace((matrix *)(gen_pt[1][i]),
                                               &mtmp);
          else
            plaq_o[0] += (double)realtrace((matrix *)(gen_pt[1][i]),
                                               &mtmp);
        }
        else    // Check
          plaq_ss += (double)realtrace((matrix *)(gen_pt[1][i]),
                                           &mtmp);

        if (dir1 == XUP || dir2 == XUP) {
          if ((s->x) % 2 == 0)
            plaq_e[1] += (double)realtrace((matrix *)(gen_pt[1][i]),
                                               &mtmp);
          else
            plaq_o[1] += (double)realtrace((matrix *)(gen_pt[1][i]),
                                               &mtmp);
        }

        if (dir1 == YUP || dir2 == YUP) {
          if ((s->y) % 2 == 0)
            plaq_e[2] += (double)realtrace((matrix *)(gen_pt[1][i]),
                                               &mtmp);
          else
            plaq_o[2] += (double)realtrace((matrix *)(gen_pt[1][i]),
                                               &mtmp);
        }

        if (dir1 == ZUP || dir2 == ZUP) {
          if ((s->z) % 2 == 0)
            plaq_e[3] += (double)realtrace((matrix *)(gen_pt[1][i]),
                                               &mtmp);
          else
            plaq_o[3] += (double)realtrace((matrix *)(gen_pt[1][i]),
                                               &mtmp);
        }

        // "a" is not really even/odd, but leave the labels for consistency
        if ((s->t) % 2 == 1 && (s->x) % 2 == 1
                            && (s->y) % 2 == 1 && (s->z) % 2 == 1)
          plaq_e[4] += (double)realtrace((matrix *)(gen_pt[1][i]),
                                             &mtmp);
        if ((s->t) % 2 == 0 && (s->x) % 2 == 0
                            && (s->y) % 2 == 0 && (s->z) % 2 == 0)
          plaq_o[4] += (double)realtrace((matrix *)(gen_pt[1][i]),
                                             &mtmp);
      }
      cleanup_gather(mtag0);
      cleanup_gather(mtag1);
    } // End loop over dir2
Ejemplo n.º 8
0
 FORALLSITES(i, s) {
   mult_nn(&(s->link[dir2]), (matrix *)(gen_pt[1][i]), &tmat1);
   mult_nn(&tmat1, (matrix *)(gen_pt[2][i]), &tmat2);
   mult_na(&tmat2, (matrix *)(gen_pt[0][i]), &tmat1);
   add_matrix(&(s->tempmat2), &tmat1, &(s->tempmat2));
 }
Ejemplo n.º 9
0
// -----------------------------------------------------------------
void staple_mcrg(int dir1, int block) {
  register int i, dir2;
  register site *s;
  int j, bl, start, disp[4];    // Displacement vector for general gather
  msg_tag *tag0, *tag1, *tag2, *tag3, *tag4, *tag5, *tag6;
  matrix tmat1, tmat2;

  bl = 1;
  for (j = 1; j < block; j++)
    bl *= 2;                    // Block size

  start = 1;                    // Indicates staple sum not initialized
  // Loop over other directions
  for (dir2 = XUP; dir2 <= TUP; dir2++) {
    if (dir2 != dir1) {
      // Get link[dir2] from direction 2 * dir1
      clear_disp(disp);
      disp[dir1] = 2 * bl;
      tag0 = start_general_gather_site(F_OFFSET(link[dir2]),
                                       sizeof(matrix), disp,
                                       EVENANDODD, gen_pt[0]);
      wait_general_gather(tag0);

      // Get link[dir1] from direction dir2
      clear_disp(disp);
      disp[dir2] = bl;
      tag1 = start_general_gather_site(F_OFFSET(link[dir1]),
                                       sizeof(matrix), disp,
                                       EVENANDODD, gen_pt[1]);
      wait_general_gather(tag1);

      // Get link[dir1] from direction dir1 + dir2
      clear_disp(disp);
      disp[dir1] = bl;
      disp[dir2] = bl;
      tag2 = start_general_gather_site(F_OFFSET(link[dir1]),
                                       sizeof(matrix), disp,
                                       EVENANDODD, gen_pt[2]);
      wait_general_gather(tag2);

      // Get link[dir2] from direction -dir2
      clear_disp(disp);
      disp[dir2] = -bl;
      tag3 = start_general_gather_site(F_OFFSET(link[dir2]),
                                       sizeof(matrix), disp,
                                       EVENANDODD, gen_pt[3]);
      wait_general_gather(tag3);

      // Get link[dir1] from direction -dir2
      clear_disp(disp);
      disp[dir2] = -bl;
      tag4 = start_general_gather_site(F_OFFSET(link[dir1]),
                                       sizeof(matrix), disp,
                                       EVENANDODD, gen_pt[4]);
      wait_general_gather(tag4);

      // Get link[dir1] from direction dir1 - dir2
      clear_disp(disp);
      disp[dir1] = bl;
      disp[dir2]= -bl;
      tag5 = start_general_gather_site(F_OFFSET(link[dir1]),
                                       sizeof(matrix), disp,
                                       EVENANDODD, gen_pt[5]);
      wait_general_gather(tag5);

      // Get link[dir2] from direction 2 * dir1 - dir2
      clear_disp(disp);
      disp[dir1] = 2 * bl;
      disp[dir2] = -bl;

      tag6 = start_general_gather_site(F_OFFSET(link[dir2]),
                                       sizeof(matrix), disp,
                                       EVENANDODD, gen_pt[6]);
      wait_general_gather(tag6);

      // Upper staple
      if (start) {          // The first contribution to the staple
        FORALLSITES(i, s) {
          mult_nn(&(s->link[dir2]), (matrix *)(gen_pt[1][i]), &tmat1);
          mult_nn(&tmat1, (matrix *)(gen_pt[2][i]), &tmat2);
          mult_na(&tmat2, (matrix *)(gen_pt[0][i]), &(s->tempmat2));
        }
        start = 0;
      }
      else {