Ejemplo n.º 1
0
Archivo: main.cpp Proyecto: kareth/TSP
int solve(Graph &G, vector<int> &path){
  vector<Genome> population;
  REP(i, G.size) path.push_back(i);
  for(int i = 0; i < POPULATION_SIZE; i++) {
    random_shuffle(path.begin(), path.end());
    Genome new_genome(path, G);
    population.push_back(new_genome);
  }
  sort(population.begin(), population.end(), genome_compare);

  for(int i = 0; i < EVOLUTION_TIMES; i++) {
    for(int l = 0; l < POPULATION_SIZE / 2; l++) {
      int r1 = rand() % POPULATION_SIZE;
      int r2 = rand() % POPULATION_SIZE;
      while(r1 == r2) r2 = rand() % POPULATION_SIZE;
      population[r1].breed(population[r2], population);
    }
    sort(population.begin(), population.end(), genome_compare);
    population.erase(population.begin() + POPULATION_SIZE, population.end());
    printf("evolution %i: top: %d last: %d\n", i, population[0].score, population[POPULATION_SIZE-1].score);
    //printResult(0, top_genome.genes);
    //printResult(0, population[POPULATION_SIZE-1].genes);
  }

  path.clear();
  REP(i, G.size) path.push_back(population[0].genes[i]);
  return population[0].score;
}
Ejemplo n.º 2
0
Archivo: main.cpp Proyecto: kareth/TSP
 Genome mutate() {
   vector<int> result(genes);
   if(rand() % 10 < 6) {
     int random = rand() % result.size();
     swap(result[random], result[(random+1)%result.size()]);
   }
   else {
     int first = rand() % genes.size();
     int second = first + rand() % (genes.size()-first);
     reverse(result.begin()+first, result.begin()+second+1);
   }
   Genome new_genome(result, G);
   return new_genome;
 }
Ejemplo n.º 3
0
	void pool::import_fromfile(std::string filename){
		std::ifstream input;
		input.open(filename);
		if (!input.is_open()){
			std::cerr << "cannot open file '" << filename << "' !";
			return ;
		}
	
		this->species.clear();
		try {
			// current state
			unsigned int innovation_num;
			input >> innovation_num;
			this->innovation.set_innovation_number(innovation_num);
			input >> this->generation_number;
			input >> this->max_fitness;

			// network information
			input >> this->network_info.input_size >> this->network_info.output_size >> this->network_info.bias_size;	
			this->network_info.functional_nodes = this->network_info.input_size + 
				this->network_info.output_size + this->network_info.bias_size;			
			
			std::string rec;
			input >> rec;
			if (rec == "rec")
				this->network_info.recurrent = true;
			if (rec == "nonrec")
				this->network_info.recurrent = false;

			// population information
			this->speciating_parameters.read(input);

			// mutation parameters
			this->mutation_rates.read(input);

			// species information
			unsigned int species_number;
			input >> species_number;
			this->species.clear();			

			for (unsigned int c = 0; c < species_number; c++){
				specie new_specie;
			#ifdef GIVING_NAMES_FOR_SPECIES
				input >> new_specie.name;
			#endif
				input >> new_specie.top_fitness;
				input >> new_specie.average_fitness;
				input >> new_specie.staleness;

				unsigned int specie_population;
				input >> specie_population;

				for (unsigned int i=0; i<specie_population; i++){
					genome new_genome(this->network_info, this->mutation_rates);
					input >> new_genome.fitness;
					input >> new_genome.adjusted_fitness;
					input >> new_genome.global_rank;
					
					new_genome.mutation_rates.read(input);

					unsigned int gene_number;
					input >> new_genome.max_neuron >> gene_number;

					for (unsigned int j=0; j<gene_number; j++){
						gene new_gene;
						input >> new_gene.innovation_num;
						input >> new_gene.from_node;
						input >> new_gene.to_node;
						input >> new_gene.weight;
						input >> new_gene.enabled;
						new_genome.genes[new_gene.innovation_num] = new_gene;
					}
					
					new_specie.genomes.push_back(new_genome);
				}

				this->species.push_back(new_specie);
			}
			
		}
		catch (std::string error_message){
			std::cerr << error_message;
		}

		input.close();
	}