Ejemplo n.º 1
0
int nilfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
	/*
	 * Called from fsync() system call
	 * This is the only entry point that can catch write and synch
	 * timing for both data blocks and intermediate blocks.
	 *
	 * This function should be implemented when the writeback function
	 * will be implemented.
	 */
	struct inode *inode = file->f_mapping->host;
	int err;

	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (err)
		return err;
	mutex_lock(&inode->i_mutex);

	if (!nilfs_inode_dirty(inode)) {
		mutex_unlock(&inode->i_mutex);
		return 0;
	}

	if (datasync)
		err = nilfs_construct_dsync_segment(inode->i_sb, inode, 0,
						    LLONG_MAX);
	else
		err = nilfs_construct_segment(inode->i_sb);

	mutex_unlock(&inode->i_mutex);
	return err;
}
Ejemplo n.º 2
0
static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	int err;

	if (inode->i_sb->s_flags & MS_RDONLY) {
		/*
		 * It means that filesystem was remounted in read-only
		 * mode because of error or metadata corruption. But we
		 * have dirty pages that try to be flushed in background.
		 * So, here we simply discard this dirty page.
		 */
		nilfs_clear_dirty_page(page, false);
		unlock_page(page);
		return -EROFS;
	}

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);

	if (wbc->sync_mode == WB_SYNC_ALL) {
		err = nilfs_construct_segment(inode->i_sb);
		if (unlikely(err))
			return err;
	} else if (wbc->for_reclaim)
		nilfs_flush_segment(inode->i_sb, inode->i_ino);

	return 0;
}
Ejemplo n.º 3
0
static int nilfs_sync_fs(struct super_block *sb, int wait)
{
	struct the_nilfs *nilfs = sb->s_fs_info;
	struct nilfs_super_block **sbp;
	int err = 0;

	/* This function is called when super block should be written back */
	if (wait)
		err = nilfs_construct_segment(sb);

	down_write(&nilfs->ns_sem);
	if (nilfs_sb_dirty(nilfs)) {
		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
		if (likely(sbp)) {
			nilfs_set_log_cursor(sbp[0], nilfs);
			nilfs_commit_super(sb, NILFS_SB_COMMIT);
		}
	}
	up_write(&nilfs->ns_sem);

	if (!err)
		err = nilfs_flush_device(nilfs);

	return err;
}
Ejemplo n.º 4
0
static int nilfs_sync_fs(struct super_block *sb, int wait)
{
	int err = 0;

	/* This function is called when super block should be written back */
	if (wait)
		err = nilfs_construct_segment(sb);
	return err;
}
Ejemplo n.º 5
0
static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	int err;

	redirty_page_for_writepage(wbc, page);
	unlock_page(page);

	if (wbc->sync_mode == WB_SYNC_ALL) {
		err = nilfs_construct_segment(inode->i_sb);
		if (unlikely(err))
			return err;
	} else if (wbc->for_reclaim)
		nilfs_flush_segment(inode->i_sb, inode->i_ino);

	return 0;
}
Ejemplo n.º 6
0
static int nilfs_sync_fs(struct super_block *sb, int wait)
{
	struct nilfs_sb_info *sbi = NILFS_SB(sb);
	struct the_nilfs *nilfs = sbi->s_nilfs;
	int err = 0;

	/* This function is called when super block should be written back */
	if (wait)
		err = nilfs_construct_segment(sb);

	down_write(&nilfs->ns_sem);
	if (nilfs_sb_dirty(nilfs))
		nilfs_commit_super(sbi, 1);
	up_write(&nilfs->ns_sem);

	return err;
}
static int nilfs_writepage(struct page *page, struct writeback_control *wbc)
{
	struct inode *inode = page->mapping->host;
	int err;

	page_debug(3, "called (page=%p, index=%lu, wbc nonblocking %d, "
		   "wbc for_reclaim %d)\n",
		    page, page->index, wbc->nonblocking, wbc->for_reclaim);
	redirty_page_for_writepage(wbc, page);
	unlock_page(page);

	if (wbc->sync_mode == WB_SYNC_ALL) {
		err = nilfs_construct_segment(inode->i_sb);
		if (unlikely(err))
			return err;
	} else if (wbc->for_reclaim)
		nilfs_flush_segment(inode->i_sb, inode->i_ino);

	return 0;
}
Ejemplo n.º 8
0
int nilfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
	/*
	 * Called from fsync() system call
	 * This is the only entry point that can catch write and synch
	 * timing for both data blocks and intermediate blocks.
	 *
	 * This function should be implemented when the writeback function
	 * will be implemented.
	 */
	struct the_nilfs *nilfs;
	struct inode *inode = file->f_mapping->host;
	int err;

	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (err)
		return err;
	mutex_lock(&inode->i_mutex);

	if (nilfs_inode_dirty(inode)) {
		if (datasync)
			err = nilfs_construct_dsync_segment(inode->i_sb, inode,
							    0, LLONG_MAX);
		else
			err = nilfs_construct_segment(inode->i_sb);
	}
	mutex_unlock(&inode->i_mutex);

	nilfs = inode->i_sb->s_fs_info;
	if (!err && nilfs_test_opt(nilfs, BARRIER)) {
		err = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
		if (err != -EIO)
			err = 0;
	}
	return err;
}
Ejemplo n.º 9
0
int nilfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
	struct inode *inode = file->f_mapping->host;
	int err;

	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
	if (err)
		return err;
	mutex_lock(&inode->i_mutex);

	if (!nilfs_inode_dirty(inode)) {
		mutex_unlock(&inode->i_mutex);
		return 0;
	}

	if (datasync)
		err = nilfs_construct_dsync_segment(inode->i_sb, inode, 0,
						    LLONG_MAX);
	else
		err = nilfs_construct_segment(inode->i_sb);

	mutex_unlock(&inode->i_mutex);
	return err;
}
Ejemplo n.º 10
0
int nilfs_sync_file(struct file *file, int datasync)
{
	/*
	 * Called from fsync() system call
	 * This is the only entry point that can catch write and synch
	 * timing for both data blocks and intermediate blocks.
	 *
	 * This function should be implemented when the writeback function
	 * will be implemented.
	 */
	struct inode *inode = file->f_mapping->host;
	int err;

	if (!nilfs_inode_dirty(inode))
		return 0;

	if (datasync)
		err = nilfs_construct_dsync_segment(inode->i_sb, inode, 0,
						    LLONG_MAX);
	else
		err = nilfs_construct_segment(inode->i_sb);

	return err;
}
Ejemplo n.º 11
0
/**
 * nilfs_resize_fs - resize the filesystem
 * @sb: super block instance
 * @newsize: new size of the filesystem (in bytes)
 */
int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
{
	struct the_nilfs *nilfs = sb->s_fs_info;
	struct nilfs_super_block **sbp;
	__u64 devsize, newnsegs;
	loff_t sb2off;
	int ret;

	ret = -ERANGE;
	devsize = i_size_read(sb->s_bdev->bd_inode);
	if (newsize > devsize)
		goto out;

	/*
	 * Write lock is required to protect some functions depending
	 * on the number of segments, the number of reserved segments,
	 * and so forth.
	 */
	down_write(&nilfs->ns_segctor_sem);

	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
	do_div(newnsegs, nilfs->ns_blocks_per_segment);

	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
	up_write(&nilfs->ns_segctor_sem);
	if (ret < 0)
		goto out;

	ret = nilfs_construct_segment(sb);
	if (ret < 0)
		goto out;

	down_write(&nilfs->ns_sem);
	nilfs_move_2nd_super(sb, sb2off);
	ret = -EIO;
	sbp = nilfs_prepare_super(sb, 0);
	if (likely(sbp)) {
		nilfs_set_log_cursor(sbp[0], nilfs);
		/*
		 * Drop NILFS_RESIZE_FS flag for compatibility with
		 * mount-time resize which may be implemented in a
		 * future release.
		 */
		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
					      ~NILFS_RESIZE_FS);
		sbp[0]->s_dev_size = cpu_to_le64(newsize);
		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
		if (sbp[1])
			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
	}
	up_write(&nilfs->ns_sem);

	/*
	 * Reset the range of allocatable segments last.  This order
	 * is important in the case of expansion because the secondary
	 * superblock must be protected from log write until migration
	 * completes.
	 */
	if (!ret)
		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
out:
	return ret;
}