Ejemplo n.º 1
0
int runOS(OS* opSys, SimpleTimer* sysTime){
    //variables
    pcbQueue readyQ;
    PCB running;
    insQueue q;
    char* elapTime;
    char* outBuff; 
    float f = 0.0;

    //constructions
    constructQueue(&q);
    constructPcbQueue(&readyQ, 10);
    alloStr(&elapTime, 10);
    alloStr(&outBuff, 50);

    stop(sysTime);

    getElapsedTime(&elapTime, sysTime);

    f += atof(elapTime);

    strcat(outBuff, elapTime);
    strcat(outBuff, " - Simulator Program Starting");

    outputHandler(opSys, outBuff);


    start(sysTime);
    //begin processing
    processmdf(opSys, &readyQ); 
    
    stop(sysTime);

    getElapsedTime(&elapTime, sysTime);

    f += atof(elapTime);

    start(sysTime);

    heapsort(opSys, &readyQ);

    while(pcbq_dequeue(&readyQ, &running))
       {
        runPCB(opSys, &running, &f);
       }

    stop(sysTime);

    getElapsedTime(&elapTime, sysTime);

    f += atof(elapTime);
    
    clearStr(&outBuff);
    strcat(outBuff, elapTime);
    strcat(outBuff, " - Simulator Program Ending");

    outputHandler(opSys, outBuff);
}
int main(int argc, char **argv)
{
  char* host = "localhost";
  if(argc > 1)
    host = argv[1];
  Aria::init();
  ArClientBase client;
  ArGlobalFunctor escapeCB(&escape);
  ArKeyHandler keyHandler;
  Aria::setKeyHandler(&keyHandler);


  printf("Connecting to standaloneServerDemo at %s:%d...\n", host, 7272);
  if (!client.blockingConnect(host, 7272))
  {
    printf("Could not connect to server, exiting\n");
    exit(1);
  } 
  InputHandler inputHandler(&client, &keyHandler);
  OutputHandler outputHandler(&client);
  keyHandler.addKeyHandler(ArKeyHandler::ESCAPE, &escapeCB);
  client.runAsync();
  while (client.getRunningWithLock())
  {
    keyHandler.checkKeys();
    ArUtil::sleep(1);
  }
  keyHandler.restore();
  Aria::shutdown();
  return 0;
}
Ejemplo n.º 3
0
int main (int argc, char* argv[]) {
	//Shared data
	bool running = true;
	std::string callbackString = "";
	int callbackStringLength = 0;

	Barrier newInput;
	Barrier newLength;
	Barrier finishedOutput;

	//Thread handler initialization
	InputHandler inputHandler(&running, &callbackString, &newInput, &finishedOutput);
	LogicHandler logicHandler(&running, &callbackString, &callbackStringLength, &newInput, &newLength);
	OutputHandler outputHandler(&running, &callbackString, &callbackStringLength, &newLength, &finishedOutput);

	//Threads
	std::thread inputThread(&InputHandler::run, &inputHandler);
	std::thread logicThread(&LogicHandler::run, &logicHandler);
	std::thread outputThread(&OutputHandler::run, &outputHandler);

	//Close program
	inputThread.join();
	logicThread.join();
	outputThread.join();
	return 0;
}
Ejemplo n.º 4
0
bool CoreEngine::dissassemble(ULONG64 offset,
                              unsigned long beforeLines,
                              unsigned long afterLines,
                              QString *target,
                              QString *errorMessage)
{
    const ULONG flags = DEBUG_DISASM_MATCHING_SYMBOLS|DEBUG_DISASM_SOURCE_LINE_NUMBER|DEBUG_DISASM_SOURCE_FILE_NAME;
    // Catch the output by temporarily setting another handler.
    // We use the method that outputs to the output handler as it
    // conveniently provides the 'beforeLines' context (stepping back
    // in assembler code). We build a complete string first as line breaks
    // may occur in-between messages.
    QSharedPointer<StringOutputHandler> outputHandler(new StringOutputHandler);
    OutputRedirector redir(this, outputHandler);
    // For some reason, we need to output to "all clients"
    const HRESULT hr =  m_cif.debugControl->OutputDisassemblyLines(DEBUG_OUTCTL_ALL_CLIENTS,
                                                                   beforeLines, beforeLines + afterLines,
                                                                   offset, flags, 0, 0, 0, 0);
    if (FAILED(hr)) {
        *errorMessage= QString::fromLatin1("Unable to dissamble at 0x%1: %2").
                       arg(offset, 0, 16).arg(msgComFailed("OutputDisassemblyLines", hr));
        return false;
    }
    *target = outputHandler->result();
    return true;
}
Ejemplo n.º 5
0
bool CoreEngine::allocDebuggeeMemory(int size, ULONG64 *addressPtr, QString *errorMessage)
{
    *addressPtr = 0;
    const QString allocCmd = QLatin1String(".dvalloc ") + QString::number(size);

    QSharedPointer<StringOutputHandler> outputHandler(new StringOutputHandler);
    OutputRedirector redir(this, outputHandler);
    Q_UNUSED(redir)
    if (!executeDebuggerCommand(allocCmd, errorMessage))
        return false;
    // "Allocated 1000 bytes starting at 003a0000" or
    // "Allocated 1000 bytes starting at 00000000'000023ab" (64bit) / hopefully never localized
    const QString output = outputHandler->result().trimmed();
    const int lastBlank = output.lastIndexOf(QLatin1Char(' '));
    if (lastBlank != -1) {
        const QString hexNumberS = QLatin1String("0x") + output.mid(lastBlank + 1);
        quint64 address;
        if (SymbolGroupContext::getUnsignedHexValue(hexNumberS, &address)) {
            *addressPtr = address;
            return true;
        }
    } // blank
    *errorMessage = QString::fromLatin1("Failed to parse output '%1'").arg(output);
    return false;
}
Ejemplo n.º 6
0
// Main interface with NVTT
void NVTTProcessor::process( osg::Image& image, nvtt::Format format, bool generateMipMap, bool resizeToPowerOfTwo, CompressionMethod method, CompressionQuality quality)
{
    // Fill input options
    nvtt::InputOptions inputOptions;
    inputOptions.setTextureLayout(nvtt::TextureType_2D, image.s(), image.t() );
    inputOptions.setNormalMap(false);
    inputOptions.setConvertToNormalMap(false);
    inputOptions.setGamma(2.2f, 2.2f);
    inputOptions.setNormalizeMipmaps(false);
    inputOptions.setWrapMode(nvtt::WrapMode_Clamp);
    if (resizeToPowerOfTwo)
    {
        inputOptions.setRoundMode(nvtt::RoundMode_ToNearestPowerOfTwo);
    }
    inputOptions.setMipmapGeneration(generateMipMap);

    if (image.getPixelFormat() == GL_RGBA)
    {
        inputOptions.setAlphaMode( nvtt::AlphaMode_Transparency );
    }
    else
    {
        inputOptions.setAlphaMode( nvtt::AlphaMode_None );
    }
    std::vector<unsigned char> imageData( image.s() * image.t() * 4 );
    if (image.getPixelFormat() == GL_RGB)
    {
        convertRGBToBGRA( imageData, image );
    }
    else
    {
        convertRGBAToBGRA( imageData, image );
    }
    inputOptions.setMipmapData(&imageData[0],image.s(),image.t());

    // Fill compression options
    nvtt::CompressionOptions compressionOptions;
    switch(quality)
    {
      case FASTEST:
        compressionOptions.setQuality( nvtt::Quality_Fastest );
        break;
      case NORMAL:
        compressionOptions.setQuality( nvtt::Quality_Normal );
        break;
      case PRODUCTION:
        compressionOptions.setQuality( nvtt::Quality_Production);
        break;
      case HIGHEST:
        compressionOptions.setQuality( nvtt::Quality_Highest);
        break;
    }
    compressionOptions.setFormat( format );
    //compressionOptions.setQuantization(false,false,false);
    if (format == nvtt::Format_RGBA)
    {
        if (image.getPixelFormat() == GL_RGB)
        {
            compressionOptions.setPixelFormat(24,0xff,0xff00,0xff0000,0);
        }
        else
        {
            compressionOptions.setPixelFormat(32,0xff,0xff00,0xff0000,0xff000000);
        }
    }

    // Handler
    OSGImageOutputHandler outputHandler(format,image.getPixelFormat() == GL_RGB);
    VPBErrorHandler errorHandler;

    // Fill output options
    nvtt::OutputOptions outputOptions;
    outputOptions.setOutputHandler(&outputHandler);
    outputOptions.setErrorHandler(&errorHandler);
    outputOptions.setOutputHeader(false);

    // Process the compression now
    nvtt::Compressor compressor;
    if(method == USE_GPU)
    {
        compressor.enableCudaAcceleration(true);
        if(!compressor.isCudaAccelerationEnabled())
        {
            OSG_WARN<< "CUDA acceleration was enabled but it is not available. CPU will be used."<<std::endl;
        }
    }
    else
    {
        compressor.enableCudaAcceleration(false);
    }

    compressor.process(inputOptions,compressionOptions,outputOptions);

    outputHandler.assignImage(image);
}
Ejemplo n.º 7
0
int main(int argc, char *argv[])
{
    MyAssertHandler assertHandler;
    MyMessageHandler messageHandler;

    bool alpha = false;
    bool normal = false;
    bool color2normal = false;
    bool linear = false;
    bool wrapRepeat = false;
    bool noMipmaps = false;
    bool fast = false;
    bool nocuda = false;
    bool bc1n = false;
    bool luminance = false;
    nvtt::Format format = nvtt::Format_BC1;
    bool fillHoles = false;
    bool countEmptyRows = false;
    bool outProvided = false;
    bool premultiplyAlpha = false;
    nvtt::MipmapFilter mipmapFilter = nvtt::MipmapFilter_Box;
    bool loadAsFloat = false;
    bool rgbm = false;
    bool rangescale = false;

    const char * externalCompressor = NULL;

    bool silent = false;
    bool dds10 = false;

    nv::Path input;
    nv::Path output;


    // Parse arguments.
    for (int i = 1; i < argc; i++)
    {
        // Input options.
        if (strcmp("-color", argv[i]) == 0)
        {
        }
        else if (strcmp("-alpha", argv[i]) == 0)
        {
            alpha = true;
        }
        else if (strcmp("-normal", argv[i]) == 0)
        {
            normal = true;
        }
        else if (strcmp("-tonormal", argv[i]) == 0)
        {
            color2normal = true;
        }
		else if (strcmp("-linear", argv[i]) == 0)
		{
			linear = true;
		}
        else if (strcmp("-clamp", argv[i]) == 0)
        {
        }
        else if (strcmp("-repeat", argv[i]) == 0)
        {
            wrapRepeat = true;
        }
        else if (strcmp("-nomips", argv[i]) == 0)
        {
            noMipmaps = true;
        }
        else if (strcmp("-fillholes", argv[i]) == 0)
        {
            fillHoles = true;
        }
        else if (strcmp("-countempty", argv[i]) == 0)
        {
            countEmptyRows = true;
        }
        else if (strcmp("-premula", argv[i]) == 0)
        {
            premultiplyAlpha = true;
        }
        else if (strcmp("-mipfilter", argv[i]) == 0)
        {
            if (i+1 == argc) break;
            i++;

            if (strcmp("box", argv[i]) == 0) mipmapFilter = nvtt::MipmapFilter_Box;
            else if (strcmp("triangle", argv[i]) == 0) mipmapFilter = nvtt::MipmapFilter_Triangle;
            else if (strcmp("kaiser", argv[i]) == 0) mipmapFilter = nvtt::MipmapFilter_Kaiser;
        }
        else if (strcmp("-float", argv[i]) == 0)
        {
            loadAsFloat = true;
        }
        else if (strcmp("-rgbm", argv[i]) == 0)
        {
            rgbm = true;
        }
        else if (strcmp("-rangescale", argv[i]) == 0)
        {
            rangescale = true;
        }


        // Compression options.
        else if (strcmp("-fast", argv[i]) == 0)
        {
            fast = true;
        }
        else if (strcmp("-nocuda", argv[i]) == 0)
        {
            nocuda = true;
        }
        else if (strcmp("-rgb", argv[i]) == 0)
        {
            format = nvtt::Format_RGB;
        }
        else if (strcmp("-lumi", argv[i]) == 0)
        {
            luminance = true;
            format = nvtt::Format_RGB;
        }
        else if (strcmp("-bc1", argv[i]) == 0)
        {
            format = nvtt::Format_BC1;
        }
        else if (strcmp("-bc1n", argv[i]) == 0)
        {
            format = nvtt::Format_BC1;
            bc1n = true;
        }
        else if (strcmp("-bc1a", argv[i]) == 0)
        {
            format = nvtt::Format_BC1a;
        }
        else if (strcmp("-bc2", argv[i]) == 0)
        {
            format = nvtt::Format_BC2;
        }
        else if (strcmp("-bc3", argv[i]) == 0)
        {
            format = nvtt::Format_BC3;
        }
        else if (strcmp("-bc3n", argv[i]) == 0)
        {
            format = nvtt::Format_BC3n;
        }
        else if (strcmp("-bc4", argv[i]) == 0)
        {
            format = nvtt::Format_BC4;
        }
        else if (strcmp("-bc5", argv[i]) == 0)
        {
            format = nvtt::Format_BC5;
        }
        else if (strcmp("-bc6", argv[i]) == 0)
        {
            format = nvtt::Format_BC6;
        }
        else if (strcmp("-bc7", argv[i]) == 0)
        {
            format = nvtt::Format_BC7;
        }
        else if (strcmp("-bc3_rgbm", argv[i]) == 0)
        {
            format = nvtt::Format_BC3_RGBM;
            rgbm = true;
        }

        // Undocumented option. Mainly used for testing.
        else if (strcmp("-ext", argv[i]) == 0)
        {
            if (i+1 < argc && argv[i+1][0] != '-') {
                externalCompressor = argv[i+1];
                i++;
            }
        }
        else if (strcmp("-pause", argv[i]) == 0)
        {
            printf("Press ENTER\n"); fflush(stdout);
            getchar();
        }

        // Output options
        else if (strcmp("-silent", argv[i]) == 0)
        {
            silent = true;
        }
        else if (strcmp("-dds10", argv[i]) == 0)
        {
            dds10 = true;
        }

        else if (argv[i][0] != '-')
        {
            input = argv[i];

            if (i+1 < argc && argv[i+1][0] != '-') {
                output = argv[i+1];
                if(output.endsWith("\\") || output.endsWith("/")) {
                    //only path specified
                    output.append(input.fileName());
				    output.stripExtension();
				    output.append(".dds");
               }
               else
                   outProvided = true;
            }
            else
            {
                output.copy(input.str());
                output.stripExtension();
                output.append(".dds");
            }

            break;
        }
		else
		{
			printf("Warning: unrecognized option \"%s\"\n", argv[i]);
		}
    }

    const uint version = nvtt::version();
    const uint major = version / 100 / 100;
    const uint minor = (version / 100) % 100;
    const uint rev = version % 100;


    if (!silent)
    {
        printf("NVIDIA Texture Tools %u.%u.%u - Copyright NVIDIA Corporation 2007\n\n", major, minor, rev);
    }

    if (input.isNull())
    {
        printf("usage: nvcompress [options] infile [outfile.dds]\n\n");

        printf("Input options:\n");
        printf("  -color        The input image is a color map (default).\n");
        printf("  -alpha        The input image has an alpha channel used for transparency.\n");
        printf("  -normal       The input image is a normal map.\n");
        printf("  -linear       The input is in linear color space.\n");
        printf("  -tonormal     Convert input to normal map.\n");
        printf("  -clamp        Clamp wrapping mode (default).\n");
        printf("  -repeat       Repeat wrapping mode.\n");
        printf("  -nomips       Disable mipmap generation.\n");
        printf("  -premula      Premultiply alpha into color channel.\n");
        printf("  -mipfilter    Mipmap filter. One of the following: box, triangle, kaiser.\n");
        printf("  -float        Load as floating point image.\n\n");
        printf("  -rgbm         Transform input to RGBM.\n\n");
        printf("  -rangescale   Scale image to use entire color range.\n\n");
        printf("  -fillholes    Fill transparent areas with nearby color. Note: adds transparent upper height into output file name in case the outfile was not specified, and infile was in form #.####.xxx.ext\n\n");

        printf("Compression options:\n");
        printf("  -fast         Fast compression.\n");
        printf("  -nocuda       Do not use cuda compressor.\n");
        printf("  -rgb          RGBA format\n");
        printf("  -lumi         LUMINANCE format\n");
        printf("  -bc1          BC1 format (DXT1)\n");
        printf("  -bc1n         BC1 normal map format (DXT1nm)\n");
        printf("  -bc1a         BC1 format with binary alpha (DXT1a)\n");
        printf("  -bc2          BC2 format (DXT3)\n");
        printf("  -bc3          BC3 format (DXT5)\n");
        printf("  -bc3n         BC3 normal map format (DXT5nm)\n");
        printf("  -bc4          BC4 format (ATI1)\n");
        printf("  -bc5          BC5 format (3Dc/ATI2)\n");
        printf("  -bc6          BC6 format\n");
        printf("  -bc7          BC7 format\n\n");
        printf("  -bc3_rgbm     BC3-rgbm format\n\n");

        printf("Output options:\n");
        printf("  -silent  \tDo not output progress messages\n");
        printf("  -dds10   \tUse DirectX 10 DDS format (enabled by default for BC6/7)\n\n");

        return EXIT_FAILURE;
    }

    // Make sure input file exists.
    if (!nv::FileSystem::exists(input.str()))
    {
        fprintf(stderr, "The file '%s' does not exist.\n", input.str());
        return 1;
    }

    // Set input options.
    nvtt::InputOptions inputOptions;

    bool useSurface = false;    // @@ use Surface API in all cases!
    nvtt::Surface image;

    if (format == nvtt::Format_Unknown && nv::strCaseDiff(input.extension(), ".dds") == 0)
    {
        // Load surface.
        nv::DirectDrawSurface dds(input.str());
        if (!dds.isValid())
        {
            fprintf(stderr, "The file '%s' is not a valid DDS file.\n", input.str());
            return EXIT_FAILURE;
        }

        if (!dds.isSupported())
        {
            fprintf(stderr, "The file '%s' is not a supported DDS file.\n", input.str());
            return EXIT_FAILURE;
        }

        //if format not specified, get from dds
        if (dds.isRGB())
            format = nvtt::Format_RGB;
        else if (dds.isLuminance()) {
            luminance = true;
            format = nvtt::Format_RGB;
        }
        else {
            uint cc = dds.fourcc();
            switch(cc) {
            case nv::FOURCC_DXT1:   format = nvtt::Format_DXT1; break;
            case nv::FOURCC_DXT3:   format = nvtt::Format_DXT3; break;
            case nv::FOURCC_DXT5:   format = nvtt::Format_DXT5; break;
            case nv::FOURCC_RXGB:   format = nvtt::Format_BC3n; break;
            case nv::FOURCC_ATI1:   format = nvtt::Format_BC4; break;
            case nv::FOURCC_ATI2:   format = nvtt::Format_BC5; break;
            }
        }

        alpha = dds.hasAlpha();
    }


    if (format == nvtt::Format_BC3_RGBM || rgbm) {
        useSurface = true;

        if (!image.load(input.str())) {
            fprintf(stderr, "Error opening input file '%s'.\n", input.str());
            return EXIT_FAILURE;
        }

        if (rangescale) {
            // get color range
            float min_color[3], max_color[3];
            image.range(0, &min_color[0], &max_color[0]);
            image.range(1, &min_color[1], &max_color[1]);
            image.range(2, &min_color[2], &max_color[2]);

            //printf("Color range = %.2f %.2f %.2f\n", max_color[0], max_color[1], max_color[2]);

            float color_range = nv::max3(max_color[0], max_color[1], max_color[2]);
            const float max_color_range = 16.0f;

            if (color_range > max_color_range) {
                //Log::print("Clamping color range %f to %f\n", color_range, max_color_range);
                color_range = max_color_range;
            }
            //color_range = max_color_range;  // Use a fixed color range for now.

            for (int i = 0; i < 3; i++) {
                image.scaleBias(i, 1.0f / color_range, 0.0f);
            }
            image.toneMap(nvtt::ToneMapper_Linear, /*parameters=*/NULL); // Clamp without changing the hue.

            // Clamp alpha.
            image.clamp(3);
        }

        if (alpha) {
            image.setAlphaMode(nvtt::AlphaMode_Transparency);
        }

        // To gamma.
        image.toGamma(2);

        if (format != nvtt::Format_BC3_RGBM) {
            image.setAlphaMode(nvtt::AlphaMode_None);
            image.toRGBM(1, 0.15f);
        }
    }
    else if (format == nvtt::Format_BC6) {
        //format = nvtt::Format_BC1;
        //fprintf(stderr, "BLABLABLA.\n");
        useSurface = true;

        if (!image.load(input.str())) {
            fprintf(stderr, "Error opening input file '%s'.\n", input.str());
            return EXIT_FAILURE;
        }

        image.setAlphaMode(nvtt::AlphaMode_Transparency);
    }
    else {
        if (nv::strCaseDiff(input.extension(), ".dds") == 0)
        {
            // Load surface.
            nv::DirectDrawSurface dds(input.str());
            if (!dds.isValid())
            {
                fprintf(stderr, "The file '%s' is not a valid DDS file.\n", input.str());
                return EXIT_FAILURE;
            }

            if (!dds.isSupported())
            {
                fprintf(stderr, "The file '%s' is not a supported DDS file.\n", input.str());
                return EXIT_FAILURE;
            }

            uint faceCount;
            if (dds.isTexture2D())
            {
                inputOptions.setTextureLayout(nvtt::TextureType_2D, dds.width(), dds.height());
                faceCount = 1;
            }
            else if (dds.isTexture3D())
            {
                inputOptions.setTextureLayout(nvtt::TextureType_3D, dds.width(), dds.height(), dds.depth());
                faceCount = 1;

                nvDebugBreak();
            }
            else if (dds.isTextureCube()) {
                inputOptions.setTextureLayout(nvtt::TextureType_Cube, dds.width(), dds.height());
                faceCount = 6;
            } else {
                nvDebugCheck(dds.isTextureArray());
                inputOptions.setTextureLayout(nvtt::TextureType_Array, dds.width(), dds.height(), 1, dds.arraySize());
                faceCount = dds.arraySize();
                dds10 = true;
            }

            uint mipmapCount = dds.mipmapCount();

            nv::Image mipmap;

            for (uint f = 0; f < faceCount; f++)
            {
                for (uint m = 0; m < mipmapCount; m++)
                {
                    dds.mipmap(&mipmap, f, m); // @@ Load as float.

                    inputOptions.setMipmapData(mipmap.pixels(), mipmap.width(), mipmap.height(), mipmap.depth(), f, m);
                }
            }
        }
        else
        {
            if (nv::strCaseDiff(input.extension(), ".exr") == 0 || nv::strCaseDiff(input.extension(), ".hdr") == 0)
            {
                loadAsFloat = true;
            }

            if (loadAsFloat)
            {
                nv::AutoPtr<nv::FloatImage> image(nv::ImageIO::loadFloat(input.str()));

                if (image == NULL)
                {
                    fprintf(stderr, "The file '%s' is not a supported image type.\n", input.str());
                    return EXIT_FAILURE;
                }

                inputOptions.setFormat(nvtt::InputFormat_RGBA_32F);
                inputOptions.setTextureLayout(nvtt::TextureType_2D, image->width(), image->height());

                /*for (uint i = 0; i < image->componentNum(); i++)
                {
                    inputOptions.setMipmapChannelData(image->channel(i), i, image->width(), image->height());
                }*/
            }
            else
            {
                // Regular image.
                nv::Image image;
                if (!image.load(input.str()))
                {
                    fprintf(stderr, "The file '%s' is not a supported image type.\n", input.str());
                    return 1;
                }

                if(countEmptyRows)
                {
                    //count empty rows & append to the file name
                    const int w = image.width();
                    const int h = image.height();
                    int ytr = 0;   //height of the transparent part

                    if(image.format() == image.Format_ARGB) {
                        for(int y=0; y<h; ++y) {
                            for(int x=0; x<w; ++x) {
                                if(image.pixel(x,y).a >= 128) {
                                    ytr = y;
                                    y = h;
                                    break;
                                }
                            }
                        }
                    }

                    //change outfile
                    output.stripExtension();
                    output.appendFormat(".%04i.dds", ytr);
                }

                if(fillHoles) {
                    nv::FloatImage fimage(&image);

                    // create feature mask
                    nv::BitMap bmp(image.width(),image.height());
                    bmp.clearAll();
                    const int w=image.width();
                    const int h=image.height();
                    int ytr = h;   //height of the transparent part
                    for(int y=0; y<h; ++y)
                        for(int x=0; x<w; ++x) 
                            if(fimage.pixel(3,x,y,0) >= 0.5f) {
                                bmp.setBitAt(x,y);
                                if(y < ytr) ytr = y;
                            }


                    // fill holes
                    nv::fillVoronoi(&fimage,&bmp);

                    // do blur passes
                    for(int i=0; i<8; ++i)
                        nv::fillBlur(&fimage,&bmp);

                    nv::AutoPtr<nv::Image> img(fimage.createImage(0));

                    inputOptions.setTextureLayout(nvtt::TextureType_2D, img->width(), img->height());
                    inputOptions.setMipmapData(img->pixels(), img->width(), img->height());
                }
                else {
                    inputOptions.setTextureLayout(nvtt::TextureType_2D, image.width(), image.height());
                    inputOptions.setMipmapData(image.pixels(), image.width(), image.height());
                }
            }

        }


        if (format == nvtt::Format_Unknown)
            format = nvtt::Format_BC1;


        if (wrapRepeat)
        {
            inputOptions.setWrapMode(nvtt::WrapMode_Repeat);
        }
        else
        {
            inputOptions.setWrapMode(nvtt::WrapMode_Clamp);
        }

        if (alpha)
        {
            inputOptions.setAlphaMode(nvtt::AlphaMode_Transparency);
        }
        else
        {
            inputOptions.setAlphaMode(nvtt::AlphaMode_None);
        }

        // Block compressed textures with mipmaps must be powers of two.
        if (!noMipmaps && format != nvtt::Format_RGB)
        {
            //inputOptions.setRoundMode(nvtt::RoundMode_ToPreviousPowerOfTwo);
        }

        if (linear)
        {
            setLinearMap(inputOptions);
        }
        else if (normal)
        {
            setNormalMap(inputOptions);
        }
        else if (color2normal)
        {
            setColorToNormalMap(inputOptions);
        }
        else
        {
            setColorMap(inputOptions);
        }

        if (noMipmaps)
        {
            inputOptions.setMipmapGeneration(false);
        }

        /*if (premultiplyAlpha)
        {
            inputOptions.setPremultiplyAlpha(true);
            inputOptions.setAlphaMode(nvtt::AlphaMode_Premultiplied);
        }*/

        inputOptions.setMipmapFilter(mipmapFilter);
    }



    nvtt::CompressionOptions compressionOptions;
    compressionOptions.setFormat(format);

    //compressionOptions.setQuantization(/*color dithering*/true, /*alpha dithering*/false, /*binary alpha*/false);

    if (format == nvtt::Format_BC2) {
        // Dither alpha when using BC2.
        compressionOptions.setQuantization(/*color dithering*/false, /*alpha dithering*/true, /*binary alpha*/false);
    }
    else if (format == nvtt::Format_BC1a) {
        // Binary alpha when using BC1a.
        compressionOptions.setQuantization(/*color dithering*/false, /*alpha dithering*/true, /*binary alpha*/true, 127);
    }
    else if (format == nvtt::Format_RGBA)
    {
        if (luminance)
        {
            compressionOptions.setPixelFormat(8, 0xff, 0, 0, 0);
        }
        else {
            // @@ Edit this to choose the desired pixel format:
            // compressionOptions.setPixelType(nvtt::PixelType_Float);
            // compressionOptions.setPixelFormat(16, 16, 16, 16);
            // compressionOptions.setPixelType(nvtt::PixelType_UnsignedNorm);
            // compressionOptions.setPixelFormat(16, 0, 0, 0);

            //compressionOptions.setQuantization(/*color dithering*/true, /*alpha dithering*/false, /*binary alpha*/false);
            //compressionOptions.setPixelType(nvtt::PixelType_UnsignedNorm);
            //compressionOptions.setPixelFormat(5, 6, 5, 0);
            //compressionOptions.setPixelFormat(8, 8, 8, 8);

            // A4R4G4B4
            //compressionOptions.setPixelFormat(16, 0xF00, 0xF0, 0xF, 0xF000);

            //compressionOptions.setPixelFormat(32, 0xFF0000, 0xFF00, 0xFF, 0xFF000000);

            // R10B20G10A2
            //compressionOptions.setPixelFormat(10, 10, 10, 2);

            // DXGI_FORMAT_R11G11B10_FLOAT
            //compressionOptions.setPixelType(nvtt::PixelType_Float);
            //compressionOptions.setPixelFormat(11, 11, 10, 0);
        }
    }
    else if (format == nvtt::Format_BC6)
    {
        compressionOptions.setPixelType(nvtt::PixelType_UnsignedFloat);
    }

    if (fast)
    {
        compressionOptions.setQuality(nvtt::Quality_Fastest);
    }
    else
    {
        compressionOptions.setQuality(nvtt::Quality_Normal);
        //compressionOptions.setQuality(nvtt::Quality_Production);
        //compressionOptions.setQuality(nvtt::Quality_Highest);
    }

    if (bc1n)
    {
        compressionOptions.setColorWeights(1, 1, 0);
    }

    
    //compressionOptions.setColorWeights(0.2126, 0.7152, 0.0722);
    //compressionOptions.setColorWeights(0.299, 0.587, 0.114);
    //compressionOptions.setColorWeights(3, 4, 2);

    if (externalCompressor != NULL)
    {
        compressionOptions.setExternalCompressor(externalCompressor);
    }


    MyErrorHandler errorHandler;
    MyOutputHandler outputHandler(output.str());
    if (outputHandler.stream->isError())
    {
        fprintf(stderr, "Error opening '%s' for writting\n", output.str());
        return EXIT_FAILURE;
    }

    nvtt::Context context;
    context.enableCudaAcceleration(!nocuda);

    if (!silent) 
    {
        printf("CUDA acceleration ");
        if (context.isCudaAccelerationEnabled())
        {
            printf("ENABLED\n\n");
        }
        else
        {
            printf("DISABLED\n\n");
        }
    }

    int outputSize = 0;
    if (useSurface) {
        outputSize = context.estimateSize(image, 1, compressionOptions);
    }
    else {
        outputSize = context.estimateSize(inputOptions, compressionOptions);
    }

    outputHandler.setTotal(outputSize);
    outputHandler.setDisplayProgress(!silent);

    nvtt::OutputOptions outputOptions;
    //outputOptions.setFileName(output);
    outputOptions.setOutputHandler(&outputHandler);
    outputOptions.setErrorHandler(&errorHandler);

	// Automatically use dds10 if compressing to BC6 or BC7
	if (format == nvtt::Format_BC6 || format == nvtt::Format_BC7)
	{
		dds10 = true;
	}

    if (dds10)
    {
        outputOptions.setContainer(nvtt::Container_DDS10);
    }

    // printf("Press ENTER.\n");
    // fflush(stdout);
    // getchar();

    nv::Timer timer;
    timer.start();

    if (useSurface) {
        if (!context.outputHeader(image, 1, compressionOptions, outputOptions)) {
            fprintf(stderr, "Error writing file header.\n");
            return EXIT_FAILURE;
        }
        if (!context.compress(image, 0, 0, compressionOptions, outputOptions)) {
            fprintf(stderr, "Error compressing file.\n");
            return EXIT_FAILURE;
        } 
    }
    else {
        if (!context.process(inputOptions, compressionOptions, outputOptions)) {
            return EXIT_FAILURE;
        }
    }

    timer.stop();

    if (!silent) {
        printf("\rtime taken: %.3f seconds\n", timer.elapsed());
    }

    return EXIT_SUCCESS;
}
Ejemplo n.º 8
0
int main(int argc, char *argv[])
{
	MyAssertHandler assertHandler;
	MyMessageHandler messageHandler;

	bool alpha = false;
	bool normal = false;
	bool color2normal = false;
	bool wrapRepeat = false;
	bool noMipmaps = false;
	bool fast = false;
	bool nocuda = false;
	bool silent = false;
	bool bc1n = false;
	nvtt::Format format = nvtt::Format_BC1;

	const char * externalCompressor = NULL;

	nv::Path input;
	nv::Path output;


	// Parse arguments.
	for (int i = 1; i < argc; i++)
	{
		// Input options.
		if (strcmp("-color", argv[i]) == 0)
		{
		}
		else if (strcmp("-alpha", argv[i]) == 0)
		{
			alpha = true;
		}
		else if (strcmp("-normal", argv[i]) == 0)
		{
			normal = true;
		}
		else if (strcmp("-tonormal", argv[i]) == 0)
		{
			color2normal = true;
		}
		else if (strcmp("-clamp", argv[i]) == 0)
		{
		}
		else if (strcmp("-repeat", argv[i]) == 0)
		{
			wrapRepeat = true;
		}
		else if (strcmp("-nomips", argv[i]) == 0)
		{
			noMipmaps = true;
		}

		// Compression options.
		else if (strcmp("-fast", argv[i]) == 0)
		{
			fast = true;
		}
		else if (strcmp("-nocuda", argv[i]) == 0)
		{
			nocuda = true;
		}
		else if (strcmp("-rgb", argv[i]) == 0)
		{
			format = nvtt::Format_RGB;
		}
		else if (strcmp("-bc1", argv[i]) == 0)
		{
			format = nvtt::Format_BC1;
		}
		else if (strcmp("-bc1n", argv[i]) == 0)
		{
			format = nvtt::Format_BC1;
			bc1n = true;
		}
		else if (strcmp("-bc1a", argv[i]) == 0)
		{
			format = nvtt::Format_BC1a;
		}
		else if (strcmp("-bc2", argv[i]) == 0)
		{
			format = nvtt::Format_BC2;
		}
		else if (strcmp("-bc3", argv[i]) == 0)
		{
			format = nvtt::Format_BC3;
		}
		else if (strcmp("-bc3n", argv[i]) == 0)
		{
			format = nvtt::Format_BC3n;
		}
		else if (strcmp("-bc4", argv[i]) == 0)
		{
			format = nvtt::Format_BC4;
		}
		else if (strcmp("-bc5", argv[i]) == 0)
		{
			format = nvtt::Format_BC5;
		}

		// Undocumented option. Mainly used for testing.
		else if (strcmp("-ext", argv[i]) == 0)
		{
			if (i+1 < argc && argv[i+1][0] != '-') {
				externalCompressor = argv[i+1];
				i++;
			}
		}

		// Misc options
		else if (strcmp("-silent", argv[i]) == 0)
		{
			silent = true;
		}

		else if (argv[i][0] != '-')
		{
			input = argv[i];

			if (i+1 < argc && argv[i+1][0] != '-') {
				output = argv[i+1];
			}
			else
			{
				output.copy(input.str());
				output.stripExtension();
				output.append(".dds");
			}

			break;
		}
	}

	const uint version = nvtt::version();
	const uint major = version / 100;
	const uint minor = version % 100;
	

	printf("NVIDIA Texture Tools %u.%u - Copyright NVIDIA Corporation 2007\n\n", major, minor);

	if (input.isNull())
	{
		printf("usage: nvcompress [options] infile [outfile]\n\n");
		
		printf("Input options:\n");
		printf("  -color   \tThe input image is a color map (default).\n");
		printf("  -alpha     \tThe input image has an alpha channel used for transparency.\n");		
		printf("  -normal  \tThe input image is a normal map.\n");
		printf("  -tonormal\tConvert input to normal map.\n");
		printf("  -clamp   \tClamp wrapping mode (default).\n");
		printf("  -repeat  \tRepeat wrapping mode.\n");
		printf("  -nomips  \tDisable mipmap generation.\n\n");

		printf("Compression options:\n");
		printf("  -fast    \tFast compression.\n");
		printf("  -nocuda  \tDo not use cuda compressor.\n");
		printf("  -rgb     \tRGBA format\n");
		printf("  -bc1     \tBC1 format (DXT1)\n");
		printf("  -bc1n    \tBC1 normal map format (DXT1nm)\n");
		printf("  -bc1a    \tBC1 format with binary alpha (DXT1a)\n");
		printf("  -bc2     \tBC2 format (DXT3)\n");
		printf("  -bc3     \tBC3 format (DXT5)\n");
		printf("  -bc3n    \tBC3 normal map format (DXT5nm)\n");
		printf("  -bc4     \tBC4 format (ATI1)\n");
		printf("  -bc5     \tBC5 format (3Dc/ATI2)\n\n");
		
		return EXIT_FAILURE;
	}

	// @@ Make sure input file exists.
	
	// Set input options.
	nvtt::InputOptions inputOptions;
	
	if (nv::strCaseCmp(input.extension(), ".dds") == 0)
	{
		// Load surface.
		nv::DirectDrawSurface dds(input);
		if (!dds.isValid())
		{
			fprintf(stderr, "The file '%s' is not a valid DDS file.\n", input.str());
			return EXIT_FAILURE;
		}
		
		if (!dds.isSupported() || dds.isTexture3D())
		{
			fprintf(stderr, "The file '%s' is not a supported DDS file.\n", input.str());
			return EXIT_FAILURE;
		}
		
		uint faceCount;
		if (dds.isTexture2D())
		{
			inputOptions.setTextureLayout(nvtt::TextureType_2D, dds.width(), dds.height());
			faceCount = 1;
		}
		else 
		{
			nvDebugCheck(dds.isTextureCube());
			inputOptions.setTextureLayout(nvtt::TextureType_Cube, dds.width(), dds.height());
			faceCount = 6;
		}
		
		uint mipmapCount = dds.mipmapCount();
		
		nv::Image mipmap;
		
		for (uint f = 0; f < faceCount; f++)
		{
			for (uint m = 0; m < mipmapCount; m++)
			{
				dds.mipmap(&mipmap, f, m);
				
				inputOptions.setMipmapData(mipmap.pixels(), mipmap.width(), mipmap.height(), 1, f, m);
			}
		}
	}
	else
	{
		// Regular image.
		nv::Image image;
		if (!image.load(input))
		{
			fprintf(stderr, "The file '%s' is not a supported image type.\n", input.str());
			return EXIT_FAILURE;
		}
		
		inputOptions.setTextureLayout(nvtt::TextureType_2D, image.width(), image.height());
		inputOptions.setMipmapData(image.pixels(), image.width(), image.height());
	}

	if (wrapRepeat)
	{
		inputOptions.setWrapMode(nvtt::WrapMode_Repeat);
	}
	else
	{
		inputOptions.setWrapMode(nvtt::WrapMode_Clamp);
	}

	if (alpha)
	{
		inputOptions.setAlphaMode(nvtt::AlphaMode_Transparency);
	}
	else
	{
		inputOptions.setAlphaMode(nvtt::AlphaMode_None);
	}

	if (normal)
	{
		setNormalMap(inputOptions);
	}
	else if (color2normal)
	{
		setColorToNormalMap(inputOptions);
	}
	else
	{
		setColorMap(inputOptions);
	}
	
	if (noMipmaps)
	{
		inputOptions.setMipmapGeneration(false);
	}

	nvtt::CompressionOptions compressionOptions;
	compressionOptions.setFormat(format);
	if (fast)
	{
		compressionOptions.setQuality(nvtt::Quality_Fastest);
	}
	else
	{
		compressionOptions.setQuality(nvtt::Quality_Normal);
		//compressionOptions.setQuality(nvtt::Quality_Production);
		//compressionOptions.setQuality(nvtt::Quality_Highest);
	}

	if (bc1n)
	{
		compressionOptions.setColorWeights(1, 1, 0);
	}

	if (externalCompressor != NULL)
	{
		compressionOptions.setExternalCompressor(externalCompressor);
	}

	
	MyErrorHandler errorHandler;
	MyOutputHandler outputHandler(output);
	if (outputHandler.stream->isError())
	{
		fprintf(stderr, "Error opening '%s' for writting\n", output.str());
		return EXIT_FAILURE;
	}

	nvtt::Compressor compressor;
	compressor.enableCudaAcceleration(!nocuda);

	printf("CUDA acceleration ");
	if (compressor.isCudaAccelerationEnabled())
	{
		printf("ENABLED\n\n");
	}
	else
	{
		printf("DISABLED\n\n");
	}
	
	outputHandler.setTotal(compressor.estimateSize(inputOptions, compressionOptions));
	outputHandler.setDisplayProgress(!silent);

	nvtt::OutputOptions outputOptions;
	//outputOptions.setFileName(output);
	outputOptions.setOutputHandler(&outputHandler);
	outputOptions.setErrorHandler(&errorHandler);
	
//	printf("Press ENTER.\n");
//	fflush(stdout);
//	getchar();

	clock_t start = clock();
	
	if (!compressor.process(inputOptions, compressionOptions, outputOptions))
	{
		return EXIT_FAILURE;
	}

	clock_t end = clock();
	printf("\rtime taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
	
	return EXIT_SUCCESS;
}
Ejemplo n.º 9
0
int main(int argc, char **argv)
{
  /* Aria initialization: */
  Aria::init();

  //ArLog::init(ArLog::StdErr, ArLog::Verbose);
 

  /* Create our client object. This is the object which connects with a remote
   * server over the network, and which manages all of our communication with it
   * once connected by sending data "requests".  Requests may be sent once, or
   * may be repeated at any frequency. Requests and replies to requsets contain 
   * payload "packets", into which various data types may be packed (when making a 
   * request), and from which they may also be extracted (when handling a reply). 
   * See the InputHandler and OutputHandler classes above for
   * examples of making requests and reading/writing the data in packets.
   */
  ArClientBase client;

  /* Aria components use this to get options off the command line: */
  ArArgumentParser parser(&argc, argv);

  /* This will be used to connect our client to the server, including
   * various bits of handshaking (e.g. sending a password, retrieving a list
   * of data requests and commands...)
   * It will get the hostname from the -host command line argument: */
  ArClientSimpleConnector clientConnector(&parser);

  parser.loadDefaultArguments();

  /* Check for -help, and unhandled arguments: */
  if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed())
  {
    Aria::logOptions();
    exit(0);
  }

  
  /* Connect our client object to the remote server: */
  if (!clientConnector.connectClient(&client))
  {
    if (client.wasRejected())
      printf("Server '%s' rejected connection, exiting\n", client.getHost());
    else
      printf("Could not connect to server '%s', exiting\n", client.getHost());
    exit(1);
  } 

  printf("Connected to server.\n");

  client.setRobotName(client.getHost()); // include server name in log messages

  /* Create a key handler and also tell Aria about it */
  ArKeyHandler keyHandler;
  Aria::setKeyHandler(&keyHandler);

  /* Global escape-key handler to shut everythnig down */
  ArGlobalFunctor escapeCB(&escape);
  keyHandler.addKeyHandler(ArKeyHandler::ESCAPE, &escapeCB);

  /* Now that we're connected, we can run the client in a background thread, 
   * sending requests and receiving replies. When a reply to a request arrives,
   * or the server makes a request of the client, a handler functor is invoked. 
   * The handlers for this program are registered with the client by the 
   * InputHandler and OutputHandler classes (in their constructors, above) */
  client.runAsync();

  /* Create the InputHandler object and request safe-drive mode */
  InputHandler inputHandler(&client, &keyHandler);
  inputHandler.safeDrive();

  /* Use ArClientBase::dataExists() to see if the "ratioDrive" request is available on the 
   * currently connected server.  */
  if(!client.dataExists("ratioDrive") )
      printf("Warning: server does not have ratioDrive command, can not use drive commands!\n");
  else
    printf("Keys are:\nUP: Forward\nDOWN: Backward\nLEFT: Turn Left\nRIGHT: Turn Right\n");
  printf("s: Enable safe drive mode (if supported).\nu: Disable safe drive mode (if supported).\nl: list all data requests on server\n\nDrive commands use 'ratioDrive'.\nt: logs the network tracking tersely\nv: logs the network tracking verbosely\nr: resets the network tracking\n\n");


  /* Create the OutputHandler object. It will begin printing out data from the
   * server. */
  OutputHandler outputHandler(&client);


  /* Begin capturing keys into the key handler. Callbacks will be called
   * asyncrosously from this main thread when pressed.  */

  /* While the client is still running (getRunningWithLock locks the "running"
   * flag until it returns), check keys on the key handler (which will call
   * our callbacks), then tell the input handler to send drive commands. 
   * Sleep a fraction of a second as well to avoid using
   * too much CPU time, and give other threads time to work.
   */
  while (client.getRunningWithLock())
  {
    keyHandler.checkKeys();
    inputHandler.sendInput();
    ArUtil::sleep(100);
  }

  /* The client stopped running, due to disconnection from the server, general
   * Aria shutdown, or some other reason. */
  client.disconnect();
  Aria::shutdown();
  return 0;
}
Ejemplo n.º 10
0
int main(int argc, char **argv)
{
  // Initialize Aria and Arnl global information
 
 /* Aria initialization: */
  Aria::init();

  ArLog::init(ArLog::File, ArLog::Verbose,"c:\\temp\\AmbifluxRobot.log",true);

  ArLog::log(ArLog::Verbose, "Ambiflux Starting");

  // Create the sound queue.
  ArSoundsQueue soundQueue;

  // Set WAV file callbacks 
  soundQueue.setPlayWavFileCallback(ArSoundPlayer::getPlayWavFileCallback());
  soundQueue.setInterruptWavFileCallback(ArSoundPlayer::getStopPlayingCallback());

  // Notifications when the queue goes empty or non-empty.
  soundQueue.addQueueEmptyCallback(new ArGlobalFunctor(&queueNowEmpty));
  soundQueue.addQueueNonemptyCallback(new ArGlobalFunctor(&queueNowNonempty));

  // Run the sound queue in a new thread
  soundQueue.runAsync();
  /* Pool de messages en provenance de la tablette
  Issu de l'implementation d'un modèle producteur/consommateur
  pour les messages entrants. Plusieurs thread y accèdent
  Tread-safe (mutex)*/
  //Pool<Frame> messagePool;
 /* Pool de messages en provenance d'un client TCP
  Issu de l'implementation d'un modèle producteur/consommateur
  pour les messages entrants. Plusieurs thread y accèdent
  Tread-safe (mutex)*/
  /*TODO : A remplacer par tcpReceivedPool */
  //Pool<Frame> tcpMessagePool;

  /* Pool de messages en provenance d'un client TCP
  Issu de l'implementation d'un modèle producteur/consommateur
  pour les messages entrants. Plusieurs thread y accèdent
  Tread-safe (mutex)*/
  Pool<TCPReceivedRequest> tcpReceivedPool;

  /*Create our thread to communicate with iPad
   Server start on port 7171 to receive requests from ipad
   A client is created on port 7474 to request iPad
   */
  //IhmCommunicationThread ihm(7171, &messagePool);

  IhmCommunicationThread ihm(7171, &tcpReceivedPool);
   //On s'abonne à la réception de message par la classe IhmCommunicationThread
  //Todo : A supprimer ?
  //ArGlobalFunctor1<Frame> functMessageReceived(&CallbackIhmReceived);
  //ihm.setCallback(&functMessageReceived);
  ihm.runAsync();

  //soundQueue.play("c:\\temp\\let_me_out.wav");

  

  //while(true);

  /* Create our client object. This is the object which connects with a remote
   * server over the network, and which manages all of our communication with it
   * once connected by sending data "requests".  Requests may be sent once, or
   * may be repeated at any frequency. Requests and replies to requsets contain 
   * payload "packets", into which various data types may be packed (when making a 
   * request), and from which they may also be extracted (when handling a reply). 
   * See the InputHandler and OutputHandler classes above for
   * examples of making requests and reading/writing the data in packets.
   */
  ArClientBase client;

  /* Aria components use this to get options off the command line: */
  ArArgumentParser parser(&argc, argv);

  /* This will be used to connect our client to the server, including
   * various bits of handshaking (e.g. sending a password, retrieving a list
   * of data requests and commands...)
   * It will get the hostname from the -host command line argument: */
  ArClientSimpleConnector clientConnector(&parser);

  parser.loadDefaultArguments();

  /* Check for -help, and unhandled arguments: */
  if (!Aria::parseArgs() || !parser.checkHelpAndWarnUnparsed())
  {
    Aria::logOptions();
    exit(0);
  }
  
  /* Connect our client object to the remote server: */
  if (!clientConnector.connectClient(&client))
  {
    if (client.wasRejected())
      printf("Server '%s' rejected connection, exiting\n", client.getHost());
    else
      printf("Could not connect to server '%s', exiting\n", client.getHost());
    exit(1);
  } 

  printf("Connected to server.\n");

  client.setRobotName(client.getHost()); // include server name in log messages


  ///* Create a key handler and also tell Aria about it */
  ArKeyHandler keyHandler;
  Aria::setKeyHandler(&keyHandler);

  /* Global escape-key handler to shut everythnig down */
  ArGlobalFunctor escapeCB(&escape);
  keyHandler.addKeyHandler(ArKeyHandler::ESCAPE, &escapeCB);

  /* Now that we're connected, we can run the client in a background thread, 
   * sending requests and receiving replies. When a reply to a request arrives,
   * or the server makes a request of the client, a handler functor is invoked. 
   * The handlers for this program are registered with the client by the 
   * InputHandler and OutputHandler classes (in their constructors, above) */
  client.runAsync();

  ///* Create the InputHandler object and request safe-drive mode */
  //InputHandler inputHandler(&client);
  //inputHandler.gotoGoal("215");
  ////inputHandler.safeDrive();
  

// Mode goto
if(!client.dataExists("gotoGoal") )
      printf("Warning: Pas de mode goto!\n");
  else
    printf("Mode goto accepte");


//ArFunctor1<ArNetPacket*>
//client.addHandler("pathPlannerStatus",);



  /* Create the OutputHandler object. It will begin printing out data from the
   * server. */
  OutputHandler outputHandler(&client);

   //On s'abonne à la réception de message par la classe IhmCommunicationThread
  //Todo : A supprimer ?
  //ArGlobalFunctor1<Frame> functMessageReceived(&CallbackIhmReceived);
  //ihm.setCallback(&functMessageReceived);
  //ihm.runAsync();

  //pour tester IHM
 // ArUtil::sleep(1000);
//  ihm.testCommunication();

	//SRMA object
	string strSRMA = DALRest::getResourceById("9");
	SRMA srma(strSRMA,client, outputHandler, ihm, &soundQueue);

	//Loop du mode Ambiant
	MainLoop myLoop(srma, &tcpReceivedPool);
	myLoop.runAsync();
	
	//Thread loop : TCP commands
	//Produces messages in tcpMessagePool
	//ServerLoop myServerLoop(srma, &tcpReceivedPool);
	//myServerLoop.runAsync();
 
	//Traitement des requetes TCP
	//Consulmes messages in tcpMessagePool
	//TCPRequestsLoop myTCPRequestsLoop(srma, &tcpReceivedPool);
	//myTCPRequestsLoop.runAsync();

 

  /* While the client is still running (getRunningWithLock locks the "running"
   * flag until it returns), check keys on the key handler (which will call
   * our callbacks), then tell the input handler to send drive commands. 
   * Sleep a fraction of a second as well to avoid using
   * too much CPU time, and give other threads time to work.
   */
  while (client.getRunningWithLock())
  {
    //keyHandler.checkKeys();
    //inputHandler.sendInput();
    ArUtil::sleep(100);
  }

  /* The client stopped running, due to disconnection from the server, general
   * Aria shutdown, or some other reason. */
  client.disconnect();
  Aria::shutdown();
  return 0;
}
Ejemplo n.º 11
0
int main(int argc, char *argv[])
{
    MyAssertHandler assertHandler;
    MyMessageHandler messageHandler;

    bool alpha = false;
    bool normal = false;
    bool color2normal = false;
    bool wrapRepeat = false;
    bool noMipmaps = false;
    bool fast = false;
    bool nocuda = false;
    bool bc1n = false;
    bool luminance = false;
    nvtt::Format format = nvtt::Format_BC1;
    bool premultiplyAlpha = false;
    nvtt::MipmapFilter mipmapFilter = nvtt::MipmapFilter_Box;
    bool loadAsFloat = false;
    uint bitCount = 0, rmask = 0, gmask = 0, bmask = 0, amask = 0;
    bool fmtSet;
    const char * externalCompressor = NULL;
    
    bool silent = false;
    bool dds10 = false;

    nv::Path input;
    nv::Path output;


    // Parse arguments.
    for (int i = 1; i < argc; i++)
    {
        // Input options.
        if (strcmp("-color", argv[i]) == 0)
        {
        }
        else if (strcmp("-alpha", argv[i]) == 0)
        {
            alpha = true;
        }
        else if (strcmp("-normal", argv[i]) == 0)
        {
            normal = true;
        }
        else if (strcmp("-tonormal", argv[i]) == 0)
        {
            color2normal = true;
        }
        else if (strcmp("-clamp", argv[i]) == 0)
        {
        }
        else if (strcmp("-repeat", argv[i]) == 0)
        {
            wrapRepeat = true;
        }
        else if (strcmp("-nomips", argv[i]) == 0)
        {
            noMipmaps = true;
        }
        else if (strcmp("-premula", argv[i]) == 0)
        {
            premultiplyAlpha = true;
        }
        else if (strcmp("-mipfilter", argv[i]) == 0)
        {
            if (i+1 == argc) break;
            i++;

            if (strcmp("box", argv[i]) == 0) mipmapFilter = nvtt::MipmapFilter_Box;
            else if (strcmp("triangle", argv[i]) == 0) mipmapFilter = nvtt::MipmapFilter_Triangle;
            else if (strcmp("kaiser", argv[i]) == 0) mipmapFilter = nvtt::MipmapFilter_Kaiser;
        }
        else if (strcmp("-float", argv[i]) == 0)
        {
            loadAsFloat = true;
        }

        // Compression options.
        else if (strcmp("-fast", argv[i]) == 0)
        {
            fast = true;
        }
        else if (strcmp("-nocuda", argv[i]) == 0)
        {
            nocuda = true;
        }
        else if (strcmp("-rgb", argv[i]) == 0)
        {
            format = nvtt::Format_RGB;
        }
        else if (strcmp("-lumi", argv[i]) == 0)
        {
            luminance = true;
            format = nvtt::Format_RGB;
        }
        else if (strcmp("-bc1", argv[i]) == 0)
        {
            format = nvtt::Format_BC1;
        }
        else if (strcmp("-bc1n", argv[i]) == 0)
        {
            format = nvtt::Format_BC1;
            bc1n = true;
        }
        else if (strcmp("-bc1a", argv[i]) == 0)
        {
            format = nvtt::Format_BC1a;
        }
        else if (strcmp("-bc2", argv[i]) == 0)
        {
            format = nvtt::Format_BC2;
        }
        else if (strcmp("-bc3", argv[i]) == 0)
        {
            format = nvtt::Format_BC3;
        }
        else if (strcmp("-bc3n", argv[i]) == 0)
        {
            format = nvtt::Format_BC3n;
        }
        else if (strcmp("-bc4", argv[i]) == 0)
        {
            format = nvtt::Format_BC4;
        }
        else if (strcmp("-bc5", argv[i]) == 0)
        {
            format = nvtt::Format_BC5;
        }
        else if (strcmp("-fmt", argv[i]) == 0)
        {
            if (i+1 == argc) break;
            i++;
            if (strcmp("rgba8", argv[i]) == 0)
            {
                format = nvtt::Format_RGB;
                fmtSet = true;
                bitCount = 32;
                amask = 0xFF000000;
                rmask = 0x00FF0000;
                gmask = 0x0000FF00;
                bmask = 0x000000FF;
            }
            else if (strcmp("bgra8", argv[i]) == 0)
            {
                format = nvtt::Format_RGBA;
                fmtSet = true;
                bitCount = 32;
                amask = 0xFF000000;
                rmask = 0x000000FF;
                gmask = 0x0000FF00;
                bmask = 0x00FF0000;
            }
            else if (strcmp("rgb8", argv[i]) == 0)
            {
                format = nvtt::Format_RGB;
                fmtSet = true;
                bitCount = 24;
                amask = 0x00000000;
                rmask = 0x00FF0000;
                gmask = 0x0000FF00;
                bmask = 0x000000FF;
            }
            else if (strcmp("bgr8", argv[i]) == 0)
            {
                format = nvtt::Format_RGB;
                fmtSet = true;
                bitCount = 24;
                amask = 0x00000000;
                rmask = 0x000000FF;
                gmask = 0x0000FF00;
                bmask = 0x00FF0000;
            }
        }

        // Undocumented option. Mainly used for testing.
        else if (strcmp("-ext", argv[i]) == 0)
        {
            if (i+1 < argc && argv[i+1][0] != '-') {
                externalCompressor = argv[i+1];
                i++;
            }
        }
        else if (strcmp("-pause", argv[i]) == 0)
        {
            printf("Press ENTER\n"); fflush(stdout);
            getchar();
        }

        // Output options
        else if (strcmp("-silent", argv[i]) == 0)
        {
            silent = true;
        }
        else if (strcmp("-dds10", argv[i]) == 0)
        {
            dds10 = true;
        }

        else if (argv[i][0] != '-')
        {
            input = argv[i];

            if (i+1 < argc && argv[i+1][0] != '-') {
                output = argv[i+1];
            }
            else
            {
                output.copy(input.str());
                output.stripExtension();
                output.append(".dds");
            }

            break;
        }
    }

    const uint version = nvtt::version();
    const uint major = version / 100 / 100;
    const uint minor = (version / 100) % 100;
    const uint rev = version % 100;


    printf("NVIDIA Texture Tools %u.%u.%u - Copyright NVIDIA Corporation 2007\n\n", major, minor, rev);

    if (input.isNull())
    {
        printf("usage: nvcompress [options] infile [outfile]\n\n");

        printf("Input options:\n");
        printf("  -color     \tThe input image is a color map (default).\n");
        printf("  -alpha     \tThe input image has an alpha channel used for transparency.\n");
        printf("  -normal    \tThe input image is a normal map.\n");
        printf("  -tonormal  \tConvert input to normal map.\n");
        printf("  -clamp     \tClamp wrapping mode (default).\n");
        printf("  -repeat    \tRepeat wrapping mode.\n");
        printf("  -nomips    \tDisable mipmap generation.\n");
        printf("  -premula   \tPremultiply alpha into color channel.\n");
        printf("  -mipfilter \tMipmap filter. One of the following: box, triangle, kaiser.\n");
        printf("  -float     \tLoad as floating point image.\n\n");

        printf("Compression options:\n");
        printf("  -fast    \tFast compression.\n");
        printf("  -nocuda  \tDo not use cuda compressor.\n");
        printf("  -rgb     \tRGBA format\n");
        printf("  -lumi    \tLUMINANCE format\n");
        printf("  -bc1     \tBC1 format (DXT1)\n");
        printf("  -bc1n    \tBC1 normal map format (DXT1nm)\n");
        printf("  -bc1a    \tBC1 format with binary alpha (DXT1a)\n");
        printf("  -bc2     \tBC2 format (DXT3)\n");
        printf("  -bc3     \tBC3 format (DXT5)\n");
        printf("  -bc3n    \tBC3 normal map format (DXT5nm)\n");
        printf("  -bc4     \tBC4 format (ATI1)\n");
        printf("  -bc5     \tBC5 format (3Dc/ATI2)\n\n");

        printf("Output options:\n");
        printf("  -silent  \tDo not output progress messages\n");
        printf("  -dds10   \tUse DirectX 10 DDS format\n\n");

        return EXIT_FAILURE;
    }

    // Make sure input file exists.
    if (!nv::FileSystem::exists(input.str()))
    {
        fprintf(stderr, "The file '%s' does not exist.\n", input.str());
        return 1;
    }

    // Set input options.
    nvtt::InputOptions inputOptions;

    if (nv::strCaseCmp(input.extension(), ".dds") == 0)
    {
        // Load surface.
        nv::DirectDrawSurface dds(input.str());
        if (!dds.isValid())
        {
            fprintf(stderr, "The file '%s' is not a valid DDS file.\n", input.str());
            return EXIT_FAILURE;
        }

        if (!dds.isSupported() || dds.isTexture3D())
        {
            fprintf(stderr, "The file '%s' is not a supported DDS file.\n", input.str());
            return EXIT_FAILURE;
        }

        uint faceCount;
        if (dds.isTexture2D())
        {
            inputOptions.setTextureLayout(nvtt::TextureType_2D, dds.width(), dds.height());
            faceCount = 1;
        }
        else 
        {
            nvDebugCheck(dds.isTextureCube());
            inputOptions.setTextureLayout(nvtt::TextureType_Cube, dds.width(), dds.height());
            faceCount = 6;
        }

        uint mipmapCount = dds.mipmapCount();

        nv::Image mipmap;

        for (uint f = 0; f < faceCount; f++)
        {
            for (uint m = 0; m < mipmapCount; m++)
            {
                dds.mipmap(&mipmap, f, m); // @@ Load as float.

                inputOptions.setMipmapData(mipmap.pixels(), mipmap.width(), mipmap.height(), 1, f, m);
            }
        }
    }
    else
    {
        if (nv::strCaseCmp(input.extension(), ".exr") == 0 || nv::strCaseCmp(input.extension(), ".hdr") == 0)
        {
            loadAsFloat = true;
        }

        if (loadAsFloat)
        {
            nv::AutoPtr<nv::FloatImage> image(nv::ImageIO::loadFloat(input.str()));

            if (image == NULL)
            {
                fprintf(stderr, "The file '%s' is not a supported image type.\n", input.str());
                return EXIT_FAILURE;
            }

            inputOptions.setFormat(nvtt::InputFormat_RGBA_32F);
            inputOptions.setTextureLayout(nvtt::TextureType_2D, image->width(), image->height());

            /*for (uint i = 0; i < image->componentNum(); i++)
            {
                inputOptions.setMipmapChannelData(image->channel(i), i, image->width(), image->height());
            }*/
        }
        else
        {
            // Regular image.
            nv::Image image;
            if (!image.load(input.str()))
            {
                fprintf(stderr, "The file '%s' is not a supported image type.\n", input.str());
                return 1;
            }

            inputOptions.setTextureLayout(nvtt::TextureType_2D, image.width(), image.height());
            inputOptions.setMipmapData(image.pixels(), image.width(), image.height());
        }
    }

    if (wrapRepeat)
    {
        inputOptions.setWrapMode(nvtt::WrapMode_Repeat);
    }
    else
    {
        inputOptions.setWrapMode(nvtt::WrapMode_Clamp);
    }

    if (alpha)
    {
        inputOptions.setAlphaMode(nvtt::AlphaMode_Transparency);
    }
    else
    {
        inputOptions.setAlphaMode(nvtt::AlphaMode_None);
    }

    // Block compressed textures with mipmaps must be powers of two.
    if (!noMipmaps && format != nvtt::Format_RGB)
    {
        inputOptions.setRoundMode(nvtt::RoundMode_ToPreviousPowerOfTwo);
    }

    if (normal)
    {
        setNormalMap(inputOptions);
    }
    else if (color2normal)
    {
        setColorToNormalMap(inputOptions);
    }
    else
    {
        setColorMap(inputOptions);
    }

    if (noMipmaps)
    {
        inputOptions.setMipmapGeneration(false);
    }

    /*if (premultiplyAlpha)
    {
        inputOptions.setPremultiplyAlpha(true);
        inputOptions.setAlphaMode(nvtt::AlphaMode_Premultiplied);
    }*/

    inputOptions.setMipmapFilter(mipmapFilter);

    nvtt::CompressionOptions compressionOptions;
    compressionOptions.setFormat(format);

    if (format == nvtt::Format_BC2) {
        // Dither alpha when using BC2.
        compressionOptions.setQuantization(/*color dithering*/false, /*alpha dithering*/true, /*binary alpha*/false);
    }
    else if (format == nvtt::Format_BC1a) {
        // Binary alpha when using BC1a.
        compressionOptions.setQuantization(/*color dithering*/false, /*alpha dithering*/true, /*binary alpha*/true, 127);
    }
    else if (format == nvtt::Format_RGBA)
    {
        if (fmtSet)
        {
            compressionOptions.setPixelFormat(bitCount, rmask, gmask, bmask, amask);
        }
        else if (luminance)
        {
            compressionOptions.setPixelFormat(8, 0xff, 0, 0, 0);
        }
        else {
            // @@ Edit this to choose the desired pixel format:
            // compressionOptions.setPixelType(nvtt::PixelType_Float);
            // compressionOptions.setPixelFormat(16, 16, 16, 16);
            // compressionOptions.setPixelType(nvtt::PixelType_UnsignedNorm);
            // compressionOptions.setPixelFormat(16, 0, 0, 0);
        }
    }

    if (fast)
    {
        compressionOptions.setQuality(nvtt::Quality_Fastest);
    }
    else
    {
        compressionOptions.setQuality(nvtt::Quality_Normal);
        //compressionOptions.setQuality(nvtt::Quality_Production);
        //compressionOptions.setQuality(nvtt::Quality_Highest);
    }

    if (bc1n)
    {
        compressionOptions.setColorWeights(1, 1, 0);
    }

    
    //compressionOptions.setColorWeights(0.2126, 0.7152, 0.0722);
    //compressionOptions.setColorWeights(0.299, 0.587, 0.114);
    //compressionOptions.setColorWeights(3, 4, 2);

    if (externalCompressor != NULL)
    {
        compressionOptions.setExternalCompressor(externalCompressor);
    }


    MyErrorHandler errorHandler;
    MyOutputHandler outputHandler(output.str());
    if (outputHandler.stream->isError())
    {
        fprintf(stderr, "Error opening '%s' for writting\n", output.str());
        return EXIT_FAILURE;
    }

    nvtt::Context context;
    context.enableCudaAcceleration(!nocuda);

    printf("CUDA acceleration ");
    if (context.isCudaAccelerationEnabled())
    {
        printf("ENABLED\n\n");
    }
    else
    {
        printf("DISABLED\n\n");
    }

    outputHandler.setTotal(context.estimateSize(inputOptions, compressionOptions));
    outputHandler.setDisplayProgress(!silent);

    nvtt::OutputOptions outputOptions;
    //outputOptions.setFileName(output);
    outputOptions.setOutputHandler(&outputHandler);
    outputOptions.setErrorHandler(&errorHandler);

    if (dds10)
    {
        outputOptions.setContainer(nvtt::Container_DDS10);
    }

    // printf("Press ENTER.\n");
    // fflush(stdout);
    // getchar();

    nv::Timer timer;
    timer.start();

    if (!context.process(inputOptions, compressionOptions, outputOptions))
    {
        return EXIT_FAILURE;
    }
    timer.stop();

    printf("\rtime taken: %.3f seconds\n", timer.elapsed());

    return EXIT_SUCCESS;
}