bool Disk::Intersect(const Ray &r, float *tHit, float *rayEpsilon, DifferentialGeometry *dg) const { // Transform _Ray_ to object space Ray ray; (*WorldToObject)(r, &ray); // Compute plane intersection for disk if (fabsf(ray.d.z) < 1e-7) return false; float thit = (height - ray.o.z) / ray.d.z; if (thit < ray.mint || thit > ray.maxt) return false; // See if hit point is inside disk radii and $\phimax$ Point phit = ray(thit); float dist2 = phit.x * phit.x + phit.y * phit.y; if (dist2 > radius * radius || dist2 < innerRadius * innerRadius) return false; // Test disk $\phi$ value against $\phimax$ float phi = atan2f(phit.y, phit.x); if (phi < 0) phi += 2. * M_PI; if (phi > phiMax) return false; // Find parametric representation of disk hit float u = phi / phiMax; float oneMinusV = ((sqrtf(dist2)-innerRadius) / (radius-innerRadius)); float invOneMinusV = (oneMinusV > 0.f) ? (1.f / oneMinusV) : 0.f; float v = 1.f - oneMinusV; Vector dpdu(-phiMax * phit.y, phiMax * phit.x, 0.); Vector dpdv(-phit.x * invOneMinusV, -phit.y * invOneMinusV, 0.); dpdu *= phiMax * INV_TWOPI; dpdv *= (radius - innerRadius) / radius; Normal dndu(0,0,0), dndv(0,0,0); // Initialize _DifferentialGeometry_ from parametric information const Transform &o2w = *ObjectToWorld; *dg = DifferentialGeometry(o2w(phit), o2w(dpdu), o2w(dpdv), o2w(dndu), o2w(dndv), u, v, this); // Update _tHit_ for quadric intersection *tHit = thit; // Compute _rayEpsilon_ for quadric intersection *rayEpsilon = 5e-4f * *tHit; return true; }
bool DistanceEstimator::Intersect(const Ray &r, float *tHit, float *rayEpsilon, DifferentialGeometry *dg) const { bool succeed = DoesIntersect(r, tHit); if (!succeed) return false; Ray ray; (*WorldToObject)(r, &ray); Point p = ray(*tHit); *rayEpsilon = DE_params.hitEpsilon * DE_params.rayEpsilonMultiplier; Vector n = CalculateNormal(p, DE_params.normalEpsilon); Vector DPDU, DPDV; CoordinateSystem(n, &DPDU, &DPDV); const Transform &o2w = *ObjectToWorld; *dg = DifferentialGeometry(o2w(p), o2w(DPDU), o2w(DPDV), Normal(), Normal(), 0, 0, this); return true; }
bool Sphere::intersect(const Ray& ray, RaySurfIntersection& res)const{ res.shp = NULL; //Transform ray to object space const Ray rOb = w2o(ray); const Vector o = Vector(rOb.getOrigin().x, rOb.getOrigin().y, rOb.getOrigin().z); const Vector d = rOb.getDir(); const float A = d.dot(d); const float B = 2.0f * (d.dot(o)); const float C = o.dot(o) - (r * r); struct MathUtils::QuadraticEqnRes<float> slv = MathUtils::solveQuadratic<float>(A, B, C); float tHitFinal = 0.0f; //After the below code this will eventually be set to //the first hit point in front of the camera if(slv.solCount == 0){ return false; }else if(slv.solCount == 1){ tHitFinal = slv.sol1; if(tHitFinal < 0.0f){ //No solutions in front of camera return false; } }else{ //2 solutions //Find smallest t value that is > 0.0f if(slv.sol1 < 0.0f && slv.sol2 < 0.0f){ //No solutions in front of camera return false; }else{ //At least one hit in front of camera slv.sol1 = slv.sol1 < 0.0f ? Constants::MAX_FLOAT_VAL : slv.sol1; slv.sol2 = slv.sol2 < 0.0f ? Constants::MAX_FLOAT_VAL : slv.sol2; tHitFinal = std::min<float>(slv.sol1, slv.sol2); } } //Make sure hit is in front of camera Assert(tHitFinal >= 0.0f); res.tHit = tHitFinal; res.locWS = ray(res.tHit); Vector normalVecAtHit = res.locWS - o2w(Point(0.0f,0.0f,0.0f)); res.n = normalVecAtHit.getNormalized(); res.shp = this; return true; }
bool Sphere::Intersect(const Ray &r, Float *distance, Float *rayEpsilon, DifferentialGeometry *dg) const { Ray ray; (*worldToLocal)(r, &ray); // Compute quadratic sphere coefficients Float A = ray.d.x * ray.d.x + ray.d.y * ray.d.y + ray.d.z * ray.d.z; Float B = 2 * (ray.d.x * ray.o.x + ray.d.y * ray.o.y + ray.d.z * ray.o.z); Float C = ray.o.x * ray.o.x + ray.o.y * ray.o.y + ray.o.z * ray.o.z - mRad * mRad; Float t0, t1; if (!Quadratic(A, B, C, &t0, &t1)) return false; // Compute intersection distance along ray if (t0 > ray.maxT || t1 < ray.minT) return false; Float thit = t0; if (t0 < ray.minT) { thit = t1; if (thit > ray.maxT) return false; } //这里开始计算参数化变量 //计算phi Point phit; Float phi; phit = ray(thit); if (phit.x == 0.f && phit.y == 0.f) phit.x = 1e-5f * mRad; //排除除零的情况 phi = atan2f(phit.y, phit.x); if (phi < 0.) phi += 2.f * Pi; //保证phi在2PI之中 //判断是否在Z坐标之间的裁剪空间中 if ((mZMin > -mRad && phit.z < mZMin) || (mZMax < mRad && phit.z > mZMax) || phi > mPhiMax) { if (thit == t1) return false; if (t1 > ray.maxT) return false; thit = t1; phit = ray(thit); if (phit.x == 0.f && phit.y == 0.f) phit.x = 1e-5f * mRad; phi = atan2f(phit.y, phit.x); if (phi < 0.) phi += 2.f * Pi; if ((mZMin > -mRad && phit.z < mZMin) || (mZMax < mRad && phit.z > mZMax) || phi > mPhiMax) return false; } // Find parametric representation of sphere hit //寻找参数化的u和v Float u = phi / mPhiMax; Float theta = acosf(Clamp(phit.z / mRad, -1.f, 1.f)); Float v = (theta - mThetaMin) / (mThetaMax - mThetaMin); // 计算偏导 偏导还不是很熟悉,所以这里照搬了PBRT的公式,详细公式可以查阅PBRT Float zradius = sqrtf(phit.x * phit.x + phit.y * phit.y); Float invzradius = 1.f / zradius; Float cosphi = phit.x * invzradius; Float sinphi = phit.y * invzradius; Vector3f dpdu(-mPhiMax * phit.y, mPhiMax * phit.x, 0); Vector3f dpdv = (mThetaMax - mThetaMin) * Vector3f(phit.z * cosphi, phit.z * sinphi, -mRad * sinf(theta)); //计算法线的偏导 Vector3f d2Pduu = -mPhiMax * mPhiMax * Vector3f(phit.x, phit.y, 0); Vector3f d2Pduv = (mThetaMax - mThetaMin) * phit.z * mPhiMax * Vector3f(-sinphi, cosphi, 0.); Vector3f d2Pdvv = -(mThetaMax - mThetaMin) * (mThetaMax - mThetaMin) * Vector3f(phit.x, phit.y, phit.z); Float E = Dot(dpdu, dpdu); Float F = Dot(dpdu, dpdv); Float G = Dot(dpdv, dpdv); Vector3f N = Normalize(Cross(dpdu, dpdv)); Float e = Dot(N, d2Pduu); Float f = Dot(N, d2Pduv); Float g = Dot(N, d2Pdvv); Float invEGF2 = 1.f / (E * G - F * F); Normal dndu = Normal( (f * F - e * G) * invEGF2 * dpdu + (e * F - f * E) * invEGF2 * dpdv); Normal dndv = Normal( (g * F - f * G) * invEGF2 * dpdu + (f * F - g * E) * invEGF2 * dpdv); const Transform &o2w = *localToWorld; *dg = DifferentialGeometry(o2w(phit), o2w(dpdu), o2w(dpdv), o2w(dndu), o2w(dndv), u, v, this); *distance = thit; *rayEpsilon = 5e-4f * *distance; //交点处的Float误差 return true; }
// 1. -- intersection or not. // 2. -- fill differentialGeometry bool Sphere::Intersect(const Ray &r, float *tHit, float *rayEpsilon, DifferentialGeometry *dg) const { float phi; Point phit; // Transform _Ray_ to object space Ray ray; (*WorldToObject)(r, &ray); // 1. -- intersection or not. // Compute quadratic sphere coefficients float A = ray.d.x*ray.d.x + ray.d.y*ray.d.y + ray.d.z*ray.d.z; float B = 2 * (ray.d.x*ray.o.x + ray.d.y*ray.o.y + ray.d.z*ray.o.z); float C = ray.o.x*ray.o.x + ray.o.y*ray.o.y + ray.o.z*ray.o.z - radius*radius; // Solve quadratic equation for _t_ values float t0, t1; if (!Quadratic(A, B, C, &t0, &t1)) // in pbrt.h: Find quadratic discriminant return false; // Compute intersection distance along ray if (t0 > ray.maxt || t1 < ray.mint) return false; float thit = t0; if (t0 < ray.mint) { thit = t1; if (thit > ray.maxt) return false; } // Compute sphere hit position and $\phi$ phit = ray(thit); if (phit.x == 0.f && phit.y == 0.f) phit.x = 1e-5f * radius; phi = atan2f(phit.y, phit.x); if (phi < 0.) phi += 2.f*M_PI; // Test sphere intersection against clipping parameters if ((zmin > -radius && phit.z < zmin) || (zmax < radius && phit.z > zmax) || phi > phiMax) { if (thit == t1) return false; if (t1 > ray.maxt) return false; thit = t1; // Compute sphere hit position and $\phi$ phit = ray(thit); if (phit.x == 0.f && phit.y == 0.f) phit.x = 1e-5f * radius; phi = atan2f(phit.y, phit.x); if (phi < 0.) phi += 2.f*M_PI; if ((zmin > -radius && phit.z < zmin) || (zmax < radius && phit.z > zmax) || phi > phiMax) return false; } // 2. -- fill differentialGeometry // Find parametric representation of sphere hit float u = phi / phiMax; float theta = acosf(Clamp(phit.z / radius, -1.f, 1.f)); float v = (theta - thetaMin) / (thetaMax - thetaMin); // Compute sphere $\dpdu$ and $\dpdv$ float zradius = sqrtf(phit.x*phit.x + phit.y*phit.y); float invzradius = 1.f / zradius; float cosphi = phit.x * invzradius; float sinphi = phit.y * invzradius; Vector dpdu(-phiMax * phit.y, phiMax * phit.x, 0); Vector dpdv = (thetaMax-thetaMin) * Vector(phit.z * cosphi, phit.z * sinphi, -radius * sinf(theta)); // Compute sphere $\dndu$ and $\dndv$ Vector d2Pduu = -phiMax * phiMax * Vector(phit.x, phit.y, 0); Vector d2Pduv = (thetaMax - thetaMin) * phit.z * phiMax * Vector(-sinphi, cosphi, 0.); Vector d2Pdvv = -(thetaMax - thetaMin) * (thetaMax - thetaMin) * Vector(phit.x, phit.y, phit.z); // Compute coefficients for fundamental forms float E = Dot(dpdu, dpdu); float F = Dot(dpdu, dpdv); float G = Dot(dpdv, dpdv); Vector N = Normalize(Cross(dpdu, dpdv)); float e = Dot(N, d2Pduu); float f = Dot(N, d2Pduv); float g = Dot(N, d2Pdvv); // Compute $\dndu$ and $\dndv$ from fundamental form coefficients float invEGF2 = 1.f / (E*G - F*F); Normal dndu = Normal((f*F - e*G) * invEGF2 * dpdu + (e*F - f*E) * invEGF2 * dpdv); Normal dndv = Normal((g*F - f*G) * invEGF2 * dpdu + (f*F - g*E) * invEGF2 * dpdv); // Initialize _DifferentialGeometry_ from parametric information const Transform &o2w = *ObjectToWorld; *dg = DifferentialGeometry(o2w(phit), o2w(dpdu), o2w(dpdv), o2w(dndu), o2w(dndv), u, v, this); // Update _tHit_ for quadric intersection *tHit = thit; // Compute _rayEpsilon_ for quadric intersection *rayEpsilon = 5e-4f * *tHit; return true; }
bool Cone::Intersect(const Ray &r, float *tHit, float *rayEpsilon, DifferentialGeometry *dg) const { float phi; pbrt::Point phit; // Transform _Ray_ to object space Ray ray; (*WorldToObject)(r, &ray); // Compute quadratic cone coefficients float k = radius / height; k = k*k; float A = ray.d.x * ray.d.x + ray.d.y * ray.d.y - k * ray.d.z * ray.d.z; float B = 2 * (ray.d.x * ray.o.x + ray.d.y * ray.o.y - k * ray.d.z * (ray.o.z-height) ); float C = ray.o.x * ray.o.x + ray.o.y * ray.o.y - k * (ray.o.z -height) * (ray.o.z-height); // Solve quadratic equation for _t_ values float t0, t1; if (!Quadratic(A, B, C, &t0, &t1)) return false; // Compute intersection distance along ray if (t0 > ray.maxt || t1 < ray.mint) return false; float thit = t0; if (t0 < ray.mint) { thit = t1; if (thit > ray.maxt) return false; } // Compute cone inverse mapping phit = ray(thit); phi = atan2f(phit.y, phit.x); if (phi < 0.) phi += 2.f*M_PI; // Test cone intersection against clipping parameters if (phit.z < 0 || phit.z > height || phi > phiMax) { if (thit == t1) return false; thit = t1; if (t1 > ray.maxt) return false; // Compute cone inverse mapping phit = ray(thit); phi = atan2f(phit.y, phit.x); if (phi < 0.) phi += 2.f*M_PI; if (phit.z < 0 || phit.z > height || phi > phiMax) return false; } // Find parametric representation of cone hit float u = phi / phiMax; float v = phit.z / height; // Compute cone $\dpdu$ and $\dpdv$ Vector dpdu(-phiMax * phit.y, phiMax * phit.x, 0); Vector dpdv(-phit.x / (1.f - v), -phit.y / (1.f - v), height); // Compute cone $\dndu$ and $\dndv$ Vector d2Pduu = -phiMax * phiMax * Vector(phit.x, phit.y, 0.); Vector d2Pduv = phiMax / (1.f - v) * Vector(phit.y, -phit.x, 0.); Vector d2Pdvv(0, 0, 0); // Compute coefficients for fundamental forms float E = Dot(dpdu, dpdu); float F = Dot(dpdu, dpdv); float G = Dot(dpdv, dpdv); Vector N = Normalize(Cross(dpdu, dpdv)); float e = Dot(N, d2Pduu); float f = Dot(N, d2Pduv); float g = Dot(N, d2Pdvv); // Compute $\dndu$ and $\dndv$ from fundamental form coefficients float invEGF2 = 1.f / (E*G - F*F); Normal dndu = Normal((f*F - e*G) * invEGF2 * dpdu + (e*F - f*E) * invEGF2 * dpdv); Normal dndv = Normal((g*F - f*G) * invEGF2 * dpdu + (f*F - g*E) * invEGF2 * dpdv); // Initialize _DifferentialGeometry_ from parametric information const Transform &o2w = *ObjectToWorld; *dg = DifferentialGeometry(o2w(phit), o2w(dpdu), o2w(dpdv), o2w(dndu), o2w(dndv), u, v, this); // Update _tHit_ for quadric intersection *tHit = thit; // Compute _rayEpsilon_ for quadric intersection *rayEpsilon = 5e-4f * *tHit; return true; }
bool Hyperboloid::Intersect(const Ray &r, float *tHit, float *rayEpsilon, DifferentialGeometry *dg) const { float phi, v; Point phit; // Transform _Ray_ to object space Ray ray; (*WorldToObject)(r, &ray); // Compute quadratic hyperboloid coefficients float A = a*ray.d.x*ray.d.x + a*ray.d.y*ray.d.y - c*ray.d.z*ray.d.z; float B = 2.f * (a*ray.d.x*ray.o.x + a*ray.d.y*ray.o.y - c*ray.d.z*ray.o.z); float C = a*ray.o.x*ray.o.x + a*ray.o.y*ray.o.y - c*ray.o.z*ray.o.z - 1; // Solve quadratic equation for _t_ values float t0, t1; if (!Quadratic(A, B, C, &t0, &t1)) return false; // Compute intersection distance along ray if (t0 > ray.maxt || t1 < ray.mint) return false; float thit = t0; if (t0 < ray.mint) { thit = t1; if (thit > ray.maxt) return false; } // Compute hyperboloid inverse mapping phit = ray(thit); v = (phit.z - p1.z)/(p2.z - p1.z); Point pr = (1.f-v) * p1 + v * p2; phi = atan2f(pr.x*phit.y - phit.x*pr.y, phit.x*pr.x + phit.y*pr.y); if (phi < 0) phi += 2*M_PI; // Test hyperboloid intersection against clipping parameters if (phit.z < zmin || phit.z > zmax || phi > phiMax) { if (thit == t1) return false; thit = t1; if (t1 > ray.maxt) return false; // Compute hyperboloid inverse mapping phit = ray(thit); v = (phit.z - p1.z)/(p2.z - p1.z); Point pr = (1.f-v) * p1 + v * p2; phi = atan2f(pr.x*phit.y - phit.x*pr.y, phit.x*pr.x + phit.y*pr.y); if (phi < 0) phi += 2*M_PI; if (phit.z < zmin || phit.z > zmax || phi > phiMax) return false; } // Compute parametric representation of hyperboloid hit float u = phi / phiMax; // Compute hyperboloid $\dpdu$ and $\dpdv$ float cosphi = cosf(phi), sinphi = sinf(phi); Vector dpdu(-phiMax * phit.y, phiMax * phit.x, 0.); Vector dpdv((p2.x-p1.x) * cosphi - (p2.y-p1.y) * sinphi, (p2.x-p1.x) * sinphi + (p2.y-p1.y) * cosphi, p2.z-p1.z); // Compute hyperboloid $\dndu$ and $\dndv$ Vector d2Pduu = -phiMax * phiMax * Vector(phit.x, phit.y, 0); Vector d2Pduv = phiMax * Vector(-dpdv.y, dpdv.x, 0.); Vector d2Pdvv(0, 0, 0); // Compute coefficients for fundamental forms float E = Dot(dpdu, dpdu); float F = Dot(dpdu, dpdv); float G = Dot(dpdv, dpdv); Vector N = Normalize(Cross(dpdu, dpdv)); float e = Dot(N, d2Pduu); float f = Dot(N, d2Pduv); float g = Dot(N, d2Pdvv); // Compute $\dndu$ and $\dndv$ from fundamental form coefficients float invEGF2 = 1.f / (E*G - F*F); Normal dndu = Normal((f*F - e*G) * invEGF2 * dpdu + (e*F - f*E) * invEGF2 * dpdv); Normal dndv = Normal((g*F - f*G) * invEGF2 * dpdu + (f*F - g*E) * invEGF2 * dpdv); // Initialize _DifferentialGeometry_ from parametric information const Transform &o2w = *ObjectToWorld; *dg = DifferentialGeometry(o2w(phit), o2w(dpdu), o2w(dpdv), o2w(dndu), o2w(dndv), u, v, this); // Update _tHit_ for quadric intersection *tHit = thit; // Compute _rayEpsilon_ for quadric intersection *rayEpsilon = 5e-4f * *tHit; return true; }
bool Rectangle::Intersect(const Ray &r, float *tHit, float *rayEpsilon, DifferentialGeometry *dg) const { // Transform _Ray_ to object space Ray ray; (*WorldToObject)(r, &ray); // Compute plane intersection for disk // Checks if the plane is parallel to the ray or not // We can get the direction of the ray // If the Z component of the direction of the ray is zero // then, the ray is parallel to the plane and in such case // there is no intersection point between the ray and the plane. if (fabsf(ray.d.z) < 1e-7) return false; // Now, the direction of the ray is not parallel to the plane // We have to check if the intersection happens or not // We have to compute the parametric t where the ray intersects the plane // We want to find t such that the z-component of the ray intersects the plane // The ray "line" equation is l = l0 + (l1 - l0) * t // l1 - l0 will give us the distance between the two points on the plane // Then t is the ratio and in such case it should be between 0 and 1 // Considering that the rectangle completely lies in the z plane /// distance = l1 - l0 /// thit = (l - l0) / distance // But since we assume that the plane is located at height // Then, the point l is at height on the plane /// l = height float thit = (height - ray.o.z) / ray.d.z; // Then we check if the thit is between the ratio of 0 and 1 that is mapped // between ray.mint and ray.maxt, if not retrun false if (thit < ray.mint || thit > ray.maxt) return false; // Then we see if the point lies inside the disk or not // Substitute the thit in the ray equation to get hit point on the ray Point phit = ray(thit); // We have to make sure that the interesction lies inside the plane if (!(phit.x < x/2 && phit.x > -x/2 && phit.y < y/2 && phit.y > -y/2)) return false; // Assuming that the plane is formed from the following 4 points // P0, P1, P2, P3 // // p0 *---------------* p1 // | | // | | // | | // | O | // | | // | | // | | // p2 *---------------* p3 -> X // // P0 @ (-x/2, y/2) // P1 @ (x/2, y/2) // P2 @ (-x/2, -y/2) // P3 @ (x/2, -y/2) Point P0(-x/2, y/2, height), P1(x/2, y/2, height); Point P2(-x/2, -y/2, height), P3(x/2, -y/2, height); /// Now, we have to find the parametric form of the plane in terms of (u,v) /// Plane equation can be formed by at least 3 points P0, P1, P2 /// P0 -> P1 (vector 1) /// P0 -> p2 (vector 2) /// An arbitrary point on the plane p is found in the following parametric form /// P = P0 + (P1 - P0) u + (P2 - P0) v /// Now we need to express two explicit equations of u and v /// So, we have to construct the system of equation that solves for u and v /// /// Since we have found the intersection point between the plane and the line /// we have to use it to formalize the system of equations that will be used /// to find the parametric form of the plane /// Plane equation is : P = P0 + (P1 - P0) u + (P2 - P0) v /// Ray equation is : l = l0 + (l1 - l0) * thit /// But l = P, then /// l0 + (l1 - l0) * thit = P0 + (P1 - P0) * u + (P2 - P0) * v /// l0 - P0 = (l0 - l1) * thit + (P1 - P0) * u + (P2 - P0) * v /// MAPPING : l0 = ray.o /// [l0.x - P0.x] = [l0.x - l1.x P1.x - P0.x P2.x - P0.x] [t] /// [l0.y - P0.y] = [l0.y - l1.y P1.y - P0.y P2.y - P0.y] [u] /// [l0.z - P0.z] = [l0.z - l1.z P1.z - P0.z P2.z - P0.z] [v] /// /// Then, we should find the inverse of the matrix in order to /// solve for u,v and t for check // System AX = B float a11 = ray.o.x - 0; float a12 = P1.x - P0.x; float a13 = P2.x - P0.x; float a21 = ray.o.y - 0; float a22 = P1.y - P0.y; float a23 = P2.y - P0.y; float a31 = ray.o.y - height; float a32 = P1.z - P0.z; float a33 = P2.z - P0.z; float b1 = -7; float b2 = -2; float b3 = 14; float x1 = 0; float x2 = 0; float x3 = 0; Imath::M33f A(a11,a12,a13,a21,a22,a23,a31,a32,a33), AInverted; Imath::V3f X(x1, x2, x3); Imath::V3f B(b1,b2, b3); // This operation has been checked and working for getting // the correct inverse of the matrix A AInverted = A.invert(false); x1 = AInverted[0][0] * B[0] + AInverted[0][1] * B[1] + AInverted[0][2] * B[2]; x2 = AInverted[1][0] * B[0] + AInverted[1][1] * B[1] + AInverted[1][2] * B[2]; x3 = AInverted[2][0] * B[0] + AInverted[2][1] * B[1] + AInverted[2][2] * B[2]; /// Then we have u = something, and v = something /// /// Then we come for the derivatives, so we have to find the derivatives /// from the parametric forms defined above for the plane equations /// dpdu = (P1 - P0) /// dpdv = (P2 - P0) /// /// For the normal we have the always fixed direction in y /// So the derivative for the normal is zero /// dndu = (0, 0, 0) dndv = (0, 0, 0) /// /// Then we can construct the DifferentilGeometry and go ahead // Find parametric representation of disk hit float u = x2; float v = x3; Vector dpdu(P1.x - P0.x, P1.y - P0.y, P1.z - P0.z); Vector dpdv(P2.x - P0.x, P2.y - P0.y, P2.z - P0.z); Normal dndu(0,0,0), dndv(0,0,0); // Initialize _DifferentialGeometry_ from parametric information const Transform &o2w = *ObjectToWorld; *dg = DifferentialGeometry(o2w(phit), o2w(dpdu), o2w(dpdv), o2w(dndu), o2w(dndv), u, v, this); // Update _tHit_ for quadric intersection *tHit = thit; // Compute _rayEpsilon_ for quadric intersection *rayEpsilon = 5e-4f * *tHit; return true; }
bool Sphere::intersect(const Ray &ray, float *t_hit, float *ray_epsilon, DifferentialGeometry *diff_geo) const { // Transform Ray to object space Ray w_ray; (*world_to_object)(ray, &w_ray); // Compute quadratic sphere coefficients float phi; Point phit; float A = w_ray.d.x * w_ray.d.x + w_ray.d.y * w_ray.d.y + w_ray.d.z * w_ray.d.z; float B = 2 * (w_ray.d.x * w_ray.o.x + w_ray.d.y * w_ray.o.y + w_ray.d.z * w_ray.o.z); float C = w_ray.o.x*w_ray.o.x + w_ray.o.y*w_ray.o.y + w_ray.o.z*w_ray.o.z - _radius*_radius; // Solve quadratic equation for t values float t0, t1; if (!quadratic(A, B, C, &t0, &t1)) return false; // Compute intersection distance along ray if (t0 > w_ray.maxt || t1 < w_ray.mint) return false; float thit = t0; if (t0 < w_ray.mint) { thit = t1; if (thit > w_ray.maxt) return false; } // Compute sphere hit position and phi phit = w_ray(thit); if (phit.x == 0.f && phit.y == 0.f) phit.x = 1e-5f * _radius; phi = atan2f(phit.y, phit.x); if (phi < 0.) phi += 2.f * M_PI; // Test sphere intersection against clipping parameters if ((_z_min > -_radius && phit.z < _z_min) || (_z_max < _radius && phit.z > _z_max) || phi > _phi_max) { // clip t0(t1) if (thit == t1) return false; if (t1 > w_ray.maxt) return false; thit = t1; // Compute sphere hit position and phi phit = w_ray(thit); if (phit.x == 0.f && phit.y == 0.f) phit.x = 1e-5f * _radius; phi = atan2f(phit.y, phit.x); if (phi < 0.) phi += 2.f * M_PI; if ((_z_min > -_radius && phit.z < _z_min) || (_z_max < _radius && phit.z > _z_max) || phi > _phi_max) // clip t1 return false; } // Find parametric representatio n of sphere hit float u = phi / _phi_max; float theta = acosf(clamp(phit.z / _radius, -1.f, 1.f)); float v = (theta - _theta_min) / (_theta_max - _theta_min); float z_radius = sqrtf(phit.x * phit.x + phit.y * phit.y); float inv_z_radius = 1.f / z_radius; float cos_phi = phit.x * inv_z_radius; float sin_phi = phit.y * inv_z_radius; Vec3 dpdu(-_phi_max * phit.y, _phi_max * phit.x, 0); Vec3 dpdv = (_theta_max - _theta_min) * Vec3(phit.z * cos_phi, phit.z * sin_phi, _radius * sinf(theta)); //auto d2Pduu = -_phi_max * _phi_max * Vec3(phit.x, phit.y, 0); //auto d2Pduv = (_theta_max - _theta_min) * phit.z * _phi_max * Vec3(-sin_phi, cos_phi, 0.f); //auto d2Pdvv = (_theta_max - _theta_min) * (_theta_max - _theta_min) * Vec3(phit.x, phit.y, phit.z); //Normal dndu, dndv; //calc_dndu_dndv(dpdu, dpdv, d2Pduu, d2Pduv, d2Pdvv, &dndu, &dndv); Normal dndu(dpdu); Normal dndv(dpdv); const auto &o2w = *object_to_world; *diff_geo = DifferentialGeometry(o2w(phit), o2w(dpdu), o2w(dpdv), o2w(dndu), o2w(dndv), u, v, this); *t_hit = thit; *ray_epsilon = 5e-4f * *t_hit; return true; }