/* * handle_timer_tick() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ void handle_timer_tick(struct pt_regs *regs) { do_timer(regs); #ifndef CONFIG_SMP update_process_times(user_mode(regs)); #endif profile_tick(CPU_PROFILING, regs); #ifdef CONFIG_HEARTBEAT if (sh_mv.mv_heartbeat != NULL) sh_mv.mv_heartbeat(); #endif /* * If we have an externally synchronized Linux clock, then update * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { if (rtc_set_time(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else /* do it again in 60s */ last_rtc_update = xtime.tv_sec - 600; } }
static irqreturn_t timer_interrupt(int dummy, void *dev_id) { /* last time the cmos clock got updated */ static long last_rtc_update; #ifndef CONFIG_SMP profile_tick(CPU_PROFILING); #endif /* Protect counter clear so that do_gettimeoffset works */ write_seqlock(&xtime_lock); clear_clock_irq(); do_timer(1); /* Determine when to update the Mostek clock. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } write_sequnlock(&xtime_lock); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif return IRQ_HANDLED; }
/* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ static irqreturn_t timer_interrupt(int irq, void *dummy) { /* last time the cmos clock got updated */ static long last_rtc_update=0; /* may need to kick the hardware timer */ if (mach_tick) mach_tick(); write_seqlock(&xtime_lock); do_timer(1); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif if (current->pid) profile_tick(CPU_PROFILING); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } #ifdef CONFIG_HEARTBEAT /* use power LED as a heartbeat instead -- much more useful for debugging -- based on the version for PReP by Cort */ /* acts like an actual heart beat -- ie thump-thump-pause... */ if (mach_heartbeat) { static unsigned cnt = 0, period = 0, dist = 0; if (cnt == 0 || cnt == dist) mach_heartbeat( 1 ); else if (cnt == 7 || cnt == dist+7) mach_heartbeat( 0 ); if (++cnt > period) { cnt = 0; /* The hyperbolic function below modifies the heartbeat period * length in dependency of the current (5min) load. It goes * through the points f(0)=126, f(1)=86, f(5)=51, * f(inf)->30. */ period = ((672<<FSHIFT)/(5*avenrun[0]+(7<<FSHIFT))) + 30; dist = period / 4; } } #endif /* CONFIG_HEARTBEAT */ write_sequnlock(&xtime_lock); return(IRQ_HANDLED); }
static inline irqreturn_t timer_interrupt(int irq, void *dev_id) { struct pt_regs *regs = get_irq_regs(); /* acknowledge the timer irq */ #ifdef USE_CASCADE_TIMERS *R_TIMER_CTRL = IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) | IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) | IO_STATE( R_TIMER_CTRL, i1, clr) | IO_STATE( R_TIMER_CTRL, tm1, run) | IO_STATE( R_TIMER_CTRL, clksel1, cascade0) | IO_STATE( R_TIMER_CTRL, i0, clr) | IO_STATE( R_TIMER_CTRL, tm0, run) | IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz); #else *R_TIMER_CTRL = r_timer_ctrl_shadow | IO_STATE(R_TIMER_CTRL, i0, clr); #endif /* reset watchdog otherwise it resets us! */ reset_watchdog(); /* Update statistics. */ update_process_times(user_mode(regs)); /* call the real timer interrupt handler */ do_timer(1); cris_do_profile(regs); /* Save profiling information */ /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. * * The division here is not time critical since it will run once in * 11 minutes */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 && (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } return IRQ_HANDLED; }
irqreturn_t timer_interrupt (int irq, void *dev_id) { unsigned long next; next = get_linux_timer(); again: while ((signed long)(get_ccount() - next) > 0) { profile_tick(CPU_PROFILING); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif write_seqlock(&xtime_lock); last_ccount_stamp = next; next += CCOUNT_PER_JIFFY; do_timer (1); /* Linux handler in kernel/timer.c */ if (ntp_synced() && xtime.tv_sec - last_rtc_update >= 659 && abs((xtime.tv_nsec/1000)-(1000000-1000000/HZ))<5000000/HZ) { if (platform_set_rtc_time(xtime.tv_sec+1) == 0) last_rtc_update = xtime.tv_sec+1; else /* Do it again in 60 s */ last_rtc_update += 60; } write_sequnlock(&xtime_lock); } /* NOTE: writing CCOMPAREn clears the interrupt. */ set_linux_timer (next); /* Make sure we didn't miss any tick... */ if ((signed long)(get_ccount() - next) > 0) goto again; /* Allow platform to do something useful (Wdog). */ platform_heartbeat(); return IRQ_HANDLED; }
irqreturn_t timer_interrupt(int irq, void *dummy) { /* last time the cmos clock got updated */ static long last_rtc_update; write_seqlock(&xtime_lock); #if defined(CONFIG_TICK_SOURCE_SYSTMR0) && !defined(CONFIG_IPIPE) /* * TIMIL0 is latched in __ipipe_grab_irq() when the I-Pipe is * enabled. */ if (get_gptimer_status(0) & TIMER_STATUS_TIMIL0) { #endif do_timer(1); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / NSEC_PER_USEC) >= 500000 - ((unsigned)TICK_SIZE) / 2 && (xtime.tv_nsec / NSEC_PER_USEC) <= 500000 + ((unsigned)TICK_SIZE) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else /* Do it again in 60s. */ last_rtc_update = xtime.tv_sec - 600; } #if defined(CONFIG_TICK_SOURCE_SYSTMR0) && !defined(CONFIG_IPIPE) set_gptimer_status(0, TIMER_STATUS_TIMIL0); } #endif write_sequnlock(&xtime_lock); #ifdef CONFIG_IPIPE update_root_process_times(get_irq_regs()); #else update_process_times(user_mode(get_irq_regs())); #endif profile_tick(CPU_PROFILING); return IRQ_HANDLED; }
/* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ static irqreturn_t timer_interrupt(int irq, void *dummy) { /* last time the cmos clock got updated */ static long last_rtc_update = 0; profile_tick(CPU_PROFILING); /* * Here we are in the timer irq handler. We just have irqs locally * disabled but we don't know if the timer_bh is running on the other * CPU. We need to avoid to SMP race with it. NOTE: we don't need * the irq version of write_lock because as just said we have irq * locally disabled. -arca */ write_seqlock(&xtime_lock); do_timer(1); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2 ) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } #ifdef CONFIG_HEARTBEAT static unsigned short n; n++; __set_LEDS(n); #endif /* CONFIG_HEARTBEAT */ write_sequnlock(&xtime_lock); update_process_times(user_mode(get_irq_regs())); return IRQ_HANDLED; }
irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs * regs) { /* last time the cmos clock got updated */ static long last_rtc_update; #ifndef CONFIG_SMP profile_tick(CPU_PROFILING, regs); #endif /* Protect counter clear so that do_gettimeoffset works */ write_seqlock(&xtime_lock); #ifdef CONFIG_SUN4 if((idprom->id_machtype == (SM_SUN4 | SM_4_260)) || (idprom->id_machtype == (SM_SUN4 | SM_4_110))) { int temp; intersil_read_intr(intersil_clock, temp); /* re-enable the irq */ enable_pil_irq(10); } #endif clear_clock_irq(); do_timer(regs); #ifndef CONFIG_SMP update_process_times(user_mode(regs)); #endif /* Determine when to update the Mostek clock. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } write_sequnlock(&xtime_lock); return IRQ_HANDLED; }
/* * handle_timer_tick() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ void handle_timer_tick(void) { if (current->pid) profile_tick(CPU_PROFILING); #ifdef CONFIG_HEARTBEAT if (sh_mv.mv_heartbeat != NULL) sh_mv.mv_heartbeat(); #endif /* * Here we are in the timer irq handler. We just have irqs locally * disabled but we don't know if the timer_bh is running on the other * CPU. We need to avoid to SMP race with it. NOTE: we don' t need * the irq version of write_lock because as just said we have irq * locally disabled. -arca */ write_seqlock(&xtime_lock); do_timer(1); /* * If we have an externally synchronized Linux clock, then update * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { if (rtc_sh_set_time(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else /* do it again in 60s */ last_rtc_update = xtime.tv_sec - 600; } write_sequnlock(&xtime_lock); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif }
/* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { #ifndef CONFIG_SMP profile_tick(CPU_PROFILING, regs); #endif do_timer(regs); #ifndef CONFIG_SMP update_process_times(user_mode(regs)); #endif /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ write_seqlock(&xtime_lock); if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned)TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned)TICK_SIZE) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else /* do it again in 60 s */ last_rtc_update = xtime.tv_sec - 600; } write_sequnlock(&xtime_lock); /* As we return to user mode fire off the other CPU schedulers.. this is basically because we don't yet share IRQ's around. This message is rigged to be safe on the 386 - basically it's a hack, so don't look closely for now.. */ #ifdef CONFIG_SMP smp_local_timer_interrupt(regs); smp_send_timer(); #endif return IRQ_HANDLED; }
static void sync_cmos_clock(unsigned long dummy) { struct timeval now, next; int fail = 1; /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. * This code is run on a timer. If the clock is set, that timer * may not expire at the correct time. Thus, we adjust... */ if (!ntp_synced()) /* * Not synced, exit, do not restart a timer (if one is * running, let it run out). */ return; do_gettimeofday(&now); if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 && now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2) fail = set_rtc_mmss(now.tv_sec); next.tv_usec = USEC_AFTER - now.tv_usec; if (next.tv_usec <= 0) next.tv_usec += USEC_PER_SEC; if (!fail) next.tv_sec = 659; else next.tv_sec = 0; if (next.tv_usec >= USEC_PER_SEC) { next.tv_sec++; next.tv_usec -= USEC_PER_SEC; } mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next)); }
static void sync_cmos_clock(unsigned long dummy) { struct timespec now, next; int fail = 1; /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. * This code is run on a timer. If the clock is set, that timer * may not expire at the correct time. Thus, we adjust... */ if (!ntp_synced()) /* * Not synced, exit, do not restart a timer (if one is * running, let it run out). */ return; getnstimeofday(&now); if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2) fail = update_persistent_clock(now); next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec; if (next.tv_nsec <= 0) next.tv_nsec += NSEC_PER_SEC; if (!fail) next.tv_sec = 659; else next.tv_sec = 0; if (next.tv_nsec >= NSEC_PER_SEC) { next.tv_sec++; next.tv_nsec -= NSEC_PER_SEC; } mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next)); }
irqreturn_t timer_interrupt(int irq, void *dummy) { /* last time the cmos clock got updated */ static long last_rtc_update; write_seqlock(&xtime_lock); do_timer(1); profile_tick(CPU_PROFILING); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / NSEC_PER_USEC) >= 500000 - ((unsigned)TICK_SIZE) / 2 && (xtime.tv_nsec / NSEC_PER_USEC) <= 500000 + ((unsigned)TICK_SIZE) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else /* Do it again in 60s. */ last_rtc_update = xtime.tv_sec - 600; } write_sequnlock(&xtime_lock); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif return IRQ_HANDLED; }
/* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ irqreturn_t timer_interrupt(int irq, void *dummy) { /* last time the cmos clock got updated */ static long last_rtc_update = 0; /* Clear the interrupt condition */ outw(0, timer_membase + ALTERA_TIMER_STATUS_REG); nios2_timer_count += NIOS2_TIMER_PERIOD; write_seqlock(&xtime_lock); do_timer(1); profile_tick(CPU_PROFILING); /* * If we have an externally synchronized Linux clock, then update * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if (ntp_synced() && xtime.tv_sec > last_rtc_update + 660 && (xtime.tv_nsec / 1000) >= 500000 - ((unsigned)TICK_SIZE) / 2 && (xtime.tv_nsec / 1000) <= 500000 + ((unsigned)TICK_SIZE) / 2) { if (set_rtc_mmss(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } write_sequnlock(&xtime_lock); #ifndef CONFIG_SMP update_process_times(user_mode(get_irq_regs())); #endif return (IRQ_HANDLED); }
static void print_status_info(StatusInfo *i) { usec_t n; char a[FORMAT_TIMESTAMP_MAX]; char b[FORMAT_TIMESTAMP_MAX]; char s[32]; struct tm tm; time_t sec; char *zc, *zn; time_t t, tc, tn; int dn; bool is_dstc, is_dstn; int r; assert(i); /* enforce the values of /etc/localtime */ if (getenv("TZ")) { fprintf(stderr, "Warning: ignoring the TZ variable, reading the system's timezone setting only.\n\n"); unsetenv("TZ"); } n = now(CLOCK_REALTIME); sec = (time_t) (n / USEC_PER_SEC); zero(tm); assert_se(strftime(a, sizeof(a), "%a, %Y-%m-%d %H:%M:%S %Z", localtime_r(&sec, &tm)) > 0); char_array_0(a); printf(" Local time: %s\n", a); zero(tm); assert_se(strftime(a, sizeof(a), "%a, %Y-%m-%d %H:%M:%S UTC", gmtime_r(&sec, &tm)) > 0); char_array_0(a); printf(" Universal time: %s\n", a); zero(tm); r = hwclock_get_time(&tm); if (r >= 0) { /* Calculcate the week-day */ mktime(&tm); assert_se(strftime(a, sizeof(a), "%a, %Y-%m-%d %H:%M:%S", &tm) > 0); char_array_0(a); printf(" RTC time: %s\n", a); } zero(tm); assert_se(strftime(a, sizeof(a), "%z", localtime_r(&sec, &tm)) > 0); char_array_0(a); printf(" Timezone: %s\n" " UTC offset: %s\n" " NTP enabled: %s\n" "NTP synchronized: %s\n" " RTC in local TZ: %s\n", strna(i->timezone), a, yes_no(i->ntp), yes_no(ntp_synced()), yes_no(i->local_rtc)); r = time_get_dst(sec, "/etc/localtime", &tc, &zc, &is_dstc, &tn, &dn, &zn, &is_dstn); if (r < 0) printf(" DST active: n/a\n"); else { printf(" DST active: %s\n", yes_no(is_dstc)); t = tc - 1; zero(tm); assert_se(strftime(a, sizeof(a), "%a, %Y-%m-%d %H:%M:%S %Z", localtime_r(&t, &tm)) > 0); char_array_0(a); zero(tm); assert_se(strftime(b, sizeof(b), "%a, %Y-%m-%d %H:%M:%S %Z", localtime_r(&tc, &tm)) > 0); char_array_0(b); printf(" Last DST change: %s → %s, DST became %s\n" " %s\n" " %s\n", strna(zn), strna(zc), is_dstc ? "active" : "inactive", a, b); t = tn - 1; zero(tm); assert_se(strftime(a, sizeof(a), "%a, %Y-%m-%d %H:%M:%S %Z", localtime_r(&t, &tm)) > 0); char_array_0(a); zero(tm); assert_se(strftime(b, sizeof(b), "%a, %Y-%m-%d %H:%M:%S %Z", localtime_r(&tn, &tm)) > 0); char_array_0(b); printf(" Next DST change: %s → %s, DST will become %s\n" " the clock will jump %s\n" " %s\n" " %s\n", strna(zc), strna(zn), is_dstn ? "active" : "inactive", jump_str(dn, s, sizeof(s)), a, b); free(zc); free(zn); } if (i->local_rtc) fputs("\n" ANSI_HIGHLIGHT_ON "Warning: The RTC is configured to maintain time in the local time zone. This\n" " mode is not fully supported and will create various problems with time\n" " zone changes and daylight saving adjustments. If at all possible use\n" " RTC in UTC, by calling 'timedatectl set-local-rtc 0'" ANSI_HIGHLIGHT_OFF ".\n", stdout); }
/* * timer_interrupt - gets called when the decrementer overflows, * with interrupts disabled. * We set it up to overflow again in 1/HZ seconds. */ void timer_interrupt(struct pt_regs * regs) { int next_dec; unsigned long cpu = smp_processor_id(); unsigned jiffy_stamp = last_jiffy_stamp(cpu); extern void do_IRQ(struct pt_regs *); if (atomic_read(&ppc_n_lost_interrupts) != 0) do_IRQ(regs); MARK(kernel_trap_entry, "%d struct pt_regs %p", regs->trap, regs); irq_enter(); while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) <= 0) { jiffy_stamp += tb_ticks_per_jiffy; profile_tick(CPU_PROFILING, regs); update_process_times(user_mode(regs)); if (smp_processor_id()) continue; /* We are in an interrupt, no need to save/restore flags */ write_seqlock(&xtime_lock); tb_last_stamp = jiffy_stamp; #ifdef CONFIG_LTT ltt_reset_timestamp(); #endif //CONFIG_LTT do_timer(regs); /* * update the rtc when needed, this should be performed on the * right fraction of a second. Half or full second ? * Full second works on mk48t59 clocks, others need testing. * Note that this update is basically only used through * the adjtimex system calls. Setting the HW clock in * any other way is a /dev/rtc and userland business. * This is still wrong by -0.5/+1.5 jiffies because of the * timer interrupt resolution and possible delay, but here we * hit a quantization limit which can only be solved by higher * resolution timers and decoupling time management from timer * interrupts. This is also wrong on the clocks * which require being written at the half second boundary. * We should have an rtc call that only sets the minutes and * seconds like on Intel to avoid problems with non UTC clocks. */ if ( ppc_md.set_rtc_time && ntp_synced() && xtime.tv_sec - last_rtc_update >= 659 && abs((xtime.tv_nsec / 1000) - (1000000-1000000/HZ)) < 500000/HZ && jiffies - wall_jiffies == 1) { if (ppc_md.set_rtc_time(xtime.tv_sec+1 + timezone_offset) == 0) last_rtc_update = xtime.tv_sec+1; else /* Try again one minute later */ last_rtc_update += 60; } write_sequnlock(&xtime_lock); } if ( !disarm_decr[smp_processor_id()] ) set_dec(next_dec); last_jiffy_stamp(cpu) = jiffy_stamp; if (ppc_md.heartbeat && !ppc_md.heartbeat_count--) ppc_md.heartbeat(); irq_exit(); trace_kernel_trap_exit(); MARK(kernel_trap_exit, MARK_NOARGS); }