void MeshPara::get_result()
{
	Vec2f tc1, tc2;
	tc1[0] = tc2[0] = nlGetVariable(0);
	tc1[1] = tc2[1] = nlGetVariable(1);
	auto v_it(mesh_.vertices_begin());
	auto v_end(mesh_.vertices_end()); 
	for (; v_it != v_end; v_it++)
	{
		int idx = (*v_it).idx();
		float u = nlGetVariable(2 * idx);
		float v = nlGetVariable(2 * idx + 1);
		mesh_.set_texcoord2D(*v_it, Vec2f(u, v));
		if (u < tc1[0])tc1[0] = u;
		if (u > tc2[0])tc2[0] = u;
		if (v < tc1[1])tc1[1] = v;
		if (v > tc2[1])tc2[1] = v;
	}

	// Normalize
	double dx = tc2[0] - tc1[0];
	double dy = tc2[1] - tc1[1];
	if (dy > dx) dx = dy;

	for (v_it = mesh_.vertices_begin(); v_it != v_end; v_it++)
	{
		Vec2f tc = mesh_.texcoord2D(*v_it);
		tc[0] = (tc[0] - tc1[0]) / dx;
		tc[1] = (tc[1] - tc1[1]) / dx;
		mesh_.set_texcoord2D(*v_it, tc);
	}
}
Ejemplo n.º 2
0
static void validate_solution(LaplacianSystem *sys, short flag, float lambda, float lambda_border)
{
	int i;
	float lam;
	float vini, vend;

	if (flag & MOD_LAPLACIANSMOOTH_PRESERVE_VOLUME) {
		vini = compute_volume(sys->vertexCos, sys->mfaces, sys->numFaces);
	}
	for (i = 0; i < sys->numVerts; i++) {
		if (sys->zerola[i] == 0) {
			lam = sys->numNeEd[i] == sys->numNeFa[i] ? (lambda >= 0.0f ? 1.0f : -1.0f) : (lambda_border >= 0.0f ? 1.0f : -1.0f);
			if (flag & MOD_LAPLACIANSMOOTH_X) {
				sys->vertexCos[i][0] += lam * (nlGetVariable(0, i) - sys->vertexCos[i][0]);
			}
			if (flag & MOD_LAPLACIANSMOOTH_Y) {
				sys->vertexCos[i][1] += lam * (nlGetVariable(1, i) - sys->vertexCos[i][1]);
			}
			if (flag & MOD_LAPLACIANSMOOTH_Z) {
				sys->vertexCos[i][2] += lam * (nlGetVariable(2, i) - sys->vertexCos[i][2]);
			}
		}
	}
	if (flag & MOD_LAPLACIANSMOOTH_PRESERVE_VOLUME) {
		vend = compute_volume(sys->vertexCos, sys->mfaces, sys->numFaces);
		volume_preservation(sys, vini, vend, flag);
	}
}
Ejemplo n.º 3
0
void leastSquaresSystem::solve(double *vs)
{
 int i;
 Node *n;
 coeffIndexPair *f;

 nlNewContext();
 nlSolverParameteri(NL_SOLVER, NL_PERM_SUPERLU_EXT);
 nlSolverParameteri(NL_NB_VARIABLES, num_variables);
 nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE) ;
 nlSolverParameteri(NL_MAX_ITERATIONS, 1000) ;
 nlSolverParameterd(NL_THRESHOLD, 1e-10) ;

 nlBegin(NL_SYSTEM);

 for (i=0; i<num_variables; i++)
 {
  nlSetVariable(i, vs[i]);
  if (locks[i]) nlLockVariable(i);
 }

 nlBegin(NL_MATRIX);

 for (i=0; i<num_equations; i++)
 {
  nlRowParameterd(NL_RIGHT_HAND_SIDE, known_term[0][i]);
  nlBegin(NL_ROW);
  for (n=rows[i].cips.head(); n!=NULL; n=n->next())
  {
   f = (coeffIndexPair *)n->data;
   nlCoefficient(f->index, f->coeff);
  }  
  nlEnd(NL_ROW);
 }

 nlEnd(NL_MATRIX);
 nlEnd(NL_SYSTEM);
 nlSolve();

 for (i=0; i<num_variables; i++) vs[i] = nlGetVariable(i);

 nlDeleteContext(nlGetCurrent());
}
Ejemplo n.º 4
0
void sparse3System::solve(double *vs)
{
 int i, j;
 Node *n;
 coeffIndexPair *f;

 for (j=0; j<3; j++)
 {
  nlNewContext();
  nlSolverParameteri(NL_SOLVER, NL_PERM_SUPERLU_EXT);
  nlSolverParameteri(NL_NB_VARIABLES, num_variables);
  nlBegin(NL_SYSTEM);

  for (i=0; i<num_variables; i++)
  {
   nlSetVariable(i, vs[i*3 + j]);
   if (locks[i]) nlLockVariable(i);
  }

  nlBegin(NL_MATRIX);

  for (i=0; i<num_equations; i++)
  {
   nlRowParameterd(NL_RIGHT_HAND_SIDE, known_term[j][i]);
   nlBegin(NL_ROW);
   for (n=rows[i].cips.head(); n!=NULL; n=n->next())
   {
    f = (coeffIndexPair *)n->data;
    nlCoefficient(f->index, f->coeff);
   }  
   nlEnd(NL_ROW);
  }

  nlEnd(NL_MATRIX);
  nlEnd(NL_SYSTEM);
  nlSolve();

  for (i=0; i<num_variables; i++) vs[i*3 + j] = nlGetVariable(i);

  nlDeleteContext(nlGetCurrent());
 }
}
Ejemplo n.º 5
0
// Solves the system for j'th component of B
bool sparseSystem::solve(double *x, int j)
{
 int i;
 Node *n;
 coeffIndexPair *f;

 nlNewContext();
 nlSolverParameteri(NL_SOLVER, NL_PERM_SUPERLU_EXT);
 nlSolverParameteri(NL_NB_VARIABLES, num_variables);
 nlBegin(NL_SYSTEM);

 for (i=0; i<num_variables; i++) nlSetVariable(i, x[i]);

 nlBegin(NL_MATRIX);

 for (i=0; i<num_equations; i++)
 {
  nlRowParameterd(NL_RIGHT_HAND_SIDE, known_term[j][i]);
  nlBegin(NL_ROW);
  for (n=rows[i].cips.head(); n!=NULL; n=n->next())
  {
   f = (coeffIndexPair *)n->data;
   nlCoefficient(f->index, f->coeff);
  }  
  nlEnd(NL_ROW);
 }

 nlEnd(NL_MATRIX);
 nlEnd(NL_SYSTEM);
 bool success = (bool)nlSolve();

 if (success) for (i=0; i<num_variables; i++) x[i] = nlGetVariable(i);

 nlDeleteContext(nlGetCurrent());

 return success;
}
Ejemplo n.º 6
0
float laplacian_system_get_solution(int v)
{
	return nlGetVariable(0, v);
}
Ejemplo n.º 7
0
static void meshdeform_matrix_solve(MeshDeformBind *mdb)
{
	NLContext *context;
	float vec[3], gridvec[3];
	int a, b, x, y, z, totvar;
	char message[1024];

	/* setup variable indices */
	mdb->varidx= MEM_callocN(sizeof(int)*mdb->size3, "MeshDeformDSvaridx");
	for(a=0, totvar=0; a<mdb->size3; a++)
		mdb->varidx[a]= (mdb->tag[a] == MESHDEFORM_TAG_EXTERIOR)? -1: totvar++;

	if(totvar == 0) {
		MEM_freeN(mdb->varidx);
		return;
	}

	progress_bar(0, "Starting mesh deform solve");

	/* setup opennl solver */
	nlNewContext();
	context= nlGetCurrent();

	nlSolverParameteri(NL_NB_VARIABLES, totvar);
	nlSolverParameteri(NL_NB_ROWS, totvar);
	nlSolverParameteri(NL_NB_RIGHT_HAND_SIDES, 1);

	nlBegin(NL_SYSTEM);
	nlBegin(NL_MATRIX);

	/* build matrix */
	for(z=0; z<mdb->size; z++)
		for(y=0; y<mdb->size; y++)
			for(x=0; x<mdb->size; x++)
				meshdeform_matrix_add_cell(mdb, x, y, z);

	/* solve for each cage vert */
	for(a=0; a<mdb->totcagevert; a++) {
		if(a != 0) {
			nlBegin(NL_SYSTEM);
			nlBegin(NL_MATRIX);
		}

		/* fill in right hand side and solve */
		for(z=0; z<mdb->size; z++)
			for(y=0; y<mdb->size; y++)
				for(x=0; x<mdb->size; x++)
					meshdeform_matrix_add_rhs(mdb, x, y, z, a);

		nlEnd(NL_MATRIX);
		nlEnd(NL_SYSTEM);

#if 0
		nlPrintMatrix();
#endif

		if(nlSolveAdvanced(NULL, NL_TRUE)) {
			for(z=0; z<mdb->size; z++)
				for(y=0; y<mdb->size; y++)
					for(x=0; x<mdb->size; x++)
						meshdeform_matrix_add_semibound_phi(mdb, x, y, z, a);

			for(z=0; z<mdb->size; z++)
				for(y=0; y<mdb->size; y++)
					for(x=0; x<mdb->size; x++)
						meshdeform_matrix_add_exterior_phi(mdb, x, y, z, a);

			for(b=0; b<mdb->size3; b++) {
				if(mdb->tag[b] != MESHDEFORM_TAG_EXTERIOR)
					mdb->phi[b]= nlGetVariable(0, mdb->varidx[b]);
				mdb->totalphi[b] += mdb->phi[b];
			}

			if(mdb->weights) {
				/* static bind : compute weights for each vertex */
				for(b=0; b<mdb->totvert; b++) {
					if(mdb->inside[b]) {
						copy_v3_v3(vec, mdb->vertexcos[b]);
						gridvec[0]= (vec[0] - mdb->min[0] - mdb->halfwidth[0])/mdb->width[0];
						gridvec[1]= (vec[1] - mdb->min[1] - mdb->halfwidth[1])/mdb->width[1];
						gridvec[2]= (vec[2] - mdb->min[2] - mdb->halfwidth[2])/mdb->width[2];

						mdb->weights[b*mdb->totcagevert + a]= meshdeform_interp_w(mdb, gridvec, vec, a);
					}
				}
			}
			else {
				MDefBindInfluence *inf;

				/* dynamic bind */
				for(b=0; b<mdb->size3; b++) {
					if(mdb->phi[b] >= MESHDEFORM_MIN_INFLUENCE) {
						inf= BLI_memarena_alloc(mdb->memarena, sizeof(*inf));
						inf->vertex= a;
						inf->weight= mdb->phi[b];
						inf->next= mdb->dyngrid[b];
						mdb->dyngrid[b]= inf;
					}
				}
			}
		}
		else {
			error("Mesh Deform: failed to find solution.");
			break;
		}

		sprintf(message, "Mesh deform solve %d / %d       |||", a+1, mdb->totcagevert);
		progress_bar((float)(a+1)/(float)(mdb->totcagevert), message);
	}

#if 0
	/* sanity check */
	for(b=0; b<mdb->size3; b++)
		if(mdb->tag[b] != MESHDEFORM_TAG_EXTERIOR)
			if(fabs(mdb->totalphi[b] - 1.0f) > 1e-4)
				printf("totalphi deficiency [%s|%d] %d: %.10f\n",
					(mdb->tag[b] == MESHDEFORM_TAG_INTERIOR)? "interior": "boundary", mdb->semibound[b], mdb->varidx[b], mdb->totalphi[b]);
#endif
	
	/* free */
	MEM_freeN(mdb->varidx);

	nlDeleteContext(context);
}
Ejemplo n.º 8
0
static void laplacianDeformPreview(LaplacianSystem *sys, float (*vertexCos)[3])
{
	int vid, i, j, n, na;
	n = sys->total_verts;
	na = sys->total_anchors;

#ifdef OPENNL_THREADING_HACK
	modifier_opennl_lock();
#endif

	if (!sys->is_matrix_computed) {
		nlNewContext();
		sys->context = nlGetCurrent();

		nlSolverParameteri(NL_NB_VARIABLES, n);
		nlSolverParameteri(NL_SYMMETRIC, NL_FALSE);
		nlSolverParameteri(NL_LEAST_SQUARES, NL_TRUE);
		nlSolverParameteri(NL_NB_ROWS, n + na);
		nlSolverParameteri(NL_NB_RIGHT_HAND_SIDES, 3);
		nlBegin(NL_SYSTEM);
		for (i = 0; i < n; i++) {
			nlSetVariable(0, i, sys->co[i][0]);
			nlSetVariable(1, i, sys->co[i][1]);
			nlSetVariable(2, i, sys->co[i][2]);
		}
		for (i = 0; i < na; i++) {
			vid = sys->index_anchors[i];
			nlSetVariable(0, vid, vertexCos[vid][0]);
			nlSetVariable(1, vid, vertexCos[vid][1]);
			nlSetVariable(2, vid, vertexCos[vid][2]);
		}
		nlBegin(NL_MATRIX);

		initLaplacianMatrix(sys);
		computeImplictRotations(sys);

		for (i = 0; i < n; i++) {
			nlRightHandSideSet(0, i, sys->delta[i][0]);
			nlRightHandSideSet(1, i, sys->delta[i][1]);
			nlRightHandSideSet(2, i, sys->delta[i][2]);
		}
		for (i = 0; i < na; i++) {
			vid = sys->index_anchors[i];
			nlRightHandSideSet(0, n + i, vertexCos[vid][0]);
			nlRightHandSideSet(1, n + i, vertexCos[vid][1]);
			nlRightHandSideSet(2, n + i, vertexCos[vid][2]);
			nlMatrixAdd(n + i, vid, 1.0f);
		}
		nlEnd(NL_MATRIX);
		nlEnd(NL_SYSTEM);
		if (nlSolveAdvanced(NULL, NL_TRUE)) {
			sys->has_solution = true;

			for (j = 1; j <= sys->repeat; j++) {
				nlBegin(NL_SYSTEM);
				nlBegin(NL_MATRIX);
				rotateDifferentialCoordinates(sys);

				for (i = 0; i < na; i++) {
					vid = sys->index_anchors[i];
					nlRightHandSideSet(0, n + i, vertexCos[vid][0]);
					nlRightHandSideSet(1, n + i, vertexCos[vid][1]);
					nlRightHandSideSet(2, n + i, vertexCos[vid][2]);
				}

				nlEnd(NL_MATRIX);
				nlEnd(NL_SYSTEM);
				if (!nlSolveAdvanced(NULL, NL_FALSE)) {
					sys->has_solution = false;
					break;
				}
			}
			if (sys->has_solution) {
				for (vid = 0; vid < sys->total_verts; vid++) {
					vertexCos[vid][0] = nlGetVariable(0, vid);
					vertexCos[vid][1] = nlGetVariable(1, vid);
					vertexCos[vid][2] = nlGetVariable(2, vid);
				}
			}
			else {
				sys->has_solution = false;
			}

		}
		else {
			sys->has_solution = false;
		}
		sys->is_matrix_computed = true;

	}
	else if (sys->has_solution) {
		nlBegin(NL_SYSTEM);
		nlBegin(NL_MATRIX);

		for (i = 0; i < n; i++) {
			nlRightHandSideSet(0, i, sys->delta[i][0]);
			nlRightHandSideSet(1, i, sys->delta[i][1]);
			nlRightHandSideSet(2, i, sys->delta[i][2]);
		}
		for (i = 0; i < na; i++) {
			vid = sys->index_anchors[i];
			nlRightHandSideSet(0, n + i, vertexCos[vid][0]);
			nlRightHandSideSet(1, n + i, vertexCos[vid][1]);
			nlRightHandSideSet(2, n + i, vertexCos[vid][2]);
			nlMatrixAdd(n + i, vid, 1.0f);
		}

		nlEnd(NL_MATRIX);
		nlEnd(NL_SYSTEM);
		if (nlSolveAdvanced(NULL, NL_FALSE)) {
			sys->has_solution = true;
			for (j = 1; j <= sys->repeat; j++) {
				nlBegin(NL_SYSTEM);
				nlBegin(NL_MATRIX);
				rotateDifferentialCoordinates(sys);

				for (i = 0; i < na; i++) {
					vid = sys->index_anchors[i];
					nlRightHandSideSet(0, n + i, vertexCos[vid][0]);
					nlRightHandSideSet(1, n + i, vertexCos[vid][1]);
					nlRightHandSideSet(2, n + i, vertexCos[vid][2]);
				}
				nlEnd(NL_MATRIX);
				nlEnd(NL_SYSTEM);
				if (!nlSolveAdvanced(NULL, NL_FALSE)) {
					sys->has_solution = false;
					break;
				}
			}
			if (sys->has_solution) {
				for (vid = 0; vid < sys->total_verts; vid++) {
					vertexCos[vid][0] = nlGetVariable(0, vid);
					vertexCos[vid][1] = nlGetVariable(1, vid);
					vertexCos[vid][2] = nlGetVariable(2, vid);
				}
			}
			else {
				sys->has_solution = false;
			}
		}
		else {
			sys->has_solution = false;
		}
	}

#ifdef OPENNL_THREADING_HACK
	modifier_opennl_unlock();
#endif
}
Ejemplo n.º 9
0
static void rotateDifferentialCoordinates(LaplacianSystem *sys)
{
	float alpha, beta, gamma;
	float pj[3], ni[3], di[3];
	float uij[3], dun[3], e2[3], pi[3], fni[3], vn[4][3];
	int i, j, lvin, num_fni, k, fi;
	int *fidn;

	for (i = 0; i < sys->total_verts; i++) {
		copy_v3_v3(pi, sys->co[i]);
		copy_v3_v3(ni, sys->no[i]);
		k = sys->unit_verts[i];
		copy_v3_v3(pj, sys->co[k]);
		sub_v3_v3v3(uij, pj, pi);
		mul_v3_v3fl(dun, ni, dot_v3v3(uij, ni));
		sub_v3_v3(uij, dun);
		normalize_v3(uij);
		cross_v3_v3v3(e2, ni, uij);
		copy_v3_v3(di, sys->delta[i]);
		alpha = dot_v3v3(ni, di);
		beta = dot_v3v3(uij, di);
		gamma = dot_v3v3(e2, di);

		pi[0] = nlGetVariable(0, i);
		pi[1] = nlGetVariable(1, i);
		pi[2] = nlGetVariable(2, i);
		zero_v3(ni);
		num_fni = 0;
		num_fni = sys->ringf_map[i].count;
		for (fi = 0; fi < num_fni; fi++) {
			const unsigned int *vin;
			fidn = sys->ringf_map[i].indices;
			vin = sys->faces[fidn[fi]];
			lvin = vin[3] ? 4 : 3;
			for (j = 0; j < lvin; j++) {
				vn[j][0] = nlGetVariable(0, vin[j]);
				vn[j][1] = nlGetVariable(1, vin[j]);
				vn[j][2] = nlGetVariable(2, vin[j]);
				if (vin[j] == sys->unit_verts[i]) {
					copy_v3_v3(pj, vn[j]);
				}
			}

			if (lvin == 3) {
				normal_tri_v3(fni, vn[0], vn[1], vn[2]);
			}
			else if (lvin == 4) {
				normal_quad_v3(fni, vn[0], vn[1], vn[2], vn[3]);
			}
			add_v3_v3(ni, fni);
		}

		normalize_v3(ni);
		sub_v3_v3v3(uij, pj, pi);
		mul_v3_v3fl(dun, ni, dot_v3v3(uij, ni));
		sub_v3_v3(uij, dun);
		normalize_v3(uij);
		cross_v3_v3v3(e2, ni, uij);
		fni[0] = alpha * ni[0] + beta * uij[0] + gamma * e2[0];
		fni[1] = alpha * ni[1] + beta * uij[1] + gamma * e2[1];
		fni[2] = alpha * ni[2] + beta * uij[2] + gamma * e2[2];

		if (len_squared_v3(fni) > FLT_EPSILON) {
			nlRightHandSideSet(0, i, fni[0]);
			nlRightHandSideSet(1, i, fni[1]);
			nlRightHandSideSet(2, i, fni[2]);
		}
		else {
			nlRightHandSideSet(0, i, sys->delta[i][0]);
			nlRightHandSideSet(1, i, sys->delta[i][1]);
			nlRightHandSideSet(2, i, sys->delta[i][2]);
		}
	}
}