Ejemplo n.º 1
0
int
main(int argc, char *argv[]) {
	int fa,nfa;				/* argument we're looking at */
	struct {
		char name[MAXNAMEL+1];	/* Patch filename  */
		int npat;				/* Number of patches */
		pval *pat;				/* patch values */
	} cg[2];					/* Target and current patch file information */
	char dev_name[MAXNAMEL+1];	/* Output device ICC filename for gamut */
	char rd_name[MAXNAMEL+1];	/* Abstract profile ICC to modify */
	char wr_name[MAXNAMEL+1];	/* Modified/created abstract profile ICC */

	int dorel = 0;				/* Do white point relative match */
	int *match;					/* Array mapping first list indexes to corresponding second */
	int fwacomp = 0;			/* FWA compensation on spectral ? */
	int spec = 0;				/* Use spectral data flag */
	icxIllumeType illum = icxIT_D50;	/* Spectral defaults */
	xspect cust_illum;					/* Custom illumination spectrum */
	icxObserverType observ = icxOT_Judd_Voss_2;
	callback cb;				/* Callback support stucture for setting abstract profile */

	icmFile *rd_fp = NULL;		/* Existing abstract profile to modify */
	icc *rd_icc = NULL;

	icmFile *wr_fp;				/* Modified/created abstract profile to write */
	icc *wr_icc;

	int verb = 0;
	int nogamut = 0;					/* Don't impose a gamut limit */
	int docreate = 0;					/* Create an initial abstract correction profile */
	int clutres = DEF_CLUTRES;			/* Output abstract profile clut resolution */
	double damp1 = DEF_DAMP1;			/* Initial damping factor */
	double damp2 = DEF_DAMP2;			/* Subsequent damping factor */
	double smoothf = SMOOTHF;			/* RSPL Smoothing factor */
	double avgdev[MXDO];				/* RSPL Average Deviation */
	double wweight = WWEIGHT;			/* weak default function weight */
	int whitepatch = -1;				/* Index of white patch */
	double merr = 0.0, aerr = 0.0;		/* Stats on color change */
	int i, j, e, n, rv = 0;

	error_program = argv[0];

	if (argc < 6)
		usage("Too few arguments");

	/* Process the arguments */
	for(fa = 1;fa < argc;fa++) {
		nfa = fa;					/* skip to nfa if next argument is used */
		if (argv[fa][0] == '-')	{	/* Look for any flags */
			char *na = NULL;		/* next argument after flag, null if none */

			if (argv[fa][2] != '\000')
				na = &argv[fa][2];		/* next is directly after flag */
			else {
				if ((fa+1) < argc) {
					if (argv[fa+1][0] != '-') {
						nfa = fa + 1;
						na = argv[nfa];		/* next is seperate non-flag argument */
					}
				}
			}

			if (argv[fa][1] == '?')
				usage("Usage requested");

			/* Verbosity */
			else if (argv[fa][1] == 'v' || argv[fa][1] == 'V') {
				verb = 1;
			}
			/* Create initial abstract correction profile */
			else if (argv[fa][1] == 'c' || argv[fa][1] == 'C') {
				docreate = 1;
			}
			/* Don't impose a gamut limit */
			else if (argv[fa][1] == 'g' || argv[fa][1] == 'G') {
				nogamut = 1;
			}
			/* Override the correction clut resolution */
			else if (argv[fa][1] == 'r') {
				fa = nfa;
				if (na == NULL) usage("Expect argument to -r");
				clutres = atoi(na);
			}
			/* Override the damping factor */
			else if (argv[fa][1] == 'd' || argv[fa][1] == 'D') {
				fa = nfa;
				if (na == NULL) usage("Expect argument to -d");
				damp2 = atof(na);
			}
			/* Aim for white point relative match */
			else if (argv[fa][1] == 'R') {
				dorel = 1;
			}

			/* Spectral Illuminant type */
			else if (argv[fa][1] == 'i' || argv[fa][1] == 'I') {
				fa = nfa;
				if (na == NULL) usage("Expect argument to -i");
				if (strcmp(na, "A") == 0) {
					spec = 1;
					illum = icxIT_A;
				} else if (strcmp(na, "C") == 0) {
					spec = 1;
					illum = icxIT_C;
				} else if (strcmp(na, "D50") == 0) {
					spec = 1;
					illum = icxIT_D50;
				} else if (strcmp(na, "D65") == 0) {
					spec = 1;
					illum = icxIT_D65;
				} else if (strcmp(na, "F5") == 0) {
					spec = 1;
					illum = icxIT_F5;
				} else if (strcmp(na, "F8") == 0) {
					spec = 1;
					illum = icxIT_F8;
				} else if (strcmp(na, "F10") == 0) {
					spec = 1;
					illum = icxIT_F10;
				} else {	/* Assume it's a filename */
					spec = 1;
					illum = icxIT_custom;
					if (read_xspect(&cust_illum, na) != 0)
						usage("Unable to read custom spectrum '%s'",na);
				}
			}

			/* Spectral Observer type */
			else if (argv[fa][1] == 'o' || argv[fa][1] == 'O') {
				fa = nfa;
				if (na == NULL) usage("Expected argument to -o");
				if (strcmp(na, "1931_2") == 0) {			/* Classic 2 degree */
					spec = 1;
					observ = icxOT_CIE_1931_2;
				} else if (strcmp(na, "1964_10") == 0) {	/* Classic 10 degree */
					spec = 1;
					observ = icxOT_CIE_1964_10;
				} else if (strcmp(na, "1955_2") == 0) {		/* Stiles and Burch 1955 2 degree */
					spec = 1;
					observ = icxOT_Stiles_Burch_2;
				} else if (strcmp(na, "1978_2") == 0) {		/* Judd and Voss 1978 2 degree */
					spec = 1;
					observ = icxOT_Judd_Voss_2;
				} else if (strcmp(na, "shaw") == 0) {		/* Shaw and Fairchilds 1997 2 degree */
					spec = 1;
					observ = icxOT_Shaw_Fairchild_2;
				} else
					usage("Unrecogised argument '%s' to -o",na);
			}

			/* FWA compensation */
			else if (argv[fa][1] == 'f' || argv[fa][1] == 'F')
				fwacomp = 1;

			else 
				usage("Unrecognised flag -%c",argv[fa][1]);
		} else
			break;
	}

	/* Grab all the filenames: */

	/* The two CIE value files */
	if (fa >= argc || argv[fa][0] == '-') usage("Expected cietarget file argument");
	strncpy(cg[0].name,argv[fa++],MAXNAMEL); cg[0].name[MAXNAMEL] = '\000';

	if (fa >= argc || argv[fa][0] == '-') usage("Expected ciecurrent file argument");
	strncpy(cg[1].name,argv[fa++],MAXNAMEL); cg[1].name[MAXNAMEL] = '\000';

	/* Optional output device name */
	if (nogamut == 0) {
		if (fa >= argc || argv[fa][0] == '-') usage("Expected outdevicc file argument");
		strncpy(dev_name,argv[fa++],MAXNAMEL); dev_name[MAXNAMEL] = '\000';
	}

	/* Optional input abstract profile name */
	if (docreate == 0) {
		if (fa >= argc || argv[fa][0] == '-') usage("Expected inabs file argument");
		strncpy(rd_name,argv[fa++],MAXNAMEL); rd_name[MAXNAMEL] = '\000';
	}

	/* Output abstract profile name */
	if (fa >= argc || argv[fa][0] == '-') usage("Expected outabs file argument");
	strncpy(wr_name,argv[fa++],MAXNAMEL); wr_name[MAXNAMEL] = '\000';

	/* ======================= */
	/* Open up each CIE file in turn, target then measured, */
	/* and read in the CIE values. */
	for (n = 0; n < 2; n++) {
		cgats *cgf = NULL;			/* cgats file data */
		int isLab = 0;				/* 0 if file CIE is XYZ, 1 if is Lab */
		int sidx;					/* Sample ID index */
		int xix, yix, zix;

		/* Open CIE target values */
		cgf = new_cgats();			/* Create a CGATS structure */
		cgf->add_other(cgf, ""); 	/* Allow any signature file */
	
		if (cgf->read_name(cgf, cg[n].name))
			error("CGATS file '%s' read error : %s",cg[n].name,cgf->err);
	
		if (cgf->ntables < 1)
			error ("Input file '%s' doesn't contain at least one table",cg[n].name);
	
		/* Check if the file is suitable */
		if (!spec
		 && cgf->find_field(cgf, 0, "LAB_L") < 0
		 && cgf->find_field(cgf, 0, "XYZ_X") < 0) {
	
			if (cgf->find_kword(cgf, 0, "SPECTRAL_BANDS") < 0)
				error ("Neither CIE nor spectral data found in file '%s'",cg[n].name);
	
			/* Switch to using spectral information */
			if (verb)
				printf("No CIE data found, switching to spectral with standard observer & D50 for file '%s'\n",cg[n].name);
			spec = 1;
			illum = icxIT_D50;
			observ = icxOT_CIE_1931_2;
		}
		if (spec && cgf->find_kword(cgf, 0, "SPECTRAL_BANDS") < 0)
			error ("No spectral data data found in file '%s' when spectral expected",cg[n].name);
	
		if (!spec && cgf->find_field(cgf, 0, "LAB_L") >= 0)
			isLab = 1;
		
		cg[n].npat = cgf->t[0].nsets;		/* Number of patches */
	
		/* Read all the target patches */
		if (cg[n].npat <= 0)
			error("No sets of data in file '%s'",cg[n].name);
	
		if (verb && n == 0) {
			fprintf(verbo,"No of test patches = %d\n",cg[n].npat);
		}
	
		/* Allocate arrays to hold test patch input and output values */
		if ((cg[n].pat = (pval *)malloc(sizeof(pval) * cg[n].npat)) == NULL)
			error("Malloc failed - pat[]");
	
		/* Read in the CGATs fields */
		if ((sidx = cgf->find_field(cgf, 0, "SAMPLE_ID")) < 0
		 && (sidx = cgf->find_field(cgf, 0, "SampleName")) < 0
		 && (sidx = cgf->find_field(cgf, 0, "Sample_Name")) < 0
		 && (sidx = cgf->find_field(cgf, 0, "SAMPLE_NAME")) < 0
		 && (sidx = cgf->find_field(cgf, 0, "SAMPLE_LOC")) < 0)
			error("Input file '%s' doesn't contain field SAMPLE_ID, SampleName, Sample_Name, SAMPLE_NAME or SAMPLE_LOC",cg[n].name);
		if (cgf->t[0].ftype[sidx] != nqcs_t
		 && cgf->t[0].ftype[sidx] != cs_t)
			error("Sample ID/Name field isn't a quoted or non quoted character string");

		if (spec == 0) { 		/* Using instrument tristimulous value */

			if (isLab) {		/* Expect Lab */
				if ((xix = cgf->find_field(cgf, 0, "LAB_L")) < 0)
					error("Input file '%s' doesn't contain field LAB_L",cg[n].name);
				if (cgf->t[0].ftype[xix] != r_t)
					error("Field LAB_L is wrong type");
				if ((yix = cgf->find_field(cgf, 0, "LAB_A")) < 0)
					error("Input file '%s' doesn't contain field LAB_A",cg[n].name);
				if (cgf->t[0].ftype[yix] != r_t)
					error("Field LAB_A is wrong type");
				if ((zix = cgf->find_field(cgf, 0, "LAB_B")) < 0)
					error("Input file '%s' doesn't contain field LAB_B",cg[n].name);
				if (cgf->t[0].ftype[zix] != r_t)
					error("Field LAB_B is wrong type");

			} else { 		/* Expect XYZ */
				if ((xix = cgf->find_field(cgf, 0, "XYZ_X")) < 0)
					error("Input file '%s' doesn't contain field XYZ_X",cg[n].name);
				if (cgf->t[0].ftype[xix] != r_t)
					error("Field XYZ_X is wrong type");
				if ((yix = cgf->find_field(cgf, 0, "XYZ_Y")) < 0)
					error("Input file '%s' doesn't contain field XYZ_Y",cg[n].name);
				if (cgf->t[0].ftype[yix] != r_t)
					error("Field XYZ_Y is wrong type");
				if ((zix = cgf->find_field(cgf, 0, "XYZ_Z")) < 0)
					error("Input file '%s' doesn't contain field XYZ_Z",cg[n].name);
				if (cgf->t[0].ftype[zix] != r_t)
					error("Field XYZ_Z is wrong type");
			}

			for (i = 0; i < cg[n].npat; i++) {
				strcpy(cg[n].pat[i].sid, (char *)cgf->t[0].fdata[i][sidx]);
				cg[n].pat[i].v[0] = *((double *)cgf->t[0].fdata[i][xix]);
				cg[n].pat[i].v[1] = *((double *)cgf->t[0].fdata[i][yix]);
				cg[n].pat[i].v[2] = *((double *)cgf->t[0].fdata[i][zix]);
				if (!isLab) {
					cg[n].pat[i].v[0] /= 100.0;		/* Normalise XYZ to range 0.0 - 1.0 */
					cg[n].pat[i].v[1] /= 100.0;
					cg[n].pat[i].v[2] /= 100.0;
				}
				if (!isLab) { /* Convert test patch result XYZ to PCS (D50 Lab) */
					icmXYZ2Lab(&icmD50, cg[n].pat[i].v, cg[n].pat[i].v);
				}
			}

		} else { 		/* Using spectral data */
			int ii;
			xspect sp;
			char buf[100];
			int  spi[XSPECT_MAX_BANDS];	/* CGATS indexes for each wavelength */
			xsp2cie *sp2cie;	/* Spectral conversion object */

			if ((ii = cgf->find_kword(cgf, 0, "SPECTRAL_BANDS")) < 0)
				error ("Input file doesn't contain keyword SPECTRAL_BANDS");
			sp.spec_n = atoi(cgf->t[0].kdata[ii]);
			if ((ii = cgf->find_kword(cgf, 0, "SPECTRAL_START_NM")) < 0)
				error ("Input file doesn't contain keyword SPECTRAL_START_NM");
			sp.spec_wl_short = atof(cgf->t[0].kdata[ii]);
			if ((ii = cgf->find_kword(cgf, 0, "SPECTRAL_END_NM")) < 0)
				error ("Input file doesn't contain keyword SPECTRAL_END_NM");
			sp.spec_wl_long = atof(cgf->t[0].kdata[ii]);
			sp.norm = 100.0;

			/* Find the fields for spectral values */
			for (j = 0; j < sp.spec_n; j++) {
				int nm;
		
				/* Compute nearest integer wavelength */
				nm = (int)(sp.spec_wl_short + ((double)j/(sp.spec_n-1.0))
				            * (sp.spec_wl_long - sp.spec_wl_short) + 0.5);
				
				sprintf(buf,"SPEC_%03d",nm);

				if ((spi[j] = cgf->find_field(cgf, 0, buf)) < 0)
					error("Input file doesn't contain field %s",buf);
			}

			/* Figure out what sort of device it is */
			{
				int ti;
		
				if ((ti = cgf->find_kword(cgf, 0, "DEVICE_CLASS")) < 0)
					error ("Input file '%s' doesn't contain keyword DEVICE_CLASS",cg[n].name);
		
				if (strcmp(cgf->t[0].kdata[ti],"DISPLAY") == 0) {
					illum = icxIT_none;		/* Displays are assumed to be self luminous */
				}
			}

			/* Create a spectral conversion object */
			if ((sp2cie = new_xsp2cie(illum, illum == icxIT_none ? NULL : &cust_illum,
			                          observ, NULL, icSigLabData)) == NULL)
				error("Creation of spectral conversion object failed");

			if (fwacomp) {
				int ti;
				xspect mwsp;			/* Medium spectrum */
				instType itype;			/* Spectral instrument type */
				xspect insp;			/* Instrument illuminant */

				mwsp = sp;		/* Struct copy */

	 			if ((ti = cgf->find_kword(cgf, 0, "TARGET_INSTRUMENT")) < 0)
					error ("Can't find target instrument in '%s' needed for FWA compensation",cg[n].name);

				if ((itype = inst_enum(cgf->t[0].kdata[ti])) == instUnknown)
					error ("Unrecognised target instrument '%s'", cgf->t[0].kdata[ti]);

				if (inst_illuminant(&insp, itype) != 0)
					error ("Instrument doesn't have an FWA illuminent");

				/* Determine a media white spectral reflectance */
				for (j = 0; j < mwsp.spec_n; j++)
					mwsp.spec[j] = 0.0;

				/* Track the maximum reflectance for any band to determine white. */
				/* This might silently fail, if there isn't white in the sampe set. */
				for (i = 0; i < cg[0].npat; i++) {
					for (j = 0; j < mwsp.spec_n; j++) {
						double rv = *((double *)cgf->t[0].fdata[i][spi[j]]);
						if (rv > mwsp.spec[j])
							mwsp.spec[j] = rv;
					}
				}
				if (sp2cie->set_fwa(sp2cie, &insp, &mwsp)) 
					error ("Set FWA on sp2cie failed");
			}

			for (i = 0; i < cg[0].npat; i++) {

				strcpy(cg[n].pat[i].sid, (char *)cgf->t[0].fdata[i][sidx]);

				/* Read the spectral values for this patch */
				for (j = 0; j < sp.spec_n; j++) {
					sp.spec[j] = *((double *)cgf->t[0].fdata[i][spi[j]]);
				}

				/* Convert it to CIE space */
				sp2cie->convert(sp2cie, cg[n].pat[i].v, &sp);
			}

			sp2cie->del(sp2cie);		/* Done with this */

		}	/* End of reading in CGATs file */
		cgf->del(cgf);		/* Clean up */
	}

	/* Check that the number of test patches matches */
	if (cg[0].npat != cg[1].npat)
		error("Number of patches between '%s' and '%s' doesn't match",cg[0].name,cg[1].name);
	
	/* Create a list to map the second list (measured) of patches to the first (target) */
	if ((match = (int *)malloc(sizeof(int) * cg[0].npat)) == NULL)
		error("Malloc failed - match[]");
	for (i = 0; i < cg[0].npat; i++) {
		for (j = 0; j < cg[1].npat; j++) {
			if (strcmp(cg[0].pat[i].sid, cg[1].pat[j].sid) == 0)
				break;			/* Found it */
		}
		if (j < cg[1].npat) {
			match[i] = j;
		} else {
			error("Failed to find matching patch to '%s'",cg[0].pat[i].sid);
		}
	}

	/* Try and figure out which is the white patch */
	{
		double hL = -1.0;
		for (i = 0; i < cg[0].npat; i++) {
			if (cg[0].pat[i].v[0] > hL) {
				hL = cg[0].pat[i].v[0];
				whitepatch = i;
			}
		}
	}

	/* If we are aiming for a white point relative match, adjust the */
	/* measured and target values to have a D50 white point */
	if (dorel) {
		for (n = 0; n < 2; n++) {
			int wpix;			/* White patch index */
			double wp_xyz[3];
			icmXYZNumber wp;	/* White value */
			double mat[3][3];	/* Chromatic transform */
			
			if (n == 0)
				wpix = whitepatch;
			else
				wpix = match[whitepatch];
		

			/* Compute a chromatic correction matrix */
			icmLab2XYZ(&icmD50, wp_xyz, cg[n].pat[wpix].v);
			icmAry2XYZ(wp, wp_xyz);

			icmChromAdaptMatrix(ICM_CAM_BRADFORD, icmD50, wp, mat);

			for (i = 0; i < cg[n].npat; i++) {
				icmLab2XYZ(&icmD50, cg[n].pat[i].v, cg[n].pat[i].v);
				icmMulBy3x3(cg[n].pat[i].v, mat, cg[n].pat[i].v);
				icmXYZ2Lab(&icmD50, cg[n].pat[i].v, cg[n].pat[i].v);
//printf("Table %d, patch %d, Lab %f %f %f\n",n,i,cg[n].pat[i].v[0],cg[n].pat[i].v[1],cg[n].pat[i].v[2]);
			}
		}
	}

	/* Compute the delta E's just for information */
	for (i = 0; i < cg[0].npat; i++) {
		double de = icmLabDE(cg[0].pat[i].v, cg[1].pat[match[i]].v);
		cg[0].pat[i].de = de;
		if (de > merr)
			merr = de;
		aerr += de;
	}
	if (cg[0].npat > 0)
		aerr /= (double)cg[0].npat;

	if (verb) {
		fprintf(verbo,"No of correction patches = %d\n",cg[0].npat);
		fprintf(verbo,"Average dE = %f, Maximum dE = %f\n",aerr,merr);
		fprintf(verbo,"White patch assumed to be patch %s\n",cg[0].pat[whitepatch].sid);
	}

	/* ======================= */
	/* Possible limiting gamut */
	if (nogamut == 0) {
		icmFile *dev_fp;
		icc *dev_icc;
		xicc *dev_xicc;
		icxLuBase *dev_luo;
		icxInk ink;							/* Ink parameters */

		/* Open up the device ICC profile, so that we can create a gamut */
		/* and get an absolute PCS->device conversion */
		if ((dev_fp = new_icmFileStd_name(dev_name,"r")) == NULL)
			error ("Can't open file '%s'",dev_name);
	
		if ((dev_icc = new_icc()) == NULL)
			error("Creation of ICC object failed");
	
		/* Read header etc. */
		if ((rv = dev_icc->read(dev_icc,dev_fp,0)) != 0)
			error("Reading profile '%s' failed: %d, %s",dev_name,rv,dev_icc->err);
	
		/* Check that the profile is appropriate */
		if (dev_icc->header->deviceClass != icSigInputClass
		 && dev_icc->header->deviceClass != icSigDisplayClass
		 && dev_icc->header->deviceClass != icSigOutputClass)
			error("Device Profile '%s' isn't a device profile",dev_name);

		ink.tlimit = -1.0;		/* No ink limit by default */
		ink.klimit = -1.0;

		/* Wrap with an expanded icc */
		if ((dev_xicc = new_xicc(dev_icc)) == NULL)
			error ("Creation of xicc failed");

		/* Use a heuristic to guess the ink limit */
		icxGetLimits(dev_xicc, &ink.tlimit, &ink.klimit);
		ink.tlimit += 0.05;		/* allow a slight margine */

		if (verb)
			printf("Estimated Total inklimit is %f%%, Black %f%% \n",100.0 * ink.tlimit,ink.klimit < 0.0 ? 100.0 : 100.0 * ink.klimit);

		/* Get a expanded color conversion object suitable for gamut */
		if ((dev_luo = dev_xicc->get_luobj(dev_xicc, ICX_CLIP_NEAREST, icmFwd,
		     dorel ? icRelativeColorimetric : icAbsoluteColorimetric,
		     icSigLabData, icmLuOrdNorm, NULL, &ink)) == NULL)
			error ("%d, %s",dev_xicc->errc, dev_xicc->err);
	
		/* Creat a gamut surface */
		if ((cb.dev_gam = dev_luo->get_gamut(dev_luo, GAMRES)) == NULL)
			error ("%d, %s",dev_xicc->errc, dev_xicc->err);

		dev_luo->del(dev_luo);
		dev_xicc->del(dev_xicc);
		dev_icc->del(dev_icc);
		dev_fp->del(dev_fp);
	} else {
		cb.dev_gam = NULL;
	}

	/* ======================= */
	/* Open up the existing abstract profile that is to be refined. */
	if (docreate == 0) {
		if ((rd_fp = new_icmFileStd_name(rd_name,"r")) == NULL)
			error ("Can't open file '%s'",rd_name);
	
		if ((rd_icc = new_icc()) == NULL)
			error ("Creation of ICC object failed");
	
		/* Read header etc. */
		if ((rv = rd_icc->read(rd_icc,rd_fp,0)) != 0)
			error ("%d, %s",rv,rd_icc->err);
	
		if (rd_icc->header->deviceClass != icSigAbstractClass)
			error("Input Profile '%s' isn't abstract type",rd_name);

		if ((cb.rd_luo = rd_icc->get_luobj(rd_icc, icmFwd,
		        dorel ? icRelativeColorimetric : icAbsoluteColorimetric,
		        icSigLabData, icmLuOrdNorm)) == NULL)
				error ("%d, %s",rd_icc->errc, rd_icc->err);
	} else {
		cb.rd_luo = NULL;
	}

	/* ======================= */
	/* Create refining rspl */
	{
		cow *rp;		/* rspl setup points */
		int npnts = 0;	/* Total number of test points */
		int gres[MXDI];	/* rspl grid resolution */
		double damp;
		datai mn, mx;

		if ((rp = (cow *)malloc(sizeof(cow) * cg[0].npat)) == NULL)
			error("Malloc failed - rp[]");
		
		/* Create mapping points */
		for (i = 0; i < cg[0].npat; i++) {
			double temp[3];
			double ccor[3], cmag;				/* Current correction vector */
			double ncor[3], nmag;				/* New correction vector */

			/* Input is target [0] */
			for (j = 0; j < 3; j++)
				rp[i].p[j] = cg[0].pat[i].v[j];

			/* Cull out of range points */
			if (rp[i].p[0] < 0.0 || rp[i].p[0] > 100.0
			 || rp[i].p[1] < -127.0 || rp[i].p[1] > 127.0
			 || rp[i].p[2] < -127.0 || rp[i].p[2] > 127.0) {
#ifdef DEBUG1
			printf("Ignoring %f %f %f\n",rp[i].p[0],rp[i].p[1],rp[i].p[2]);
#endif
				continue;
			}
			
#ifdef DEBUG1
			printf("%d: Target        %f %f %f\n",i,rp[i].p[0],rp[i].p[1],rp[i].p[2]);
#endif

			damp = cb.rd_luo != NULL ? damp2 : damp1;
			ccor[0] = ccor[1] = ccor[2] = 0.0;
			cmag = 0.0;

			/* Lookup the current correction applied to the target */
			if (cb.rd_luo != NULL) {		/* Subsequent pass */
				double corval[3];
				cb.rd_luo->lookup(cb.rd_luo, corval, cg[0].pat[i].v);
				icmSub3(ccor, corval, cg[0].pat[i].v);
				cmag = icmNorm3(ccor);
#ifdef DEBUG1
				printf("%d: ccor          %f %f %f, mag %f\n",i, ccor[0],ccor[1],ccor[2],cmag);
#endif
			}

			/* Create a trial 100% full correction point */
			for (j = 0; j < 3; j++)
				rp[i].v[j] = ccor[j] + 2.0 * cg[0].pat[i].v[j] - cg[1].pat[match[i]].v[j];

			/* If a first pass and the target or the correction are out of gamut, */
			/* use a damping factor of 1.0 */
			if (cb.rd_luo == NULL
			 && cb.dev_gam != NULL
			 && cb.dev_gam->nradial(cb.dev_gam, temp, rp[i].p) > 1.0
			 && cb.dev_gam->nradial(cb.dev_gam, temp, rp[i].v) > 1.0) {
				damp = 1.0;
			}

#ifdef DEBUG1
			printf("%d: damp =         %f\n",i, damp);
#endif

			/* Create a new correction that does a damped correction to the current error */
			/* [0] = target, [1] = measured */
			for (j = 0; j < 3; j++)
				ncor[j] = ccor[j] + damp * (cg[0].pat[i].v[j] - cg[1].pat[match[i]].v[j]);
			nmag = icmNorm3(ncor);

#ifdef DEBUG1
			printf("%d: ncor          %f %f %f, mag %f\n",i, ncor[0],ncor[1],ncor[2],nmag);
#endif

			/* If this is not the first pass, limit the new correction */
			/* to be 1 + damp as big as the previous correction */
			if (cb.rd_luo != NULL) {
				if ((nmag/cmag) > (1.0 + damp2)) {
#ifdef DEBUG1
					printf("%d: Limited cor mag from %f to %f\n",i, nmag, (1.0 + damp2) * cmag);
#endif
					icmScale3(ncor, ncor, (1.0 + damp2) * cmag/nmag);
				}
			}

			/* Create correction point */
			for (j = 0; j < 3; j++)
				rp[i].v[j] = cg[0].pat[i].v[j] + ncor[j];

			/* If the target point or corrected point is likely to be outside */
			/* the gamut, limit the magnitude of the correction to be the same */
			/* as the previous correction. */ 
			if (cb.rd_luo != NULL && cb.dev_gam != NULL) {
				if (cb.dev_gam->nradial(cb.dev_gam, temp, rp[i].p) > 1.0
				 || cb.dev_gam->nradial(cb.dev_gam, temp, rp[i].v) > 1.0) {
#ifdef DEBUG1
					printf("%d: Limited cor mag from %f to %f\n",i, nmag, cmag);
#endif
					icmScale3(ncor, ncor, cmag/nmag);
				}
				/* Create correction point again */
				for (j = 0; j < 3; j++)
					rp[i].v[j] = cg[0].pat[i].v[j] + ncor[j];
			}

#ifdef DEBUG1
			printf("%d: Was           %f %f %f\n",i, cg[1].pat[match[i]].v[0], cg[1].pat[match[i]].v[1], cg[1].pat[match[i]].v[2]);
			printf("%d: Correction to %f %f %f\n",i, rp[i].v[0], rp[i].v[1], rp[i].v[2]);
#endif

#ifdef COMPLOOKUP
			/* Remove current correction from new change */
			for (j = 0; j < 3; j++)
				rp[i].v[j] -= ccor[j];
#endif
			/* Set weighting */
			if (i == whitepatch)
				rp[i].w = WHITEWEIGHT;
			else
				rp[i].w = 1.0;
			npnts++;

#ifdef DEBUG3
			{
				char fname[50], tmp[50];
				FILE *lf;
				int mi = match[i];
				double tig, cig, rig;  
				double vv[3], temp[3];
				double del[3], delt;
				double corrdel[3], corrdelt;
				double pcval[3], pcorrdel[3], pcorrdelt;

				for (j = 0;; j++) {
					if (poi[j] == (i+1) || poi[j] < 0)
						break;
				}
				if (poi[j] < 0) {
					continue;
				}

#ifdef COMPLOOKUP
				/* Compute total correction point */
				for (j = 0; j < 3; j++)
					vv[j] = rp[i].v[j] + ccor[j];
#else
				for (j = 0; j < 3; j++)
					vv[j] = rp[i].v[j];
#endif
				sprintf(fname,"patch%04d.log",i+1);
				if ((lf = fopen(fname, "a")) == NULL)
					error("Unable to open debug3 log file '%s'\n",fname);

	 			cig = cb.dev_gam->nradial(cb.dev_gam, temp, cg[1].pat[mi].v) - 1.0;
				if (cig > 0.0)
					sprintf(tmp, " OUT %f",cig);
				else
					sprintf(tmp, "");
				fprintf(lf,"Currently  %f %f %f%s\n", cg[1].pat[mi].v[0], cg[1].pat[mi].v[1], cg[1].pat[mi].v[2], tmp);

	 			tig = cb.dev_gam->nradial(cb.dev_gam, temp, cg[0].pat[i].v) - 1.0;
				if (tig > 0.0)
					sprintf(tmp, " OUT %f",tig);
				else
					sprintf(tmp, "");
				fprintf(lf,"Target     %f %f %f%s\n", cg[0].pat[i].v[0], cg[0].pat[i].v[1], cg[0].pat[i].v[2], tmp);

				icmSub3(del, cg[1].pat[mi].v, cg[0].pat[i].v);
				delt = icmNorm3(del);
				fprintf(lf,"DE         %f %f %f (%f)\n", del[0], del[1], del[2], delt);
				
				rig = cb.dev_gam->nradial(cb.dev_gam, temp, vv) - 1.0;
				if (rig > 0.0)
					sprintf(tmp, " OUT %f",rig);
				else
					sprintf(tmp, "");
				fprintf(lf,"Correction %f %f %f%s\n", vv[0], vv[1], vv[2], tmp);
				icmSub3(corrdel, vv, cg[0].pat[i].v);
				corrdelt = icmNorm3(corrdel);
				fprintf(lf,"CorrDelta  %f %f %f (%f)\n", corrdel[0], corrdel[1], corrdel[2], corrdelt);
				/* Note the previous correction we're compunded with */
				if (cb.rd_luo != NULL) {
					cb.rd_luo->lookup(cb.rd_luo, pcval, cg[0].pat[i].v);
					icmSub3(pcorrdel, pcval, cg[0].pat[i].v);
					pcorrdelt = icmNorm3(pcorrdel);
					fprintf(lf,"PrevCorrDelta %f %f %f (%f)\n", pcorrdel[0], pcorrdel[1], pcorrdel[2], pcorrdelt);
				}
				fprintf(lf,"\n");

				fclose(lf);
			}
#endif /* DEBUG3 */
		}

		/* Create refining rspl */
		mn[0] =   0.0, mn[1] = mn[2] = -128.0;			/* Allow for 16 bit grid range */
		mx[0] = 100.0, mx[1] = mx[2] =  (65535.0 * 255.0)/65280.0 - 128.0;
		cb.verb = verb;
		if ((cb.r = new_rspl(RSPL_NOFLAGS, 3, 3)) == NULL)
			error("new_rspl failed");

		for (e = 0; e < 3; e++)
			gres[e] = clutres;
		for (e = 0; e < 3; e++)
			avgdev[e] = AVGDEV;

		cb.r->fit_rspl_w_df(cb.r,
		           RSPLFLAGS			/* Extra flags */
		           | verb ? RSPL_VERBOSE : 0,
		           rp,					/* Test points */
		           npnts,				/* Number of test points */
		           mn, mx, gres,		/* Low, high, resolution of grid */
		           NULL, NULL,			/* Default data scale */
		           smoothf,				/* Smoothing */
		           avgdev,				/* Average Deviation */
		           NULL,				/* Grid width */
                   wweight,				/* weak default function weight */
				   NULL,				/* No context */
		           wfunc				/* Weak function */
		);
		if (verb) printf("\n");

		/* Report how good the fit is */
		if (verb) {
			co tco;	/* Test point */
			double maxe = -1e6, avge = 0.0;

			for (i = 0; i < npnts; i++) {
				double de;

				icmAry2Ary(tco.p, rp[i].p);
				cb.r->interp(cb.r, &tco);

				de = icmLabDE(tco.v, rp[i].v);
				if (de > maxe)
					maxe = de;
				avge += de;
			}
			avge /= (double)npnts;
			printf("Refining transform has error to defining points avg: %f, max %f\n",avge,maxe);
		}
		free(rp);
	}

	/* ======================= */
	/* Create new abstract ICC profile */
	if ((wr_fp = new_icmFileStd_name(wr_name,"w")) == NULL)
		error ("Can't open file '%s' for writing",wr_name);

	if ((wr_icc = new_icc()) == NULL)
		error ("Creation of write ICC object failed");

	/* Add all the tags required */

	/* The header: */
	{
		icmHeader *wh = wr_icc->header;

		/* Values that must be set before writing */
		wh->deviceClass     = icSigAbstractClass;
    	wh->colorSpace      = icSigLabData;
    	wh->pcs             = icSigLabData;
		if (dorel)
	    	wh->renderingIntent = icRelativeColorimetric;	/* White point relative */
		else
	    	wh->renderingIntent = icAbsoluteColorimetric;	/* Instrument reading based */
	}
	/* Profile Description Tag: */
	{
		icmTextDescription *wo;
		char *dst = "Argyll refine output";
		if ((wo = (icmTextDescription *)wr_icc->add_tag(
		           wr_icc, icSigProfileDescriptionTag,	icSigTextDescriptionType)) == NULL) 
			error("add_tag failed: %d, %s",wr_icc->errc,wr_icc->err);

		wo->size = strlen(dst)+1; 	/* Allocated and used size of desc, inc null */
		wo->allocate((icmBase *)wo);/* Allocate space */
		strcpy(wo->desc, dst);		/* Copy the string in */
	}
	/* Copyright Tag: */
	{
		icmText *wo;
		char *crt = "Copyright the user who created it";
		if ((wo = (icmText *)wr_icc->add_tag(
		           wr_icc, icSigCopyrightTag,	icSigTextType)) == NULL) 
			error("add_tag failed: %d, %s",wr_icc->errc,wr_icc->err);

		wo->size = strlen(crt)+1; 	/* Allocated and used size of text, inc null */
		wo->allocate((icmBase *)wo);/* Allocate space */
		strcpy(wo->data, crt);		/* Copy the text in */
	}
	/* White Point Tag: */
	{
		icmXYZArray *wo;
		/* Note that tag types icSigXYZType and icSigXYZArrayType are identical */
		if ((wo = (icmXYZArray *)wr_icc->add_tag(
		           wr_icc, icSigMediaWhitePointTag, icSigXYZArrayType)) == NULL) 
			error("add_tag failed: %d, %s",wr_icc->errc,wr_icc->err);

		wo->size = 1;
		wo->allocate((icmBase *)wo);	/* Allocate space */
		wo->data[0] = icmD50;			/* So absolute/relative rendering is the same */
	}
	/* 16 bit pcs -> pcs lut: */
	{
		icmLut *wo;
		int flags = ICM_CLUT_SET_EXACT;	/* Assume we're setting from RSPL's */

		/* Intent 0 = default/perceptual */
		if ((wo = (icmLut *)wr_icc->add_tag(
		           wr_icc, icSigAToB0Tag,	icSigLut16Type)) == NULL) 
			error("add_tag failed: %d, %s",wr_icc->errc,wr_icc->err);

		wo->inputChan = 3;
		wo->outputChan = 3;
    	wo->clutPoints = clutres;
    	wo->inputEnt = 256;				/* Not actually used */
    	wo->outputEnt = 256;
		wo->allocate((icmBase *)wo);/* Allocate space */

		/* The matrix is only applicable to XYZ input space, */
		/* so it is not used here. */

		/* Use helper function to do the hard work. */
		if (cb.verb) {
			int extra;
			for (cb.total = 1, i = 0; i < 3; i++, cb.total *= wo->clutPoints)
				; 
			/* Add in cell center points */
			for (extra = 1, i = 0; i < wo->inputChan; i++, extra *= (wo->clutPoints-1))
				;
			cb.total += extra;
			cb.count = 0;
			cb.last = -1;
			printf(" 0%%"), fflush(stdout);
		}

#ifdef COMPLOOKUP
		/* Compound with previous correction */
		if (cb.rd_luo != NULL)
			flags = ICM_CLUT_SET_APXLS;	/* Won't be least squares, so do extra sampling */
#endif

		if (wo->set_tables(wo,
				flags,
				&cb,
				icSigLabData, 			/* Input color space */
				icSigLabData, 			/* Output color space */
				NULL,					/* Linear input transform Lab->Lab' (NULL = default) */
				NULL, NULL,				/* Use default Maximum range of Lab' values */
				PCSp_PCSp,				/* Lab' -> Lab' transfer function */
				NULL, NULL,				/* Use default Maximum range of Lab' values */
				NULL					/* Linear output transform Lab'->Lab */
		) != 0)
			error("Setting 16 bit Lab->Lab Lut failed: %d, %s",wr_icc->errc,wr_icc->err);

		if (verb)
			printf("\n");
#ifdef WARN_CLUT_CLIPPING
		if (wr_icc->warnc)
			warning("Values clipped in setting abstract LUT");
#endif /* WARN_CLUT_CLIPPING */
		if (verb)
			printf("Done filling abstract table\n");
	}
	/* Write the file out */
	if ((rv = wr_icc->write(wr_icc,wr_fp,0)) != 0)
		error ("Write file: %d, %s",rv,wr_icc->err);
	
	/* ======================================= */
	
	/* Clean everything up */
	wr_icc->del(wr_icc);
	wr_fp->del(wr_fp);

	if (docreate == 0) {
		cb.rd_luo->del(cb.rd_luo);
		rd_icc->del(rd_icc);
		rd_fp->del(rd_fp);
	}

	if (nogamut == 0) {
		cb.dev_gam->del(cb.dev_gam);
	}

	cb.r->del(cb.r);

	free(match);
	free(cg[0].pat);
	free(cg[1].pat);

	return 0;
}
Ejemplo n.º 2
0
int
main(int argc, char *argv[]) {
	int fa,nfa;					/* argument we're looking at */
	char prof_name[MAXNAMEL+1] = { '\000' };	/* ICC profile name, "" if none */
	char in_name[MAXNAMEL+1];			/* TIFF input file */
	char *xl = NULL, out_name[MAXNAMEL+4+1] = "locus.ts";	/* locus output file */
	int verb = 0;
	int dovrml = 0;
	int doaxes = 1;
	int usevec = 0;
	double vec[3];
	int rv = 0;

	icc *icco = NULL;
	xicc *xicco = NULL;
	icxViewCond vc;				/* Viewing Condition for CIECAM */
	int vc_e = -1;				/* Enumerated viewing condition */
	int vc_s = -1;				/* Surround override */
	double vc_wXYZ[3] = {-1.0, -1.0, -1.0};	/* Adapted white override in XYZ */
	double vc_wxy[2] = {-1.0, -1.0};		/* Adapted white override in x,y */
	double vc_a = -1.0;			/* Adapted luminance */
	double vc_b = -1.0;			/* Background % overid */
	double vc_f = -1.0;			/* Flare % overid */
	double vc_fXYZ[3] = {-1.0, -1.0, -1.0};	/* Flare color override in XYZ */
	double vc_fxy[2] = {-1.0, -1.0};		/* Flare color override in x,y */
	icxLuBase *luo = NULL;					/* Generic lookup object */
	icColorSpaceSignature ins = icSigLabData, outs;	/* Type of input and output spaces */
	int inn, outn;						/* Number of components */
	icmLuAlgType alg;					/* Type of lookup algorithm */
	icmLookupFunc     func   = icmFwd;				/* Must be */
	icRenderingIntent intent = -1;					/* Default */
	icColorSpaceSignature pcsor = icSigLabData;		/* Default */
	icmLookupOrder    order  = icmLuOrdNorm;		/* Default */

	TIFF *rh = NULL;
	int x, y, width, height;					/* Size of image */
	uint16 samplesperpixel, bitspersample;
	uint16 pconfig, photometric, pmtc;
	uint16 resunits;
	float resx, resy;
	tdata_t *inbuf;
	void (*cvt)(double *out, double *in);		/* TIFF conversion function, NULL if none */
	icColorSpaceSignature tcs;					/* TIFF colorspace */
	uint16 extrasamples;						/* Extra "alpha" samples */
	uint16 *extrainfo;							/* Info about extra samples */
	int sign_mask;								/* Handling of encoding sign */

	int i, j;
	int nipoints = 0;					/* Number of raster sample points */ 
	co *inp = NULL;						/* Input point values */
	double tdel = 0.0;					/* Total delta along locus */
	rspl *rr = NULL;
	int nopoints = 0;					/* Number of raster sample points */ 
	co *outp = NULL;

	error_program = argv[0];

	if (argc < 2)
		usage();

	/* Process the arguments */
	for(fa = 1;fa < argc;fa++) {
		nfa = fa;					/* skip to nfa if next argument is used */
		if (argv[fa][0] == '-')	{	/* Look for any flags */
			char *na = NULL;		/* next argument after flag, null if none */

			if (argv[fa][2] != '\000')
				na = &argv[fa][2];		/* next is directly after flag */
			else {
				if ((fa+1) < argc) {
					if (argv[fa+1][0] != '-') {
						nfa = fa + 1;
						na = argv[nfa];		/* next is seperate non-flag argument */
					}
				}
			}

			if (argv[fa][1] == '?')
				usage();

			/* Verbosity */
			else if (argv[fa][1] == 'v') {
				verb = 1;
			}

			/* Intent */
			else if (argv[fa][1] == 'i' || argv[fa][1] == 'I') {
				fa = nfa;
				if (na == NULL) usage();
    			switch (na[0]) {
					case 'd':
						intent = icmDefaultIntent;
						break;
					case 'a':
						intent = icAbsoluteColorimetric;
						break;
					case 'p':
						intent = icPerceptual;
						break;
					case 'r':
						intent = icRelativeColorimetric;
						break;
					case 's':
						intent = icSaturation;
						break;
					/* Argyll special intents to check spaces underlying */
					/* icxPerceptualAppearance & icxSaturationAppearance */
					case 'P':
						intent = icmAbsolutePerceptual;
						break;
					case 'S':
						intent = icmAbsoluteSaturation;
						break;
					default:
						usage();
				}
			}

			/* Search order */
			else if (argv[fa][1] == 'o') {
				fa = nfa;
				if (na == NULL) usage();
    			switch (na[0]) {
					case 'n':
					case 'N':
						order = icmLuOrdNorm;
						break;
					case 'r':
					case 'R':
						order = icmLuOrdRev;
						break;
					default:
						usage();
				}
			}

			/* PCS override */
			else if (argv[fa][1] == 'p' || argv[fa][1] == 'P') {
				fa = nfa;
				if (na == NULL) usage();
    			switch (na[0]) {
					case 'l':
						pcsor = icSigLabData;
						break;
					case 'j':
						pcsor = icxSigJabData;
						break;
					default:
						usage();
				}
			}

			/* Viewing conditions */
			else if (argv[fa][1] == 'c' || argv[fa][1] == 'C') {
				fa = nfa;
				if (na == NULL) usage();

				/* Switch to Jab automatically */
				pcsor = icxSigJabData;

				/* Set the viewing conditions */
				if (na[1] != ':') {
					if ((vc_e = xicc_enum_viewcond(NULL, NULL, -2, na, 1, NULL)) == -999)
						usage();
				} else if (na[0] == 's' || na[0] == 'S') {
					if (na[1] != ':')
						usage();
					if (na[2] == 'a' || na[2] == 'A') {
						vc_s = vc_average;
					} else if (na[2] == 'm' || na[2] == 'M') {
						vc_s = vc_dim;
					} else if (na[2] == 'd' || na[2] == 'D') {
						vc_s = vc_dark;
					} else if (na[2] == 'c' || na[2] == 'C') {
						vc_s = vc_cut_sheet;
					} else
						usage();
				} else if (na[0] == 'w' || na[0] == 'W') {
					double x, y, z;
					if (sscanf(na+1,":%lf:%lf:%lf",&x,&y,&z) == 3) {
						vc_wXYZ[0] = x; vc_wXYZ[1] = y; vc_wXYZ[2] = z;
					} else if (sscanf(na+1,":%lf:%lf",&x,&y) == 2) {
						vc_wxy[0] = x; vc_wxy[1] = y;
					} else
						usage();
				} else if (na[0] == 'a' || na[0] == 'A') {
					if (na[1] != ':')
						usage();
					vc_a = atof(na+2);
				} else if (na[0] == 'b' || na[0] == 'B') {
					if (na[1] != ':')
						usage();
					vc_b = atof(na+2);
				} else if (na[0] == 'f' || na[0] == 'F') {
					double x, y, z;
					if (sscanf(na+1,":%lf:%lf:%lf",&x,&y,&z) == 3) {
						vc_fXYZ[0] = x; vc_fXYZ[1] = y; vc_fXYZ[2] = z;
					} else if (sscanf(na+1,":%lf:%lf",&x,&y) == 2) {
						vc_fxy[0] = x; vc_fxy[1] = y;
					} else if (sscanf(na+1,":%lf",&x) == 1) {
						vc_f = x;
					} else
						usage();
				} else
					usage();
			}

			/* VRML output */
			else if (argv[fa][1] == 'w' || argv[fa][1] == 'W') {
				dovrml = 1;
			}
			/* No axis output */
			else if (argv[fa][1] == 'n' || argv[fa][1] == 'N') {
				doaxes = 0;
			}
			/* Vector direction for span */
			else if (argv[fa][1] == 'V') {
				usevec = 1;
				if (na == NULL) usage();
				fa = nfa;
				if (sscanf(na, " %lf , %lf , %lf ",&vec[0], &vec[1], &vec[2]) != 3)
						usage();
			}
			/* Output file name */
			else if (argv[fa][1] == 'O') {
				fa = nfa;
				if (na == NULL) usage();
				strncpy(out_name,na,MAXNAMEL); out_name[MAXNAMEL] = '\000';
			}

			else 
				usage();
		} else
			break;
	}

	if (fa >= argc || argv[fa][0] == '-') usage();
	if (fa < (argc-1))
		strncpy(prof_name,argv[fa++],MAXNAMEL); prof_name[MAXNAMEL] = '\000';

	if (fa >= argc || argv[fa][0] == '-') usage();
	strncpy(in_name,argv[fa],MAXNAMEL); in_name[MAXNAMEL] = '\000';

	if ((xl = strrchr(out_name, '.')) == NULL)	/* Figure where extention is */
		xl = out_name + strlen(out_name);

	if (verb) {
		printf("Profile     = '%s'\n",prof_name);
		printf("Input TIFF  = '%s'\n",in_name);
		printf("Output file = '%s'\n",out_name);
	}

	if (intent == -1) {
		if (pcsor == icxSigJabData)
			intent = icRelativeColorimetric;	/* Default to icxAppearance */
		else
			intent = icAbsoluteColorimetric;	/* Default to icAbsoluteColorimetric */
	}

	/* - - - - - - - - - - - - - - - - */
	/* If we were provided an ICC profile to use */
	if (prof_name[0] != '\000') {

		/* Open up the profile or TIFF embedded profile for reading */
		if ((icco = read_embedded_icc(prof_name)) == NULL)
			error ("Can't open profile in file '%s'",prof_name);
	
		if (verb) {
			icmFile *op;
			if ((op = new_icmFileStd_fp(stdout)) == NULL)
				error ("Can't open stdout");
			icco->header->dump(icco->header, op, 1);
			op->del(op);
		}
	
		/* Check that the profile is appropriate */
		if (icco->header->deviceClass != icSigInputClass
		 && icco->header->deviceClass != icSigDisplayClass
		 && icco->header->deviceClass != icSigOutputClass
		 && icco->header->deviceClass != icSigColorSpaceClass)
			error("Profile type isn't device or colorspace");
	
		/* Wrap with an expanded icc */
		if ((xicco = new_xicc(icco)) == NULL)
			error ("Creation of xicc failed");
	
		/* Setup the default viewing conditions */
		if (xicc_enum_viewcond(xicco, &vc, -1, NULL, 0, NULL) == -999)
			error ("%d, %s",xicco->errc, xicco->err);
	
		if (vc_e != -1)
			if (xicc_enum_viewcond(xicco, &vc, vc_e, NULL, 0, NULL) == -999)
				error ("%d, %s",xicco->errc, xicco->err);
		if (vc_s >= 0)
			vc.Ev = vc_s;
		if (vc_wXYZ[1] > 0.0) {
			/* Normalise it to current media white */
			vc.Wxyz[0] = vc_wXYZ[0]/vc_wXYZ[1] * vc.Wxyz[1];
			vc.Wxyz[2] = vc_wXYZ[2]/vc_wXYZ[1] * vc.Wxyz[1];
		} 
		if (vc_wxy[0] >= 0.0) {
			double x = vc_wxy[0];
			double y = vc_wxy[1];	/* If Y == 1.0, then X+Y+Z = 1/y */
			double z = 1.0 - x - y;
			vc.Wxyz[0] = x/y * vc.Wxyz[1];
			vc.Wxyz[2] = z/y * vc.Wxyz[1];
		}
		if (vc_a >= 0.0)
			vc.La = vc_a;
		if (vc_b >= 0.0)
			vc.Yb = vc_b/100.0;
		if (vc_f >= 0.0)
			vc.Yf = vc_f/100.0;
		if (vc_fXYZ[1] > 0.0) {
			/* Normalise it to current media white */
			vc.Fxyz[0] = vc_fXYZ[0]/vc_fXYZ[1] * vc.Fxyz[1];
			vc.Fxyz[2] = vc_fXYZ[2]/vc_fXYZ[1] * vc.Fxyz[1];
		}
		if (vc_fxy[0] >= 0.0) {
			double x = vc_fxy[0];
			double y = vc_fxy[1];	/* If Y == 1.0, then X+Y+Z = 1/y */
			double z = 1.0 - x - y;
			vc.Fxyz[0] = x/y * vc.Fxyz[1];
			vc.Fxyz[2] = z/y * vc.Fxyz[1];
		}
	
		/* Get a expanded color conversion object */
		if ((luo = xicco->get_luobj(xicco, ICX_CLIP_NEAREST
		           , func, intent, pcsor, order, &vc, NULL)) == NULL)
			error ("%d, %s",xicco->errc, xicco->err);
	
		luo->spaces(luo, &ins, &inn, &outs, &outn, &alg, NULL, NULL, NULL);
	
	}

	/* Establish the PCS range if we are filtering */
	{
		double pcsmin[3], pcsmax[3];		/* PCS range for filter stats array */
	
		if (luo) {
			gamut *csgam;

			if ((csgam = luo->get_gamut(luo, 20.0)) == NULL)
				error("Getting the gamut of the source colorspace failed");
			
			csgam->getrange(csgam, pcsmin, pcsmax);
			csgam->del(csgam);
		} else {
			pcsmin[0] = 0.0;
			pcsmax[0] = 100.0;
			pcsmin[1] = -128.0;
			pcsmax[1] = 128.0;
			pcsmin[2] = -128.0;
			pcsmax[2] = 128.0;
		}

		if (verb)
			printf("PCS range = %f..%f, %f..%f. %f..%f\n\n", pcsmin[0], pcsmax[0], pcsmin[1], pcsmax[1], pcsmin[2], pcsmax[2]);

		/* Allocate and initialize the filter */
		set_fminmax(pcsmin, pcsmax);
	}

	/* - - - - - - - - - - - - - - - */
	/* Open up input tiff file ready for reading */
	/* Got arguments, so setup to process the file */

	if ((rh = TIFFOpen(in_name, "r")) == NULL)
		error("error opening read file '%s'",in_name);

	TIFFGetField(rh, TIFFTAG_IMAGEWIDTH,  &width);
	TIFFGetField(rh, TIFFTAG_IMAGELENGTH, &height);

	TIFFGetField(rh, TIFFTAG_SAMPLESPERPIXEL, &samplesperpixel);
	TIFFGetField(rh, TIFFTAG_BITSPERSAMPLE, &bitspersample);
	if (bitspersample != 8 && bitspersample != 16)
		error("TIFF Input file must be 8 bit/channel");

	TIFFGetFieldDefaulted(rh, TIFFTAG_EXTRASAMPLES, &extrasamples, &extrainfo);
	TIFFGetField(rh, TIFFTAG_PHOTOMETRIC, &photometric);

	if (inn != (samplesperpixel-extrasamples))
		error ("TIFF Input file has %d input chanels mismatched to colorspace '%s'",
		       samplesperpixel, icm2str(icmColorSpaceSignature, ins));

	if ((tcs = TiffPhotometric2ColorSpaceSignature(&cvt, &sign_mask, photometric,
	                                     bitspersample, samplesperpixel, extrasamples)) == 0)
		error("Can't handle TIFF file photometric %s", Photometric2str(photometric));

	if (tcs != ins) {
		if (luo != NULL)
			error("TIFF photometric '%s' doesn't match ICC input colorspace '%s' !",
			      Photometric2str(photometric), icm2str(icmColorSpaceSignature,ins));
		else
			error("No profile provided and TIFF photometric '%s' isn't Lab !",
			      Photometric2str(photometric));
	}

	TIFFGetField(rh, TIFFTAG_PLANARCONFIG, &pconfig);
	if (pconfig != PLANARCONFIG_CONTIG)
		error ("TIFF Input file must be planar");

	TIFFGetField(rh, TIFFTAG_RESOLUTIONUNIT, &resunits);
	TIFFGetField(rh, TIFFTAG_XRESOLUTION, &resx);
	TIFFGetField(rh, TIFFTAG_YRESOLUTION, &resy);

	if (verb) {
		printf("Input TIFF file '%s'\n",in_name);
		printf("TIFF file colorspace is %s\n",icm2str(icmColorSpaceSignature,tcs));
		printf("TIFF file photometric is %s\n",Photometric2str(photometric));
		printf("\n");
	}

	/* - - - - - - - - - - - - - - - */
	/* Process colors to translate */
	/* (Should fix this to process a group of lines at a time ?) */

	nipoints = width * height;

//	if ((inp = malloc(sizeof(co) * nipoints)) == NULL)
//		error("Unable to allocate co array");

	inbuf  = _TIFFmalloc(TIFFScanlineSize(rh));

	for (i = y = 0; y < height; y++) {

		/* Read in the next line */
		if (TIFFReadScanline(rh, inbuf, y, 0) < 0)
			error ("Failed to read TIFF line %d",y);

		/* Do floating point conversion */
		for (x = 0; x < width; x++) {
			int e;
			double in[MAX_CHAN], out[MAX_CHAN];
			
			if (bitspersample == 8) {
				for (e = 0; e < samplesperpixel; e++) {
					int v = ((unsigned char *)inbuf)[x * samplesperpixel + e];
					if (sign_mask & (1 << i))		/* Treat input as signed */
						v = (v & 0x80) ? v - 0x80 : v + 0x80;
					in[e] = v/255.0;
				}
			} else {
				for (e = 0; e < samplesperpixel; e++) {
					int v = ((unsigned short *)inbuf)[x * samplesperpixel + e];
					if (sign_mask & (1 << i))		/* Treat input as signed */
						v = (v & 0x8000) ? v - 0x8000 : v + 0x8000;
					in[e] = v/65535.0;
				}
			}
			if (cvt != NULL) {	/* Undo TIFF encoding */
				cvt(in, in);
			}
			if (luo != NULL) {
				if ((rv = luo->lookup(luo, out, in)) > 1)
					error ("%d, %s",icco->errc,icco->err);
				
				if (outs == icSigXYZData)	/* Convert to Lab */
					icmXYZ2Lab(&icco->header->illuminant, out, out);
			} else {
				for (e = 0; e < samplesperpixel; e++)
					out[e] = in[e];
			}

//printf("~1 %f %f %f -> %f %f %f\n", in[0], in[1], in[2], out[0], out[1], out[2]);

			add_fpixel(out);

#ifdef NEVER
	 		/* Store PCS value in array */
			inp[i].v[0] = out[0];
			inp[i].v[1] = out[1];
			inp[i].v[2] = out[2];
			i++;
#endif
		}
	}

	_TIFFfree(inbuf);

	TIFFClose(rh);		/* Close Input file */

	/* Done with lookup object */
	if (luo != NULL) {
		luo->del(luo);
		xicco->del(xicco);		/* Expansion wrapper */
		icco->del(icco);		/* Icc */
	}


	nipoints = flush_filter(verb, 80.0);

	if ((inp = malloc(sizeof(co) * nipoints)) == NULL)
		error("Unable to allocate co array");

	get_filter(inp);

printf("~1 There are %d points\n",nipoints);
//for (i = 0; i < nipoints; i++)
//printf("~1 point %d = %f %f %f\n", i, inp[i].v[0], inp[i].v[1], inp[i].v[2]);

	del_filter();

	/* Create the locus */
	{
		double s0[3], s1[3];
		double t0[3], t1[3];
		double mm[3][4];
		double im[3][4];
		int gres[MXDI] = { 256 } ;

		if (usevec) {
			double max = -1e6; 
			double min = 1e6; 
			double dist;
					
			icmScale3(vec, vec, 1.0/icmNorm3(vec));

			/* Locate the two furthest distant points measured along the vector */
			for (i = 0; i < nipoints; i++) {
				double tt;
				tt = icmDot3(vec, inp[i].v);
				if (tt > max) {
					max = tt;
					icmAry2Ary(s1, inp[i].v);
				}
				if (tt < min) {
					min = tt;
					icmAry2Ary(s0, inp[i].v);
				}
			}
			dist = icmNorm33sq(s0, s1);

printf("~1 most distant in vector %f %f %f = %f %f %f -> %f %f %f dist %f\n",
vec[0], vec[1], vec[2], s0[0], s0[1], s0[2], s1[0], s1[1], s1[2], sqrt(dist));

			t0[0] = 0.0;
			t0[1] = 0.0;
			t0[2] = 0.0;
			t1[0] = sqrt(dist);
			t1[1] = 0.0;
			t1[2] = 0.0;

		} else {
			double dist = 0.0;

			/* Locate the two furthest distant points (brute force) */
			for (i = 0; i < (nipoints-1); i++) {
				for (j = i+1; j < nipoints; j++) {
					double tt;
					if ((tt = icmNorm33sq(inp[i].v, inp[j].v)) > dist) {
						dist = tt;
						icmAry2Ary(s0, inp[i].v);
						icmAry2Ary(s1, inp[j].v);
					}
				}
			}
printf("~1 most distant = %f %f %f -> %f %f %f dist %f\n",
s0[0], s0[1], s0[2], s1[0], s1[1], s1[2], sqrt(dist));

			t0[0] = 0.0;
			t0[1] = 0.0;
			t0[2] = 0.0;
			t1[0] = sqrt(dist);
			t1[1] = 0.0;
			t1[2] = 0.0;
		}

		/* Transform our direction vector to the L* axis, and create inverse too */
		icmVecRotMat(mm, s1, s0, t1, t0);
		icmVecRotMat(im, t1, t0, s1, s0);

		/* Setup for rspl to create smoothed locus */
		for (i = 0; i < nipoints; i++) {
			icmMul3By3x4(inp[i].v, mm, inp[i].v);
			inp[i].p[0] = inp[i].v[0];
			inp[i].v[0] = inp[i].v[1];
			inp[i].v[1] = inp[i].v[2];
//printf("~1 point %d = %f -> %f %f\n", i, inp[i].p[0], inp[i].v[0], inp[i].v[1]);
		}

		/* Create rspl */
		if ((rr = new_rspl(RSPL_NOFLAGS, 1, 2)) == NULL)
			error("Creating rspl failed");

		rr->fit_rspl(rr, RSPL_NOFLAGS,inp, nipoints, NULL, NULL, gres, NULL, NULL, 5.0, NULL, NULL);       
#ifdef DEBUG_PLOT
		{
#define	XRES 100
			double xx[XRES];
			double y1[XRES];
			double y2[XRES];

			for (i = 0; i < XRES; i++) {
				co pp;
				double x;
				x = i/(double)(XRES-1);
				xx[i] = x * (t1[0] - t0[0]);
				pp.p[0] = xx[i];
				rr->interp(rr, &pp);
				y1[i] = pp.v[0];
				y2[i] = pp.v[1];
			}
			do_plot(xx,y1,y2,NULL,XRES);
		}
#endif /* DEBUG_PLOT */

		free(inp);

		nopoints = t1[0] / DE_SPACE;
		if (nopoints < 2)
			nopoints = 2;

		/* Create the output points */
		if ((outp = malloc(sizeof(co) * nopoints)) == NULL)
			error("Unable to allocate co array");

		/* Setup initial division of locus */
		for (i = 0; i < nopoints; i++) {
			double xx;

			xx = i/(double)(nopoints-1);
			xx *= (t1[0] - t0[0]);
			
			outp[i].p[0] = xx;
//printf("~1 div %d = %f\n",i,outp[i].p[0]);
		}
		for (i = 0; i < (nopoints-1); i++) {
			outp[i].p[1] = outp[i+1].p[0] - outp[i].p[0];
//printf("~1 del div  %d = %f\n",i,outp[i].p[1]);
		}

		/* Itterate until the delta between samples is even */
		for (j = 0; j < 10; j++) {
			double alen, minl, maxl;
			double tdiv;
			
			alen = 0.0;
			minl = 1e38;
			maxl = -1.0;
			for (i = 0; i < nopoints; i++) {
				rr->interp(rr, &outp[i]);
				outp[i].v[2] = outp[i].v[1];
				outp[i].v[1] = outp[i].v[0];
				outp[i].v[0] = outp[i].p[0];
				icmMul3By3x4(outp[i].v, im, outp[i].v);

//printf("~1 locus pnt %d = %f %f %f\n", i,outp[i].v[0],outp[i].v[1],outp[i].v[1]);

				if (i > 0) {
					double tt[3], len;
					icmSub3(tt, outp[i].v, outp[i-1].v);
					len = icmNorm3(tt);
					outp[i-1].p[2] = len;
					if (len > maxl)
						maxl = len;
					if (len < minl)
						minl = len;
					alen += len;
				}
			}
			alen /= (nopoints-1.0);
printf("~1 itter %d, alen = %f, minl = %f, maxl = %f\n",j,alen,minl,maxl);

			/* Adjust spacing */
			tdiv = 0.0;
			for (i = 0; i < (nopoints-1); i++) {
				outp[i].p[1] *= pow(alen/outp[i].p[2], 1.0);
				tdiv += outp[i].p[1];
			}
//printf("~1 tdiv = %f\n",tdiv);
			for (i = 0; i < (nopoints-1); i++) {
				outp[i].p[1] *= (t1[0] - t0[0])/tdiv;
//printf("~1 del div %d = %f\n",i,outp[i].p[1]);
			}
			tdiv = 0.0;
			for (i = 0; i < (nopoints-1); i++) {
				tdiv += outp[i].p[1];
			}
//printf("~1 tdiv now = %f\n",tdiv);
			for (i = 1; i < nopoints; i++) {
				outp[i].p[0] = outp[i-1].p[0] + outp[i-1].p[1];
//printf("~1 div %d = %f\n",i,outp[i].p[0]);
			}
		}

		/* Write the CGATS file */
		{
			time_t clk = time(0);
			struct tm *tsp = localtime(&clk);
			char *atm = asctime(tsp); /* Ascii time */
			cgats *pp;

			pp = new_cgats();	/* Create a CGATS structure */
			pp->add_other(pp, "TS"); 	/* Test Set */

			pp->add_table(pp, tt_other, 0);	/* Add the first table for target points */
			pp->add_kword(pp, 0, "DESCRIPTOR", "Argyll Test Point set",NULL);
			pp->add_kword(pp, 0, "ORIGINATOR", "Argyll tiffgmts", NULL);
			atm[strlen(atm)-1] = '\000';	/* Remove \n from end */
			pp->add_kword(pp, 0, "CREATED",atm, NULL);

			pp->add_field(pp, 0, "SAMPLE_ID", cs_t);
			pp->add_field(pp, 0, "LAB_L", r_t);
			pp->add_field(pp, 0, "LAB_A", r_t);
			pp->add_field(pp, 0, "LAB_B", r_t);

			for (i = 0; i < nopoints; i++) {
				char buf[100];
				cgats_set_elem ary[1 + 3];

				sprintf(buf,"%d",i+1);
				ary[0].c = buf;
				ary[1 + 0].d = outp[i].v[0];
				ary[1 + 1].d = outp[i].v[1];
				ary[1 + 2].d = outp[i].v[2];
		
				pp->add_setarr(pp, 0, ary);
			}

			if (pp->write_name(pp, out_name))
			    error("Write error : %s",pp->err);
		}

		/* Create the VRML file */
		if (dovrml) {
			vrml *vv;
			
			strcpy(xl,".wrl");
			printf("Output vrml file '%s'\n",out_name);
			if ((vv = new_vrml(out_name, doaxes)) == NULL)
				error ("Creating VRML object failed");

#ifdef NEVER
			vv->start_line_set(vv);
			for (i = 0; i < nopoints; i++) {
				vv->add_vertex(vv, outp[i].v);
			}
			vv->make_lines(vv, nopoints);
#else
			for (i = 1; i < nopoints; i++) {
				vv->add_cone(vv, outp[i-1].v, outp[i].v, NULL, 0.5);
			}
#endif

			vv->del(vv);
		}
		free(outp);
	}

	rr->del(rr);

	return 0;
}
Ejemplo n.º 3
0
/* Do one set of tests and return the results */
static void do_test(
	double *trmse,		/* RETURN total RMS error */
	double *tmaxe,		/* RETURN total maximum error */
	double *tavge,		/* RETURN total average error */
	int verb,			/* Verbosity */
	int plot,			/* Plot graphs */
	int di,				/* Dimensions */
	int its,			/* Number of function tests */
	int res,			/* RSPL grid resolution */
	int ntps,			/* Number of sample points */
	double noise,		/* Sample point noise volume (total = 4 x average deviation) */
	int unif,			/* NZ if uniform rather than standard deistribution noise */
	double smooth,		/* Smoothness to test, +ve for extra, -ve for underlying */
	int autosm,			/* Use auto smoothing */
	int seed			/* Random seed value offset */
) {
	funcp fp;			/* Function parameters */
	sobol *so;			/* Sobol sequence generator */
	co *tps = NULL;
	rspl *rss;	/* Multi-resolution regularized spline structure */
	datai low,high;
	double avgdev[MXDO];
	int gres[MXDI];
	int i, j, it;
	int flags = RSPL_NOFLAGS;

	if (autosm)
		flags |=  RSPL_AUTOSMOOTH;

	*trmse = 0.0;
	*tmaxe = 0.0;
	*tavge = 0.0;

	for (j = 0; j < di; j++) {
		low[j] = 0.0;
		high[j] = 1.0;
		gres[j] = res;
	}
	
	if ((so = new_sobol(di)) == NULL)
		error("Creating sobol sequence generator failed");

	for (it = 0; it < its; it++) {
		double rmse, avge, maxe;
		double tnoise = 0.0;

		/* Make repeatable by setting random seed before a test set. */
		rand32(0x12345678 + seed + 0x1000 * it);

		/* New function */
		setup_func(&fp, di);

		/* Create the object */
		rss = new_rspl(RSPL_NOFLAGS,di, 1);

		/* Create the list of sampling points */
		if ((tps = (co *)malloc(ntps * sizeof(co))) == NULL)
			error ("malloc failed");

		so->reset(so);

		if (verb) printf("Generating the sample points\n");

		for (i = 0; i < ntps; i++) {
			double out, n;
			so->next(so, tps[i].p);
			out = lookup_func(&fp, tps[i].p);
			if (unif)
				n = d_rand(-0.5 * noise, 0.5 * noise);
			else
				n = noise * 0.25 * 1.2533 * norm_rand();

			tps[i].v[0] = out + n;
//printf("~1 data %d: %f %f %f -> %f, inc noise %f\n", i, tps[i].p[0], tps[i].p[1], tps[i].p[2], out, tps[i].v[0]);

			tnoise += fabs(n);
		}
		tnoise /= (double) ntps;
		if (verb) printf("Measured noise average deviation = %f%%\n",tnoise * 100.0); 

		/* Fit to scattered data */
		if (verb) printf("Fitting the scattered data, smooth = %f, avgdev = %f\n",smooth,avgdev != NULL ? avgdev[0] : 0.0);
		avgdev[0] = 0.25 * noise;
		rss->fit_rspl(rss,
		           flags,				/* Non-mon and clip flags */
		           tps,					/* Test points */
		           ntps,				/* Number of test points */
		           low, high, gres,		/* Low, high, resolution of grid */
		           low, high,			/* Default data scale */
		           smooth,				/* Smoothing to test */
		           avgdev,				/* Average deviation */
		           NULL);				/* iwidth */

		/* Plot out function values */
		if (plot) {
			int slice;
			printf("Black is target, Red is rspl\n");
			for (slice = 0; slice < (di+1); slice++) {
				co tp;	/* Test point */
				double x[PLOTRES];
				double ya[PLOTRES];
				double yb[PLOTRES];
				double yc[PLOTRES];
				double pp[MXDI], p1[MXDI], p2[MXDI], ss[MXDI];
				int n = PLOTRES;

				/* setup slices on each axis at 0.5 and diagonal */
				if (slice < di) {
					for (j = 0; j < di; j++)
						p1[j] = p2[j] = 0.5;
					p1[slice] = 0.0;
					p2[slice] = 1.0;
					printf("Slice along axis %d\n",slice);
				} else {
					for (j = 0; j < di; j++) {
						p1[j] = 0.0;
						p2[j] = 1.0;
					}
					printf("Slice along diagonal\n");
				}

				/* Start point and step increment */
				for (j = 0; j < di; j++) {
					ss[j] = (p2[j] - p1[j])/n;
					pp[j] = p1[j];
				}
				
				for (i = 0; i < n; i++) {
					double vv = i/(n-1.0);
					x[i] = vv;

					/* Reference */
					ya[i] = lookup_func(&fp, pp);

					/* RSPL aproximation */
					for (j = 0; j < di; j++)
						tp.p[j] = pp[j];

					if (rss->interp(rss, &tp))
						tp.v[0] = -0.1;
					yb[i] = tp.v[0];

					/* Crude way of setting the scale: */
					yc[i] = 0.0;
					if (i == (n-1))
						yc[0] = 1.0;

					for (j = 0; j < di; j++)
						pp[j] += ss[j];
				}

				/* Plot the result */
				do_plot(x,ya,yb,yc,n);
			}
		}

		/* Compute statistics */
		rmse = 0.0;
		avge = 0.0;
		maxe = 0.0;
//		so->reset(so);

		/* Fit to scattered data */
		if (verb) printf("Fitting the scattered data\n");
		for (i = 0; i <100000; i++) {
			co tp;	/* Test point */
			double aa, bb, err;

			so->next(so, tp.p);

			/* Reference */
			aa = lookup_func(&fp, tp.p);

			/* RSPL aproximation */
			rss->interp(rss, &tp);
			bb = tp.v[0];

			err = fabs(aa - bb);
			avge += err;
			rmse += err * err;
			if (err > maxe)
				maxe = err;
		}
		avge /= (double)i;
		rmse /= (double)i;

		if (verb)
			printf("Dim %d, res %d, noise %f, points %d, maxerr %f%%, rmserr %f%%, avgerr %f%%\n",
		       di, res, noise, ntps, maxe * 100.0, sqrt(rmse) * 100.0, avge * 100.0);

		*trmse += rmse;
		*tmaxe += maxe;
		*tavge += avge;

		rss->del(rss);
		free(tps);
	}
	so->del(so);

	*trmse = sqrt(*trmse/(double)its);
	*tmaxe /= (double)its;
	*tavge /= (double)its;
}
Ejemplo n.º 4
0
/* minimum RMS value. */
static double best(int n, double *rmse, double *smv) {
	int i, bi;
	rspl *curve;
	co *tps = NULL;
	int ns = 2000;			/* Number of samples */
	datai low,high;
	int gres[1];
	datai dlow,dhigh;
	double avgdev[1];
	double brmse;			/* best solution value */
	double blsmv = 0.0;		/* best solution location */
	double rv;				/* Return value */

	/* Create interpolated curve */
	if ((curve = new_rspl(RSPL_NOFLAGS,1, 1)) == NULL)
		error ("New rspl failed");

	/* Create the list of sampling points */
	if ((tps = (co *)malloc(n * sizeof(co))) == NULL)
		error ("malloc failed");

	for (i = 0; i < n; i++) {
		tps[i].p[0] = log10(smv[i]);
		tps[i].v[0] = rmse[i]; 
	}

	gres[0] = 100;
	low[0] = log10(smv[0]);
	high[0] = log10(smv[n-1]);
	dlow[0] = 0.0;
	dhigh[0] = 1.0;
	avgdev[0] = 0.0;

	curve->fit_rspl(curve,
	           0,					/* Non-mon and clip flags */
	           tps,					/* Test points */
	           n,					/* Number of test points */
	           NULL, NULL, gres,	/* Low, high, resolution of grid */
	           NULL, NULL,			/* Default data scale */
	           -0.0007,				/* Underlying smoothing */
	           avgdev,				/* Average deviation */
	           NULL);				/* iwidth */

#ifdef NEVER
	/* Check the fit */
	for (i = 0; i < n; i++) {
		co tp;

		tp.p[0] = log10(smv[i]);
		curve->interp(curve, &tp);

		printf("Point %d at %f, should be %f is %f\n",i,log10(smv[i]),rmse[i],tp.v[0]);
	}
#endif

	/* Choose a solution */
	brmse = 1e38;

	/* Find lowest rms error point */
	for (i = ns-1; i >= 0; i--) {
		co tp;
		double vi;

		vi = i/(ns-1.0);
		tp.p[0] = log10(smv[0]) + (log10(smv[n-1]) - log10(smv[0])) * vi;
		curve->interp(curve, &tp);

		if (tp.v[0] < brmse) {
			blsmv = tp.p[0];
			brmse = tp.v[0];
			bi = i;
		}
	}

	/* Then increase smoothness until fit error is 1% higher */
	for (i = bi+1; i < ns; i++) {
		co tp;
		double vi;

		vi = i/(ns-1.0);
		tp.p[0] = log10(smv[0]) + (log10(smv[n-1]) - log10(smv[0])) * vi;
		curve->interp(curve, &tp);

		if (tp.v[0] >= (1.01 * brmse)) {
			blsmv = tp.p[0];
			brmse = tp.v[0];
			break;
		}
	}
	rv = pow(10.0, blsmv);

#ifdef NEVER

#define TPRES 100
	/* Plot the result */
	{
		double xx[TPRES], yy[TPRES];

		for (i = 0; i < TPRES; i++) {
			co tp;
			double vi = i/(TPRES-1.0);
	
			tp.p[0] = log10(smv[0]) + (log10(smv[n-1]) - log10(smv[0])) * vi;
			curve->interp(curve, &tp);
			xx[i] = tp.p[0];
			yy[i] = tp.v[0];
		}
		printf("Best at %f\n",blsmv);
		do_plot(xx,yy,NULL,NULL,TPRES);
	}
#endif

	return rv;
}
Ejemplo n.º 5
0
int main(int argc, char *argv[]) {
	int fa,nfa;				/* argument we're looking at */
	int i,j, n;
	double x;
	double xx[XRES];
	double yy[6][XRES];
	rspl *rss;		/* incremental solution version */
	datai low,high;
	int gres[MXDI];
	double avgdev[MXDO];
	double wweight = 1.0;

	/* Process the arguments */
	for(fa = 1;fa < argc;fa++) {
		nfa = fa;					/* skip to nfa if next argument is used */
		if (argv[fa][0] == '-')	{	/* Look for any flags */
			char *na = NULL;		/* next argument after flag, null if none */

			if (argv[fa][2] != '\000')
				na = &argv[fa][2];		/* next is directly after flag */
			else {
				if ((fa+1) < argc) {
					if (argv[fa+1][0] != '-') {
						nfa = fa + 1;
						na = argv[nfa];		/* next is seperate non-flag argument */
					}
				}
			}

			if (argv[fa][1] == '?') {
				usage();

			} else if (argv[fa][1] == 'w' || argv[fa][1] == 'W') {
				fa = nfa;
				if (na == NULL) usage();
				wweight = atof(na);
			} else 
				usage();
		} else
			break;
	}

	low[0] = 0.0;
	high[0] = 1.0;
	avgdev[0] = AVGDEV;

	error_program = "Curve1";

	for (n = 0; n < TRIALS; n++) {
		double lrand = 0.0;	/* Amount of level randomness */
		int pnts;
		int fres;

		if (n == 0) {	/* Standard versions */
			pnts = PNTS;
			fres = GRES; 
			for (i = 0; i < pnts; i++) {
				xa[i] = t1xa[i];
				ya[i] = t1ya[i];
				wa[i] = t1wa[i];
			}
			printf("Trial %d, points = %d, res = %d, level randomness = %f\n",n,pnts,fres,lrand);
		} else {	/* Random versions */
			double xmx;
			lrand = d_rand(0.0,0.1);		/* Amount of level randomness */
			pnts = i_rand(MIN_PNTS,MAX_PNTS);
			fres = i_rand(MIN_RES,MAX_RES);

			printf("Trial %d, points = %d, res = %d, level randomness = %f\n",n,pnts,fres,lrand);

			/* Create X values */
			xa[0] = d_rand(0.3, 0.5);
			for (i = 1; i < pnts; i++)
				xa[i] = xa[i-1] + d_rand(0.2,0.7);
			xmx = d_rand(0.6, 0.9);
			for (i = 0; i < pnts; i++)	/* Divide out */
				xa[i] *= (xmx/xa[pnts-1]);

			/* Create y values */
			for (i = 0; i < pnts; i++) {
				ya[i] = xa[i] + d_rand(-lrand,lrand);
				wa[i] = 1.0;
			}
		}

		if (n < SKIP)
			continue;

		/* Create the object */
		rss =  new_rspl(RSPL_NOFLAGS, 1,				/* di */
		                  1);				/* fdi */

		for (i = 0; i < pnts; i++) {
			test_points[i].p[0] = xa[i];
			test_points[i].v[0] = ya[i];
			test_points[i].w = wa[i];
		}
		gres[0] = fres;

#ifdef RES2
		if (n != 0) {
#endif
		/* Fit to scattered data */
		rss->fit_rspl_w_df(rss,
#ifdef EXTRAFIT
		           RSPL_EXTRAFIT |	/* Extra fit flag */
#endif
		           0,
		           test_points,			/* Test points */
		           pnts,	/* Number of test points */
		           low, high, gres,		/* Low, high, resolution of grid */
		           low, high,			/* Data scale */
		           SMOOTH,				/* Smoothing */
		           avgdev,				/* Average deviation */
		           NULL,				/* iwidth */
                   wweight,				/* weak function weight */
				   NULL,				/* No context */
		           wfunc				/* Weak function */
		);

		/* Display the result */
		for (i = 0; i < XRES; i++) {
			co tp;	/* Test point */
			x = i/(double)(XRES-1);
			xx[i] = x;
			yy[0][i] = lin(x,xa,ya,pnts);
			tp.p[0] = x;
			rss->interp(rss, &tp);
			yy[1][i] = tp.v[0];
			if (yy[1][i] < -0.2)
				yy[1][i] = -0.2;
			else if (yy[1][i] > 1.2)
				yy[1][i] = 1.2;
		}
		
		do_plot(xx,yy[0],yy[1],NULL,XRES);

#ifdef RES2
		} else {	/* Multiple resolution version */
			int gresses[5];
			for (j = 0; j < 5; j++) {
#ifndef NEVER
				if (j == 0)
					gres[0] = fres/8;
				else if (j == 1)
					gres[0] = fres/4;
				else if (j == 2)
					gres[0] = fres/2;
				else if (j == 3)
					gres[0] = fres;
				else 
					gres[0] = fres * 2;
#else 	/* Check sensitivity to griding of data points */
				if (j == 0)
					gres[0] = 192;
				else if (j == 1)
					gres[0] = 193;
				else if (j == 2)
					gres[0] = 194;
				else if (j == 3)
					gres[0] = 195;
				else 
					gres[0] = 196;
#endif
				gresses[j] = gres[0];
	
				rss->fit_rspl_w_df(rss,
#ifdef EXTRAFIT
		           RSPL_EXTRAFIT |		/* Extra fit flag */
#endif
			           0,
			           test_points,			/* Test points */
			           pnts,	/* Number of test points */
			           low, high, gres,		/* Low, high, resolution of grid */
			           low, high,			/* Data scale */
			           SMOOTH,				/* Smoothing */
			           avgdev,				/* Average deviation */
			           NULL,				/* iwidth */
	                   wweight,				/* weak function weight */
					   NULL,				/* No context */
			           wfunc				/* Weak function */
			);
	
				/* Get the result */
				for (i = 0; i < XRES; i++) {
					co tp;	/* Test point */
					x = i/(double)(XRES-1);
					xx[i] = x;
					yy[0][i] = lin(x,xa,ya,pnts);
					tp.p[0] = x;
					rss->interp(rss, &tp);
					yy[1+j][i] = tp.v[0];
					if (yy[1+j][i] < -0.2)
						yy[1+j][i] = -0.2;
					else if (yy[1+j][i] > 1.2)
						yy[1+j][i] = 1.2;
				}
			}
	
		printf("Black = lin, Red = %d, Green = %d, Blue = %d, Yellow = %d, Purple = %d\n",
		       gresses[0], gresses[1], gresses[2], gresses[3], gresses[4]);
		do_plot6(xx,yy[0],yy[1],yy[2],yy[3],yy[4],yy[5],XRES);
	}
#endif /* RES2 */
	}	/* next trial */
	return 0;
}
Ejemplo n.º 6
0
refi *new_refi(
int id,			/* Number of input dimensions */
int od,			/* Number of output dimensions */
int inres,		/* Desired input table resolution */
int clutres,	/* Desired clut table resolution */
int outres,		/* Desired output table resolution */

/* Callbacks to lookup the table values */
void (*input_curves) (void *cntx, double *out_vals, double *in_vals),
void (*md_table)     (void *cntx, double *out_vals, double *in_vals),
void (*output_curves)(void *cntx, double *out_vals, double *in_vals),
void *cntx		/* Context to callbacks */
) {
	refi *r;
	int e;
	int gres[MXDI];

	if ((r = (refi *)malloc(sizeof(refi))) == NULL) {
		fprintf(stderr,"Malloc of refi failed\n");
		exit (-1);
	}

	r->id = id;
	r->od = od;
	r->inres = inres;
	r->clutres = clutres;
	r->outres = outres;
	r->input_curves  = input_curves;
	r->md_table      = md_table;
	r->output_curves = output_curves;
	r->cntx		     = cntx;

	/* Create some input interpolations */
	for (e = 0; e < id; e++) {
		if ((r->in[e] = new_rspl(RSPL_NOFLAGS, 1, 1)) == NULL) {
			fprintf(stderr,"new_rspl failed\n");
			exit (-1);
		}
		r->chan = e;
		r->in[e]->set_rspl(r->in[e], 0, (void *)r, inputlu, NULL, NULL, &inres, NULL, NULL);
	}

	/* Clut */
	if ((r->clut = new_rspl(RSPL_NOFLAGS, id, od)) == NULL) {
		fprintf(stderr,"new_rspl failed\n");
		exit (-1);
	}
	for (e = 0; e < id; e++)
		gres[e] = clutres;
	r->clut->set_rspl(r->clut, 0, (void *)r, clutlu, NULL, NULL, gres, NULL, NULL);
	
	/* Create some output interpolations */
	for (e = 0; e < od; e++) {
		if ((r->out[e] = new_rspl(RSPL_NOFLAGS, 1, 1)) == NULL) {
			fprintf(stderr,"new_rspl failed\n");
			exit (-1);
		}
		r->chan = e;
		r->out[e]->set_rspl(r->out[e], 0, (void *)r, outputlu, NULL, NULL, &outres, NULL, NULL);
	}

	return r;
}