Ejemplo n.º 1
0
 /** \brief Evaluate the reduced likelihood function at x
  *
  * If the minimizer was not the NULL-pointer, a new minimization is done
  * setting the parameter to x and minimizing the nll w.r.t. all other parameters, ignoring
  * the parameter values at the minimum.
  *
  * Otherwise, the parameter values at the minimum are used, just the parameter of interest is set to x.
  */
 double operator()(double x) const{
     if(min){
         start.set(pid, x);
         ranges[pid].first = ranges[pid].second = x;
         theta::MinimizationResult minres = min->minimize(nll, start, step, ranges);
         return minres.fval - offset_nll;
     }
     pars_at_min.set(pid, x);
     return nll(pars_at_min) - offset_nll;
 }
Ejemplo n.º 2
0
Type objective_function<Type>::operator() ()
{
  DATA_VECTOR(Y);
  DATA_VECTOR(x);
  PARAMETER(a);
  PARAMETER(b);
  PARAMETER(logSigma);
  parallel_accumulator<Type> nll(this);
  for(int i=0;i<x.size();i++)nll-=dnorm(Y[i],a+b*x[i],exp(logSigma),true);
  return nll;
}
Ejemplo n.º 3
0
RooWorkspace* makeInvertedANFit(TTree* tree, float forceSigma=-1, bool constrainMu=false, float forceMu=-1) {
  RooWorkspace *ws = new RooWorkspace("ws","");

  std::vector< TString (*)(TString, RooRealVar&, RooWorkspace&) > bkgPdfList;
  bkgPdfList.push_back(makeSingleExp);
  bkgPdfList.push_back(makeDoubleExp);
#if DEBUG==0
  //bkgPdfList.push_back(makeTripleExp);
  bkgPdfList.push_back(makeModExp);
  bkgPdfList.push_back(makeSinglePow);
  bkgPdfList.push_back(makeDoublePow);
  bkgPdfList.push_back(makePoly2);
  bkgPdfList.push_back(makePoly3);
#endif



  RooRealVar mgg("mgg","m_{#gamma#gamma}",103,160,"GeV");
  mgg.setBins(38);

  mgg.setRange("sideband_low", 103,120);
  mgg.setRange("sideband_high",131,160);
  mgg.setRange("signal",120,131);

  RooRealVar MR("MR","",0,3000,"GeV");
  MR.setBins(60);
  
  RooRealVar Rsq("t1Rsq","",0,1,"GeV");
  Rsq.setBins(20);

  RooRealVar hem1_M("hem1_M","",-1,2000,"GeV");
  hem1_M.setBins(40);

  RooRealVar hem2_M("hem2_M","",-1,2000,"GeV");
  hem2_M.setBins(40);

  RooRealVar ptgg("ptgg","p_{T}^{#gamma#gamma}",0,500,"GeV");
  ptgg.setBins(50);

  RooDataSet data("data","",tree,RooArgSet(mgg,MR,Rsq,hem1_M,hem2_M,ptgg));

  RooDataSet* blind_data = (RooDataSet*)data.reduce("mgg<121 || mgg>130");

  std::vector<TString> tags;
  //fit many different background models
  for(auto func = bkgPdfList.begin(); func != bkgPdfList.end(); func++) {
    TString tag = (*func)("bonly",mgg,*ws);
    tags.push_back(tag);
    ws->pdf("bonly_"+tag+"_ext")->fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
    RooFitResult* bres = ws->pdf("bonly_"+tag+"_ext")->fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
    bres->SetName(tag+"_bonly_fitres");
    ws->import(*bres);

    //make blinded fit
    RooPlot *fmgg_b = mgg.frame();
    blind_data->plotOn(fmgg_b,RooFit::Range("sideband_low,sideband_high"));
    TBox blindBox(121,fmgg_b->GetMinimum()-(fmgg_b->GetMaximum()-fmgg_b->GetMinimum())*0.015,130,fmgg_b->GetMaximum());
    blindBox.SetFillColor(kGray);
    fmgg_b->addObject(&blindBox);
    ws->pdf("bonly_"+tag+"_ext")->plotOn(fmgg_b,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("sideband_low,sideband_high"));
    fmgg_b->SetName(tag+"_blinded_frame");
    ws->import(*fmgg_b);
    delete fmgg_b;
    

    //set all the parameters constant
    RooArgSet* vars = ws->pdf("bonly_"+tag)->getVariables();
    RooFIter iter = vars->fwdIterator();
    RooAbsArg* a;
    while( (a = iter.next()) ){
      if(string(a->GetName()).compare("mgg")==0) continue;
      static_cast<RooRealVar*>(a)->setConstant(kTRUE);
    }

    //make the background portion of the s+b fit
    (*func)("b",mgg,*ws);

    RooRealVar sigma(tag+"_s_sigma","",5,0,100);
    if(forceSigma!=-1) {
      sigma.setVal(forceSigma);
      sigma.setConstant(true);
    }
    RooRealVar mu(tag+"_s_mu","",126,120,132);
    if(forceMu!=-1) {
      mu.setVal(forceMu);
      mu.setConstant(true);
    }
    RooGaussian sig(tag+"_sig_model","",mgg,mu,sigma);
    RooRealVar Nsig(tag+"_sb_Ns","",5,0,100);
    RooRealVar Nbkg(tag+"_sb_Nb","",100,0,100000);
    

    RooRealVar HiggsMass("HiggsMass","",125.1);
    RooRealVar HiggsMassError("HiggsMassError","",0.24);
    RooGaussian HiggsMassConstraint("HiggsMassConstraint","",mu,HiggsMass,HiggsMassError);


    RooAddPdf fitModel(tag+"_sb_model","",RooArgList( *ws->pdf("b_"+tag), sig ),RooArgList(Nbkg,Nsig));

    RooFitResult* sbres;
    RooAbsReal* nll;
    if(constrainMu) {
      fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
      sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
      nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    } else {
      fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE));
      sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE));
      nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE));
    }
    sbres->SetName(tag+"_sb_fitres");
    ws->import(*sbres);
    ws->import(fitModel);

    RooPlot *fmgg = mgg.frame();
    data.plotOn(fmgg);
    fitModel.plotOn(fmgg);
    ws->pdf("b_"+tag+"_ext")->plotOn(fmgg,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("Full"));
    fmgg->SetName(tag+"_frame");
    ws->import(*fmgg);
    delete fmgg;


    RooMinuit(*nll).migrad();

    RooPlot *fNs = Nsig.frame(0,25);
    fNs->SetName(tag+"_Nsig_pll");
    RooAbsReal *pll = nll->createProfile(Nsig);
    //nll->plotOn(fNs,RooFit::ShiftToZero(),RooFit::LineColor(kRed));
    pll->plotOn(fNs);
    ws->import(*fNs);

    delete fNs;

    RooPlot *fmu = mu.frame(125,132);
    fmu->SetName(tag+"_mu_pll");
    RooAbsReal *pll_mu = nll->createProfile(mu);
    pll_mu->plotOn(fmu);
    ws->import(*fmu);

    delete fmu;

  }

  RooArgSet weights("weights");
  RooArgSet pdfs_bonly("pdfs_bonly");
  RooArgSet pdfs_b("pdfs_b");

  RooRealVar minAIC("minAIC","",1E10);
  //compute AIC stuff
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooAbsPdf *p_bonly = ws->pdf("bonly_"+*t);
    RooAbsPdf *p_b = ws->pdf("b_"+*t);
    RooFitResult *sb = (RooFitResult*)ws->obj(*t+"_bonly_fitres");
    RooRealVar k(*t+"_b_k","",p_bonly->getParameters(RooArgSet(mgg))->getSize());
    RooRealVar nll(*t+"_b_minNll","",sb->minNll());
    RooRealVar Npts(*t+"_b_N","",blind_data->sumEntries());
    RooFormulaVar AIC(*t+"_b_AIC","2*@0+2*@1+2*@1*(@1+1)/(@2-@1-1)",RooArgSet(nll,k,Npts));
    ws->import(AIC);
    if(AIC.getVal() < minAIC.getVal()) {
      minAIC.setVal(AIC.getVal());
    }
    //aicExpSum+=TMath::Exp(-0.5*AIC.getVal()); //we will need this precomputed  for the next step
    pdfs_bonly.add(*p_bonly);
    pdfs_b.add(*p_b);
  }
  ws->import(minAIC);
  //compute the AIC weight
  float aicExpSum=0;
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    aicExpSum+=TMath::Exp(-0.5*(AIC->getVal()-minAIC.getVal())); //we will need this precomputed  for the next step    
  }
  std::cout << "aicExpSum: " << aicExpSum << std::endl;

  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    RooRealVar *AICw = new RooRealVar(*t+"_b_AICWeight","",TMath::Exp(-0.5*(AIC->getVal()-minAIC.getVal()))/aicExpSum);
    if( TMath::IsNaN(AICw->getVal()) ) {AICw->setVal(0);}
    ws->import(*AICw);
    std::cout << *t << ":  " << AIC->getVal()-minAIC.getVal() << "    " << AICw->getVal() << std::endl;
    weights.add(*AICw);
  }
  RooAddPdf bonly_AIC("bonly_AIC","",pdfs_bonly,weights);
  RooAddPdf b_AIC("b_AIC","",pdfs_b,weights);

  //b_AIC.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
  //RooFitResult* bres = b_AIC.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::Range("sideband_low,sideband_high"));
  //bres->SetName("AIC_b_fitres");
  //ws->import(*bres);

  //make blinded fit
  RooPlot *fmgg_b = mgg.frame(RooFit::Range("sideband_low,sideband_high"));
  blind_data->plotOn(fmgg_b,RooFit::Range("sideband_low,sideband_high"));
  TBox blindBox(121,fmgg_b->GetMinimum()-(fmgg_b->GetMaximum()-fmgg_b->GetMinimum())*0.015,130,fmgg_b->GetMaximum());
  blindBox.SetFillColor(kGray);
  fmgg_b->addObject(&blindBox);
  bonly_AIC.plotOn(fmgg_b,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("sideband_low,sideband_high"));
  fmgg_b->SetName("AIC_blinded_frame");
  ws->import(*fmgg_b);
  delete fmgg_b;
    
#if 1

  RooRealVar sigma("AIC_s_sigma","",5,0,100);
  if(forceSigma!=-1) {
    sigma.setVal(forceSigma);
    sigma.setConstant(true);
  }
  RooRealVar mu("AIC_s_mu","",126,120,132);
  if(forceMu!=-1) {
    mu.setVal(forceMu);
    mu.setConstant(true);
  }
  RooGaussian sig("AIC_sig_model","",mgg,mu,sigma);
  RooRealVar Nsig("AIC_sb_Ns","",5,0,100);
  RooRealVar Nbkg("AIC_sb_Nb","",100,0,100000);
  
  
  RooRealVar HiggsMass("HiggsMass","",125.1);
  RooRealVar HiggsMassError("HiggsMassError","",0.24);
  RooGaussian HiggsMassConstraint("HiggsMassConstraint","",mu,HiggsMass,HiggsMassError);
  
  
  RooAddPdf fitModel("AIC_sb_model","",RooArgList( b_AIC, sig ),RooArgList(Nbkg,Nsig));

  RooFitResult* sbres;
  RooAbsReal *nll;

  if(constrainMu) {
    fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
    nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE),RooFit::ExternalConstraints(RooArgSet(HiggsMassConstraint)));
  } else {
    fitModel.fitTo(data,RooFit::Strategy(0),RooFit::Extended(kTRUE));
    sbres = fitModel.fitTo(data,RooFit::Strategy(2),RooFit::Save(kTRUE),RooFit::Extended(kTRUE));
    nll = fitModel.createNLL(data,RooFit::NumCPU(4),RooFit::Extended(kTRUE));
  }

  assert(nll!=0);
  
  sbres->SetName("AIC_sb_fitres");
  ws->import(*sbres);
  ws->import(fitModel);
  
  RooPlot *fmgg = mgg.frame();
  data.plotOn(fmgg);
  fitModel.plotOn(fmgg);
  ws->pdf("b_AIC")->plotOn(fmgg,RooFit::LineColor(kRed),RooFit::Range("Full"),RooFit::NormRange("Full"));
  fmgg->SetName("AIC_frame");
  ws->import(*fmgg);
  delete fmgg;

  RooMinuit(*nll).migrad();
  
  RooPlot *fNs = Nsig.frame(0,25);
  fNs->SetName("AIC_Nsig_pll");
  RooAbsReal *pll = nll->createProfile(Nsig);
  //nll->plotOn(fNs,RooFit::ShiftToZero(),RooFit::LineColor(kRed));
  pll->plotOn(fNs);
  ws->import(*fNs);
  delete fNs;


  RooPlot *fmu = mu.frame(125,132);
  fmu->SetName("AIC_mu_pll");
  RooAbsReal *pll_mu = nll->createProfile(mu);
  pll_mu->plotOn(fmu);
  ws->import(*fmu);

  delete fmu;

  std::cout << "min AIC: " << minAIC.getVal() << std::endl;
  for(auto t = tags.begin(); t!=tags.end(); t++) {
    RooFormulaVar *AIC = (RooFormulaVar*)ws->obj(*t+"_b_AIC");
    RooRealVar *AICw = ws->var(*t+"_b_AICWeight");
    RooRealVar* k = ws->var(*t+"_b_k");
    printf("%s & %0.0f & %0.2f & %0.2f \\\\\n",t->Data(),k->getVal(),AIC->getVal()-minAIC.getVal(),AICw->getVal());
    //std::cout << k->getVal() << " " << AIC->getVal()-minAIC.getVal() << " " << AICw->getVal() << std::endl;
  }
#endif
  return ws;
}
Ejemplo n.º 4
0
//end function - returns a tree_iterator pointing to a nullptr
tree_iterator parse_tree::end(void) const
{
	tree_iterator nll(nullptr);
	return nll;
}
Ejemplo n.º 5
0
void roo_fitWH()
{
  TString poscharge = "Plus";
  TString negcharge = "Minus";

  std::vector<TString> charge(2);
  charge.at(0) = poscharge;
  charge.at(1) = negcharge;

  TString canvas_name_plus = "muon_MC_WHelicityFramePlots_PlusICVar";
  TCanvas *c0 = new TCanvas(canvas_name_plus,"",450,400);
  TString canvas_name_minus = "muon_MC_WHelicityFramePlots_MinusICVar";
  TCanvas *c1 = new TCanvas(canvas_name_minus,"",450,400);
 
  // Run both for + and - charges
  for(unsigned int j=0; j<charge.size(); j++) {
   
    //  if (j==1) break; // do only + charge fit
    if (realData) { sfactor=36; }

      // Nominal values are taken from a fit to the MC W data (scaled to 100pb-1)
    RooRealVar *fLnom, *fRnom, *f0nom;
    if (j==0) { 
      fLnom=new RooRealVar("fL_nom","fLnom",0.556);
      fRnom=new RooRealVar("fR_nom","fRnom",0.234);
      f0nom=new RooRealVar("f0_nom","f0nom",0.210);
    } else {
      fLnom=new RooRealVar("fL_nom","fLnom",0.523);
      fRnom=new RooRealVar("fR_nom","fRnom",0.265);
      f0nom=new RooRealVar("f0_nom","f0nom",0.212);
    }

    TString Hist1 = "RECO_PolPlots_50toinf/RECO_ICVarPF"+ charge.at(j) + "_LH";
    TString Hist2 = "RECO_PolPlots_50toinf/RECO_ICVarPF"+ charge.at(j) + "_RH";
    TString Hist3 = "RECO_PolPlots_50toinf/RECO_ICVarPF"+ charge.at(j) + "_LO";
    TString Hist_data1 = "RECO_PolPlots_50toinf/RECO_ICVarPF"+ charge.at(j);
    
    TH1D *mc1 = (TH1D*)sigfile->Get(Hist1);
    TH1D *mc2 = (TH1D*)sigfile->Get(Hist2);
    TH1D *mc3 = (TH1D*)sigfile->Get(Hist3);
    
    TH1D *sighist = (TH1D*)sigfile->Get(Hist_data1); // W signal histogram
    TH1D *bkghist=(TH1D*)bkgfile->Get(Hist_data1); // Bkg histogram
    TH1D *hdata=(TH1D*)datafile->Get(Hist_data1); // Real data histogram

    // //we are only fitting for fL and fR
    // double accFactor1 = refTempHist1->Integral() / mc1->Integral();
    // double accFactor2 = refTempHist2->Integral() / mc2->Integral();
    // double accFactor3 = refTempHist3->Integral() / mc3->Integral();
    // double normFactor = (mc1->Integral() + mc2->Integral() + mc3->Integral()) / (refTempHist1->Integral() + refTempHist2->Integral() + refTempHist3->Integral());
    
    mc1->Rebin(rbin); mc2->Rebin(rbin); mc3->Rebin(rbin);
    sighist->Rebin(rbin); bkghist->Rebin(rbin); hdata->Rebin(rbin);

      // Scale to sfactor/pb if MC
    //if (!realData) {
    if (toyMC) sfactor=400;
    sighist->Scale(sfactor); bkghist->Scale(sfactor);
      // }
      //datahist->Scale(invWeightW);//to get MC errors - otherwise comment out

    Double_t nbkg=0;

    TH1D *datahist;
    if (realData) { datahist=hdata;
    } else {
      datahist=(TH1D*)sighist->Clone();
      if (addbkg) {datahist->Add(bkghist); }
    }
    if (addbkg) { 
      //nbkg=bkghist->Integral();
      nbkg=bkghist->Integral(bkghist->FindBin(xmin+quanta),bkghist->FindBin(xmax-quanta));
    }

    //Double_t istat=datahist->Integral();
    //Double_t f_sig=(sighist->Integral())/istat; // signal fraction
    Double_t istat=datahist->Integral(datahist->FindBin(xmin+quanta),datahist->FindBin(xmax-quanta));
    Double_t f_sig=(sighist->Integral(sighist->FindBin(xmin+quanta),sighist->FindBin(xmax-quanta)))/istat;
    Double_t f_bkg=nbkg/istat; // bkg fraction


      // Start RooFit session
    RooRealVar x("x","LP",xmin,xmax);
      // Import binned Data
    RooDataHist data1("data1","dataset with WHICVarPlus",x,mc1);
    RooDataHist data2("data2","dataset with WHICVarPlus",x,mc2);
    RooDataHist data3("data3","dataset with WHICVarPlus",x,mc3);
  
    RooDataHist test("data","dataset with WHICVarPlus",x,datahist);
    RooDataHist data_bkg("data4","dataset with ICVar",x,bkghist);

    // Relative fractions - allow them to float to negative values too if needs be
    //   if (fitMode==0) {
    RooRealVar f1("fL","fL fraction",fLnom->getVal(),0.,1.);
    RooRealVar f2("fR","fR fraction", fRnom->getVal(),0.,1.);
    RooFormulaVar f3("f0","1-fL-fR",RooArgList(f1,f2));
    if (fitMode) {
      f1.setVal((fLnom->getVal()-fRnom->getVal())); f1.setRange(-1.,1.); 
      f1.setPlotLabel("f_{L}-f_{R}"); 
      f2.setVal(f0nom->getVal()); 
      f2.setPlotLabel("f_{0}");
    } 
    // } else {
    //   RooRealVar f1("fL","fL fraction",(fLnom->getVal()-fRnom->getVal()),-1.,1.);
    //   RooRealVar f2("fR","fR fraction", (fLnom->getVal()+fRnom->getVal()),-1.,1.);
    //   RooFormulaVar f3("f0","1-fL-fR",RooArgList(f1,f2));
    // }
    RooRealVar fsub("fsub","fsub par",(fLnom->getVal()-fRnom->getVal()),-1.,1.);
    RooRealVar fsum("fsum","fsum par",(fLnom->getVal()+fRnom->getVal()), -1.,1.);
    
    // Background template
    RooHistPdf *bkg = new RooHistPdf("bkg","bkg",x,data_bkg);
    // Bkg fraction
    RooRealVar fbkg("f_{bkg}","f_bkg fraction",f_bkg);

      // Templates 
    RooHistPdf h1("h1","h1",x,data1); // left-handed template histogram
    RooHistPdf h2("h2","h2",x,data2); // right-handed template histo
    RooHistPdf h3("h3","h3",x,data3); // longitudinal template histo

      // Construct model PDF
    RooAbsPdf *sig, *model;

    if (charge.at(j) == "Plus") { // plus charge PDFs
      if (addParameter) { sig = new RooWPlusExtended("sigmodel","model",x,f1,f2,fsub);
      } else { sig = new RooWPlus("sigmodel","model",x,f1,f2); } 
    } else if (charge.at(j) == "Minus") { // minus charge PDFs
      if (addParameter) { sig = new RooWMinusExtended("sigmodel","model",x,f1,f2,fsub);
      } else { sig = new RooWMinus("sigmodel","model",x,f1,f2); } 
    }
    
    if (addbkg) {
      model = new RooAddPdf("model","model",RooArgList(*bkg,*sig),fbkg);
    } else { model = sig; }
    
    // Set the Fit Range
    x.setRange("fitrange",-0.0,1.3);
    // Construct likelihood ( + penalty term)
    RooNLLVar nll("nll","nll",*model,test,Range("fitrange"));
    RooRealVar pen("pen","penalty term",(0.5*1./(0.01*0.01)));
    RooFormulaVar nllPen("nllPen","nll+pen*fsub^2",RooArgList(nll,pen,fsub));
    
      // Fitting
    RooMinuit *m;
    if (!addParameter) { m = new RooMinuit(nll); }
    else {  m = new RooMinuit(nllPen);}

    if (!toyMC) {
      m->migrad(); m->hesse();
    }
    RooFitResult *res1 = m->save();
    
    // Re-diced data 
    // Int_t nevt=static_cast<int>(istat);
    // RooDataSet *gtest = model->generate(x,nevt);
    
    // Fitting
    //   RooFitResult * res1 = model.fitTo(test,Minos(kFALSE), Save());
    //       res1->Print();
   
    if(makePlots) {
   



      // Temp PDF for plotting purposes
      // RooAddPdf temp("temp","component 1",RooArgList(*h1,*h2,*h3),RooArgList(*f1,*f2)) ;
      // Plotting
      gROOT->SetStyle("Plain");  
      gStyle->SetOptFit(0);
      gStyle->SetOptTitle(0);
      gStyle->SetOptStat(0);      //gStyle->SetCanvasDefH(600); //Height of canvas
      //gStyle->SetCanvasDefW(600); //Width of canvas   
      if(charge.at(j) == "Plus") { c0->cd();
	//c0->Divide(2,1);c0->cd(1);
      }
      if(charge.at(j) == "Minus") { c1->cd();
	//c1->Divide(2,1);c1->cd(1);
      }
      //RooPlot* frame = new RooPlot(0.0,1.3,0,800);
      RooPlot* frame = x.frame();


      test.plotOn(frame,Name("data")); 
      model->plotOn(frame,Name("model")); 
      // model->paramOn(frame);//, Format("NELU", AutoPrecision(2)), Layout(0.1,0.5,0.9));
        
      //  h1.plotOn(frame);
      //     h2.plotOn(frame);
      //    h3.plotOn(frame);

       //  model->plotOn(frame, Components(h1),LineColor(kRed),LineStyle(kDashed));
       //     temp->plotOn(frame, Components(h2),LineColor(kGreen),LineStyle(kDashed));
      //  temp->plotOn(frame, Components(h3),LineColor(kYellow),LineStyle(kDashed));
      if (addbkg) {
	//  model->plotOn(frame, Components(h1),FillColor(5),DrawOption("F"));
     	//model->plotOn(frame,Components(*bkg),FillColor(5),DrawOption(""));
      } 

   
  hdata->GetYaxis()->SetTitle("Events / 0.1");
  if(charge.at(j) == "Plus") {  hdata->GetXaxis()->SetTitle("#it{L_{P}}(#mu^{+})");}
  if(charge.at(j) == "Minus") {hdata->GetXaxis()->SetTitle("#it{L_{P}}(#mu^{-})");}
      hdata->GetXaxis()->SetTitleSize(0.06);
      hdata->GetXaxis()->SetTitleOffset(1.);
      hdata->GetYaxis()->SetTitleSize(0.06);
      hdata->GetYaxis()->SetTitleOffset(1.2);
      hdata->GetXaxis()->SetLabelSize(0.055);
      hdata->GetYaxis()->SetLabelSize(0.055);
      hdata->GetXaxis()->SetRangeUser(0.0,1.29);
      hdata->GetYaxis()->SetRangeUser(0.0,600);
      hdata->SetMarkerStyle(20);

      //  mc1->Draw("same");
      // Goodness-of-fit
      Double_t chi2= frame->chiSquare("model","data",3);
      Double_t nllmin=res1->minNll();
      cout << "" << endl;
      cout << "Printing out the goodness-of-fit measure:" << endl;
      cout << "chi2 = " << chi2 << "\t" << "min NLL = " << nllmin << endl;
      res1->Print();

      //   TCanvas* testt  = new TCanvas ("testt","hj");
      cout <<"intetral: "<<   hdata->Integral()<<endl;
      hdata->GetXaxis()->SetRangeUser(0.0,1.29);
      cout <<   hdata->Integral()<<endl;
      
      hdata->Draw("");
      //  frame->Draw("same");
      mc1->GetXaxis()->SetRangeUser(0.0,1.29);
      float f_l_a =  mc1->Integral();
      mc2->GetXaxis()->SetRangeUser(0.0,1.29);
      float f_r_a =  mc2->Integral();
      mc3->GetXaxis()->SetRangeUser(0.0,1.29);
      float f_0_a =  mc3->Integral();

      float allData =  hdata->Integral();
      float EWKBkg = allData*(f_bkg);
      float WData = allData*(1-f_bkg);

      float f_l = 0.5*(1-f2.getVal()+f1.getVal());
      float f_r = 0.5*(1-f2.getVal()-f1.getVal());
      float f_0 = f2.getVal();
      cout << "f_l: "<< f_l<< ",f_r: "<< f_r<< ", f_0: "<< f_0<< " 1= "<< f_l+f_r+f_0<< endl;
      float allW = f_l*f_l_a+f_r*f_r_a+f_0*f_0_a;

      //hdata->Draw("");
      //    bkghist->GetXaxis()->SetRangeUser(0.0,1.3);
      bkghist->Scale(EWKBkg/bkghist->Integral());
      bkghist->Draw("samehist");
      bkghist->SetLineColor(kYellow);
      bkghist->SetFillColor(kYellow);

      mc1->Scale(f_l*WData/allW);
      mc2->Scale(f_r*WData/allW);
      mc3->Scale(f_0*WData/allW);
      mc1->SetLineColor(kRed);
      mc2->SetLineColor(kGreen);
      mc3->SetLineColor(kBlue);
      mc1->SetLineWidth(3);
      mc2->SetLineWidth(3);
      mc3->SetLineWidth(3);
      mc1->SetLineStyle(2);
      mc2->SetLineStyle(3);
      mc3->SetLineStyle(4);
      mc1->Draw("samehist");
      mc2->Draw("samehist");
      mc3->Draw("samehist");

      TH1D* allHists = (TH1D*)mc1->Clone();
      allHists->Add(mc2,1);
      allHists->Add(mc3,1);
      allHists->Add(bkghist,1);
      allHists->SetLineWidth(3);
      //   frame->SetOptFit(0);

        frame->Draw("same");
      //   allHists->Draw("same");
	TLegend* aleg;
	//if(charge.at(j) == "Minus") aleg = new TLegend(0.2,0.69,0.6,0.9,"");
	//  if(charge.at(j) == "Plus") 
	//aleg =  new TLegend(0.5,0.6,0.7,0.9,"");//new TLegend(0.8,0.69,0.95,0.9,"");
      aleg = new TLegend(0.2017937,0.7419355,0.4775785,0.9193548,NULL,"brNDC");
      aleg->SetNColumns(2);
      aleg->SetFillColor(0);
      aleg->SetLineColor(0);
      aleg->AddEntry(mc1,"f_{L}","lf");
      aleg->AddEntry(mc2,"f_{R}","lf");
      aleg->AddEntry(mc3,"f_{0}","lf");
      aleg->AddEntry(bkghist,"EWK","lf");
      TH1* dummyhist = new TH1F("", "", 1, 0, 1);
      dummyhist->SetLineColor(kBlue);
      dummyhist->SetLineWidth(3);
      aleg->AddEntry(dummyhist, "fit result", "lf");
      aleg->AddEntry(hdata, "data","P");

      aleg->Draw("same");

      //TLatex* preliminary; 

      //TLatex* text;
      //if(false) {
	//text = new TLatex(0.35,480,"#splitline{f_{L}-f_{R}=0.240#pm0.036(stat.)#pm0.031(syst.)}{f_{0}=0.183#pm0.087(stat.)#pm0.123(syst.)}");
	//preliminary = new TLatex(0.35,550,"CMS preliminary: #it{L} = 36pb^{-1}@ 7 TeV");
      //}

      //if(true){
	//text = new TLatex(0.05,480,"#splitline{f_{L}-f_{R}=0.310#pm0.036(stat.)#pm0.017(syst.)}{f_{0}=0.171#pm0.085(stat.)#pm0.099(syst.)}");
	//preliminary = new TLatex(0.05,550,"#splitline{CMS, #sqrt{s} = 7 TeV,}{#it{L_{int}} = 36 pb^{-1}}");}
      //preliminary->SetTextSize(0.043);
      //preliminary->Draw("same");
      
      //text->SetTextSize(0.043);
      //  text->Draw("same");
      /*
	// Draw Minuit contours
      if(charge.at(j) == "Plus") { c0->cd(2);
      } else { c1->cd(2); }

	// RooPlot *rcont=m->contour(f1,f2,1,2);
	// rcont->Draw();
      RooPlot *rcontour=new RooPlot(f1,f2);
      res1->plotOn(rcontour,f1,f2,"ME123VHB");
      rcontour->Draw();
      if (fitMode) {
	rcontour->GetXaxis()->SetTitle("f_{L}-f_{R}");
	rcontour->GetYaxis()->SetTitle("f_{0}");
      } else {
	rcontour->GetXaxis()->SetTitle("f_{L}");
	rcontour->GetYaxis()->SetTitle("f_{R}");
      }
      */

    }

    TLatex * text = new TLatex(0.7451931,500.8655,"#splitline{CMS,  #sqrt{s} = 7 TeV}{L_{ int} = 36 pb^{-1}}");
    text->SetTextSize(0.043);
    text->SetLineWidth(2);
    text->Draw("same");

     
    const TMatrixDSym& cor = res1->correlationMatrix();
    const TMatrixDSym& cov = res1->covarianceMatrix();
    
    //Print correlation, covariance matrix
    cout << "correlation matrix" << endl; cor.Print();
    cout << "covariance matrix" << endl; cov.Print();
  
    cout << f1 << endl; cout << f2 << endl;
    if (!fitMode) {
      cout << "f0 = " << f3 << " +/- " << f3.getPropagatedError(*res1) << endl;
    }
  }
     
  if(makePlots) {
    c0->Print(canvas_name_plus+".pdf");
    c1->Print(canvas_name_minus+".pdf");
  }

  if (toyMC) {

    // MC STudies
  Int_t nevt=istat;
  Int_t nEXP=100;

  RooMCStudy mgr(*model,*model,x,"","mhrv");
  mgr.generateAndFit(nEXP,nevt,kTRUE);
  
  TCanvas *cp0 = new TCanvas("c0","",1200,400);
  cp0->Divide(3,1);
  cp0->cd(1);
  RooPlot *p1=mgr.plotParam(f1); p1->Draw(); 
  if (fitMode) p1->SetTitle(";f_{L}-f_{R};number of toys");
  cp0->cd(2);
  RooPlot *p2 = mgr.plotError(f1); p2->Draw();
  if (fitMode) p2->SetTitle(";#delta (f_{L}-f_{R});number of toys");
  cp0->cd(3);
  // f1 pull
  RooPlot* m1pframe = mgr.plotPull(f1,-3.,3.,30,kTRUE);
  m1pframe->Draw();
  if (fitMode) {
    m1pframe->SetTitle(";f_{L}-f_{R};number of toys");
  }

  TCanvas *cp02 = new TCanvas("c1","",1200,400);
  cp02->Divide(3,1);
  cp02->cd(1);
  RooPlot *p3=mgr.plotParam(f2); p3->Draw();
  if (fitMode) p3->SetTitle(";f_{0};number of toys");
  cp02->cd(2);
  RooPlot *p4=mgr.plotError(f2); p4->Draw();
  if (fitMode) p4->SetTitle(";#delta f_{0}; number of toys");
  cp02->cd(3);
  // f2 pull
  RooPlot* m2pframe = mgr.plotPull(f2,-3.,3.,30,kTRUE);
  m2pframe->Draw();
  if (fitMode) {
    m2pframe->SetTitle(";f_{0};number of toys");
  }

  TCanvas *cnll = new TCanvas("cnll","");
  RooPlot* nllframe = mgr.plotNLL();
  // nllframe->Draw();


  }

  return;
}