Ejemplo n.º 1
0
bool Sphere::IntersectP(const Ray &r, bool testAlphaTexture) const {
    Float phi;
    Point3f pHit;
    // Transform _Ray_ to object space
    Vector3f oErr, dErr;
    Ray ray = (*WorldToObject)(r, &oErr, &dErr);

    // Compute quadratic sphere coefficients

    // Initialize _EFloat_ ray coordinate values
    EFloat ox(ray.o.x, oErr.x), oy(ray.o.y, oErr.y), oz(ray.o.z, oErr.z);
    EFloat dx(ray.d.x, dErr.x), dy(ray.d.y, dErr.y), dz(ray.d.z, dErr.z);
    EFloat a = dx * dx + dy * dy + dz * dz;
    EFloat b = 2 * (dx * ox + dy * oy + dz * oz);
    EFloat c = ox * ox + oy * oy + oz * oz - EFloat(radius) * EFloat(radius);

    // Solve quadratic equation for _t_ values
    EFloat t0, t1;
    if (!Quadratic(a, b, c, &t0, &t1)) return false;

    // Check quadric shape _t0_ and _t1_ for nearest intersection
    if (t0.UpperBound() > ray.tMax || t1.LowerBound() <= 0) return false;
    EFloat tShapeHit = t0;
    if (tShapeHit.LowerBound() <= 0) {
        tShapeHit = t1;
        if (tShapeHit.UpperBound() > ray.tMax) return false;
    }

    // Compute sphere hit position and $\phi$
    pHit = ray((Float)tShapeHit);

    // Refine sphere intersection point
    pHit *= radius / Distance(pHit, Point3f(0, 0, 0));
    if (pHit.x == 0 && pHit.y == 0) pHit.x = 1e-5f * radius;
    phi = std::atan2(pHit.y, pHit.x);
    if (phi < 0) phi += 2 * Pi;

    // Test sphere intersection against clipping parameters
    if ((zMin > -radius && pHit.z < zMin) || (zMax < radius && pHit.z > zMax) ||
        phi > phiMax) {
        if (tShapeHit == t1) return false;
        if (t1.UpperBound() > ray.tMax) return false;
        tShapeHit = t1;
        // Compute sphere hit position and $\phi$
        pHit = ray((Float)tShapeHit);

        // Refine sphere intersection point
        pHit *= radius / Distance(pHit, Point3f(0, 0, 0));
        if (pHit.x == 0 && pHit.y == 0) pHit.x = 1e-5f * radius;
        phi = std::atan2(pHit.y, pHit.x);
        if (phi < 0) phi += 2 * Pi;
        if ((zMin > -radius && pHit.z < zMin) ||
            (zMax < radius && pHit.z > zMax) || phi > phiMax)
            return false;
    }
    return true;
}
Ejemplo n.º 2
0
bool Cylinder::IntersectP(const Ray &r, bool testAlphaTexture) const {
    Float phi;
    Point3f pHit;
    // Transform _Ray_ to object space
    Vector3f oErr, dErr;
    Ray ray = (*WorldToObject)(r, &oErr, &dErr);

    // Compute quadratic cylinder coefficients

    // Initialize _EFloat_ ray coordinate values
    EFloat ox(ray.o.x, oErr.x), oy(ray.o.y, oErr.y), oz(ray.o.z, oErr.z);
    EFloat dx(ray.d.x, dErr.x), dy(ray.d.y, dErr.y), dz(ray.d.z, dErr.z);
    EFloat a = dx * dx + dy * dy;
    EFloat b = 2 * (dx * ox + dy * oy);
    EFloat c = ox * ox + oy * oy - EFloat(radius) * EFloat(radius);

    // Solve quadratic equation for _t_ values
    EFloat t0, t1;
    if (!Quadratic(a, b, c, &t0, &t1)) return false;

    // Check quadric shape _t0_ and _t1_ for nearest intersection
    if (t0.UpperBound() > ray.tMax || t1.LowerBound() <= 0) return false;
    EFloat tShapeHit = t0;
    if (tShapeHit.LowerBound() <= 0) {
        tShapeHit = t1;
        if (tShapeHit.UpperBound() > ray.tMax) return false;
    }

    // Compute cylinder hit point and $\phi$
    pHit = ray((Float)tShapeHit);

    // Refine cylinder intersection point
    Float hitRad = std::sqrt(pHit.x * pHit.x + pHit.y * pHit.y);
    pHit.x *= radius / hitRad;
    pHit.y *= radius / hitRad;
    phi = std::atan2(pHit.y, pHit.x);
    if (phi < 0) phi += 2 * Pi;

    // Test cylinder intersection against clipping parameters
    if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) {
        if (tShapeHit == t1) return false;
        tShapeHit = t1;
        if (t1.UpperBound() > ray.tMax) return false;
        // Compute cylinder hit point and $\phi$
        pHit = ray((Float)tShapeHit);

        // Refine cylinder intersection point
        Float hitRad = std::sqrt(pHit.x * pHit.x + pHit.y * pHit.y);
        pHit.x *= radius / hitRad;
        pHit.y *= radius / hitRad;
        phi = std::atan2(pHit.y, pHit.x);
        if (phi < 0) phi += 2 * Pi;
        if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) return false;
    }
    return true;
}
Ejemplo n.º 3
0
bool Hyperboloid::IntersectP(const Ray &r) const {
    Float phi, v;
    Point3f pHit;
    // Transform _Ray_ to object space
    Vector3f oErr, dErr;
    Ray ray = (*WorldToObject)(r, &oErr, &dErr);

    // Compute quadratic hyperboloid coefficients

    // Initialize _EFloat_ ray coordinate values
    EFloat ox(ray.o.x, oErr.x), oy(ray.o.y, oErr.y), oz(ray.o.z, oErr.z);
    EFloat dx(ray.d.x, dErr.x), dy(ray.d.y, dErr.y), dz(ray.d.z, dErr.z);
    EFloat a = ah * dx * dx + ah * dy * dy - ch * dz * dz;
    EFloat b = 2.f * (ah * dx * ox + ah * dy * oy - ch * dz * oz);
    EFloat c = ah * ox * ox + ah * oy * oy - ch * oz * oz - 1.f;

    // Solve quadratic equation for _t_ values
    EFloat t0, t1;
    if (!Quadratic(a, b, c, &t0, &t1)) return false;

    // Check quadric shape _t0_ and _t1_ for nearest intersection
    if (t0.UpperBound() > ray.tMax || t1.LowerBound() <= 0) return false;
    EFloat tShapeHit = t0;
    if (t0.LowerBound() <= 0) {
        tShapeHit = t1;
        if (tShapeHit.UpperBound() > ray.tMax) return false;
    }

    // Compute hyperboloid inverse mapping
    pHit = ray((Float)tShapeHit);
    v = (pHit.z - p1.z) / (p2.z - p1.z);
    Point3f pr = (1 - v) * p1 + v * p2;
    phi = std::atan2(pr.x * pHit.y - pHit.x * pr.y,
                     pHit.x * pr.x + pHit.y * pr.y);
    if (phi < 0) phi += 2 * Pi;

    // Test hyperboloid intersection against clipping parameters
    if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) {
        if (tShapeHit == t1) return false;
        tShapeHit = t1;
        if (t1.UpperBound() > ray.tMax) return false;
        // Compute hyperboloid inverse mapping
        pHit = ray((Float)tShapeHit);
        v = (pHit.z - p1.z) / (p2.z - p1.z);
        Point3f pr = (1 - v) * p1 + v * p2;
        phi = std::atan2(pr.x * pHit.y - pHit.x * pr.y,
                         pHit.x * pr.x + pHit.y * pr.y);
        if (phi < 0) phi += 2 * Pi;
        if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) return false;
    }
    return true;
}
Ejemplo n.º 4
0
	void *TextureBrick::tex_data(int c)
	{
		if (c >= 0 && data_[c])
		{
			unsigned char *ptr = (unsigned char *)(data_[c]->data);
			long long offset = (long long)(oz()) *
				(long long)(sx()) *
				(long long)(sy()) +
				(long long)(oy()) *
				(long long)(sx()) +
				(long long)(ox());
			return ptr + offset * tex_type_size(tex_type(c));
		}
		else
			return NULL;
	}
Ejemplo n.º 5
0
bool Paraboloid::IntersectP(const Ray &r) const {
    Float phi;
    Point3f pHit;
    // Transform _Ray_ to object space
    Vector3f oErr, dErr;
    Ray ray = (*WorldToObject)(r, &oErr, &dErr);

    // Compute quadratic paraboloid coefficients

    // Initialize _EFloat_ ray coordinate values
    EFloat ox(ray.o.x, oErr.x), oy(ray.o.y, oErr.y), oz(ray.o.z, oErr.z);
    EFloat dx(ray.d.x, dErr.x), dy(ray.d.y, dErr.y), dz(ray.d.z, dErr.z);
    EFloat k = EFloat(zMax) / (EFloat(radius) * EFloat(radius));
    EFloat a = k * (dx * dx + dy * dy);
    EFloat b = 2.f * k * (dx * ox + dy * oy) - dz;
    EFloat c = k * (ox * ox + oy * oy) - oz;

    // Solve quadratic equation for _t_ values
    EFloat t0, t1;
    if (!Quadratic(a, b, c, &t0, &t1)) return false;

    // Check quadric shape _t0_ and _t1_ for nearest intersection
    if (t0.UpperBound() > ray.tMax || t1.LowerBound() <= 0) return false;
    EFloat tShapeHit = t0;
    if (tShapeHit.LowerBound() <= 0) {
        tShapeHit = t1;
        if (tShapeHit.UpperBound() > ray.tMax) return false;
    }

    // Compute paraboloid inverse mapping
    pHit = ray((Float)tShapeHit);
    phi = std::atan2(pHit.y, pHit.x);
    if (phi < 0.) phi += 2 * Pi;

    // Test paraboloid intersection against clipping parameters
    if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) {
        if (tShapeHit == t1) return false;
        tShapeHit = t1;
        if (t1.UpperBound() > ray.tMax) return false;
        // Compute paraboloid inverse mapping
        pHit = ray((Float)tShapeHit);
        phi = std::atan2(pHit.y, pHit.x);
        if (phi < 0.) phi += 2 * Pi;
        if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) return false;
    }
    return true;
}
Ejemplo n.º 6
0
void ns_capture_scan_statistics::output_jmp_format(std::ostream & o, const ns_vector_2d & position, const ns_vector_2d & size,const std::string & delimeter) const{
	o 	<< date_of_first_sample_scan << ","
		<< oz(scheduled_time_date) << ","
		<< oz(start_time_date) << ","
		<< oz(scheduled_time/(60*60*24.0),scheduled_time_date) << ","
		<< oz(start_time/(60.0*60*24),start_time_date) << ","
		<< (missed?"Skpped":"Not Skipped") << ","
		<< (problem?"Error":"No Error") << ","
		<< ((missed || problem)?("Skipped or Error"):"OK") << ",";
	if (stop_time_date == 0){
		for (unsigned int i = 0; i < 24; i++)
			o << ",";
		o << delimeter;
	}
	else {
	o	<< starting_delay()/60.0 << ","
		<< oz(time_spent_off_immediately_before_starting_scan/60.0,time_spent_off_immediately_before_starting_scan+1) << "," //-1 if not specified
		<< warm_up_duration() << "," 
		<< scanning_duration()/(60.0) << "," 
		<< oz(time_spent_off_after_finishing_scan/60.0,time_spent_off_after_finishing_scan+1) << "," //-1 if not specified
		<< smoothed_scanning_duration/60.0 << ","
		<< sqrt(scanning_duration_variation)/60.0 << ","
		<< scan_rate_inches_per_second()*60.0<< ","
		<< smoothed_scan_rate_inches_per_second()*60.0 << "," 
		<< "TEST,"
		<< time_spent_reading_from_device << ","
		<< time_spent_writing_to_disk << ","
		<< total_time_spent_during_programmed_delay << ","
		<< total_time_during_read << ","
		<< "TEST2,"
		<< time_during_transfer_to_long_term_storage<< ","
		<< time_during_deletion_from_local_storage << ","
		<< transfer_efficiency() <<","
		<< position.x << "," << position.y << ","
		<< size.x << "," << size.y << ","
		<< image_stats.image_statistics.mean<< ","
		<< image_stats.image_statistics.variance<< ","
		<< image_stats.image_statistics.entropy<< ","
		<< image_stats.image_statistics.bottom_percentile_average<< "," 
		<< image_stats.image_statistics.top_percentile_average << ","
		<< registration_offset.x << ","
		<< registration_offset.y
		<< delimeter;
	}
}
Ejemplo n.º 7
0
bool Cylinder::Intersect(const Ray &r, Float *tHit, SurfaceInteraction *isect,
                         bool testAlphaTexture) const {
    Float phi;
    Point3f pHit;
    // Transform _Ray_ to object space
    Vector3f oErr, dErr;
    Ray ray = (*WorldToObject)(r, &oErr, &dErr);

    // Compute quadratic cylinder coefficients

    // Initialize _EFloat_ ray coordinate values
    EFloat ox(ray.o.x, oErr.x), oy(ray.o.y, oErr.y), oz(ray.o.z, oErr.z);
    EFloat dx(ray.d.x, dErr.x), dy(ray.d.y, dErr.y), dz(ray.d.z, dErr.z);
    EFloat a = dx * dx + dy * dy;
    EFloat b = 2 * (dx * ox + dy * oy);
    EFloat c = ox * ox + oy * oy - EFloat(radius) * EFloat(radius);

    // Solve quadratic equation for _t_ values
    EFloat t0, t1;
    if (!Quadratic(a, b, c, &t0, &t1)) return false;

    // Check quadric shape _t0_ and _t1_ for nearest intersection
    if (t0.UpperBound() > ray.tMax || t1.LowerBound() <= 0) return false;
    EFloat tShapeHit = t0;
    if (tShapeHit.LowerBound() <= 0) {
        tShapeHit = t1;
        if (tShapeHit.UpperBound() > ray.tMax) return false;
    }

    // Compute cylinder hit point and $\phi$
    pHit = ray((Float)tShapeHit);

    // Refine cylinder intersection point
    Float hitRad = std::sqrt(pHit.x * pHit.x + pHit.y * pHit.y);
    pHit.x *= radius / hitRad;
    pHit.y *= radius / hitRad;
    phi = std::atan2(pHit.y, pHit.x);
    if (phi < 0) phi += 2 * Pi;

    // Test cylinder intersection against clipping parameters
    if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) {
        if (tShapeHit == t1) return false;
        tShapeHit = t1;
        if (t1.UpperBound() > ray.tMax) return false;
        // Compute cylinder hit point and $\phi$
        pHit = ray((Float)tShapeHit);

        // Refine cylinder intersection point
        Float hitRad = std::sqrt(pHit.x * pHit.x + pHit.y * pHit.y);
        pHit.x *= radius / hitRad;
        pHit.y *= radius / hitRad;
        phi = std::atan2(pHit.y, pHit.x);
        if (phi < 0) phi += 2 * Pi;
        if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) return false;
    }

    // Find parametric representation of cylinder hit
    Float u = phi / phiMax;
    Float v = (pHit.z - zMin) / (zMax - zMin);

    // Compute cylinder $\dpdu$ and $\dpdv$
    Vector3f dpdu(-phiMax * pHit.y, phiMax * pHit.x, 0);
    Vector3f dpdv(0, 0, zMax - zMin);

    // Compute cylinder $\dndu$ and $\dndv$
    Vector3f d2Pduu = -phiMax * phiMax * Vector3f(pHit.x, pHit.y, 0);
    Vector3f d2Pduv(0, 0, 0), d2Pdvv(0, 0, 0);

    // Compute coefficients for fundamental forms
    Float E = Dot(dpdu, dpdu);
    Float F = Dot(dpdu, dpdv);
    Float G = Dot(dpdv, dpdv);
    Vector3f N = Normalize(Cross(dpdu, dpdv));
    Float e = Dot(N, d2Pduu);
    Float f = Dot(N, d2Pduv);
    Float g = Dot(N, d2Pdvv);

    // Compute $\dndu$ and $\dndv$ from fundamental form coefficients
    Float invEGF2 = 1 / (E * G - F * F);
    Normal3f dndu = Normal3f((f * F - e * G) * invEGF2 * dpdu +
                             (e * F - f * E) * invEGF2 * dpdv);
    Normal3f dndv = Normal3f((g * F - f * G) * invEGF2 * dpdu +
                             (f * F - g * E) * invEGF2 * dpdv);

    // Compute error bounds for cylinder intersection
    Vector3f pError = gamma(3) * Abs(Vector3f(pHit.x, pHit.y, 0));

    // Initialize _SurfaceInteraction_ from parametric information
    *isect = (*ObjectToWorld)(SurfaceInteraction(pHit, pError, Point2f(u, v),
                                                 -ray.d, dpdu, dpdv, dndu, dndv,
                                                 ray.time, this));

    // Update _tHit_ for quadric intersection
    *tHit = (Float)tShapeHit;
    return true;
}
Ejemplo n.º 8
0
bool Hyperboloid::Intersect(const Ray &r, Float *tHit,
                            SurfaceInteraction *isect) const {
    Float phi, v;
    Point3f pHit;
    // Transform _Ray_ to object space
    Vector3f oErr, dErr;
    Ray ray = (*WorldToObject)(r, &oErr, &dErr);

    // Compute quadratic hyperboloid coefficients

    // Initialize _EFloat_ ray coordinate values
    EFloat ox(ray.o.x, oErr.x), oy(ray.o.y, oErr.y), oz(ray.o.z, oErr.z);
    EFloat dx(ray.d.x, dErr.x), dy(ray.d.y, dErr.y), dz(ray.d.z, dErr.z);
    EFloat a = ah * dx * dx + ah * dy * dy - ch * dz * dz;
    EFloat b = 2.f * (ah * dx * ox + ah * dy * oy - ch * dz * oz);
    EFloat c = ah * ox * ox + ah * oy * oy - ch * oz * oz - 1.f;

    // Solve quadratic equation for _t_ values
    EFloat t0, t1;
    if (!Quadratic(a, b, c, &t0, &t1)) return false;

    // Check quadric shape _t0_ and _t1_ for nearest intersection
    if (t0.UpperBound() > ray.tMax || t1.LowerBound() <= 0) return false;
    EFloat tShapeHit = t0;
    if (t0.LowerBound() <= 0) {
        tShapeHit = t1;
        if (tShapeHit.UpperBound() > ray.tMax) return false;
    }

    // Compute hyperboloid inverse mapping
    pHit = ray((Float)tShapeHit);
    v = (pHit.z - p1.z) / (p2.z - p1.z);
    Point3f pr = (1 - v) * p1 + v * p2;
    phi = std::atan2(pr.x * pHit.y - pHit.x * pr.y,
                     pHit.x * pr.x + pHit.y * pr.y);
    if (phi < 0) phi += 2 * Pi;

    // Test hyperboloid intersection against clipping parameters
    if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) {
        if (tShapeHit == t1) return false;
        tShapeHit = t1;
        if (t1.UpperBound() > ray.tMax) return false;
        // Compute hyperboloid inverse mapping
        pHit = ray((Float)tShapeHit);
        v = (pHit.z - p1.z) / (p2.z - p1.z);
        Point3f pr = (1 - v) * p1 + v * p2;
        phi = std::atan2(pr.x * pHit.y - pHit.x * pr.y,
                         pHit.x * pr.x + pHit.y * pr.y);
        if (phi < 0) phi += 2 * Pi;
        if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) return false;
    }

    // Compute parametric representation of hyperboloid hit
    Float u = phi / phiMax;

    // Compute hyperboloid $\dpdu$ and $\dpdv$
    Float cosPhi = std::cos(phi), sinPhi = std::sin(phi);
    Vector3f dpdu(-phiMax * pHit.y, phiMax * pHit.x, 0.);
    Vector3f dpdv((p2.x - p1.x) * cosPhi - (p2.y - p1.y) * sinPhi,
                  (p2.x - p1.x) * sinPhi + (p2.y - p1.y) * cosPhi, p2.z - p1.z);

    // Compute hyperboloid $\dndu$ and $\dndv$
    Vector3f d2Pduu = -phiMax * phiMax * Vector3f(pHit.x, pHit.y, 0);
    Vector3f d2Pduv = phiMax * Vector3f(-dpdv.y, dpdv.x, 0.);
    Vector3f d2Pdvv(0, 0, 0);

    // Compute coefficients for fundamental forms
    Float E = Dot(dpdu, dpdu);
    Float F = Dot(dpdu, dpdv);
    Float G = Dot(dpdv, dpdv);
    Vector3f N = Normalize(Cross(dpdu, dpdv));
    Float e = Dot(N, d2Pduu);
    Float f = Dot(N, d2Pduv);
    Float g = Dot(N, d2Pdvv);

    // Compute $\dndu$ and $\dndv$ from fundamental form coefficients
    Float invEGF2 = 1 / (E * G - F * F);
    Normal3f dndu = Normal3f((f * F - e * G) * invEGF2 * dpdu +
                             (e * F - f * E) * invEGF2 * dpdv);
    Normal3f dndv = Normal3f((g * F - f * G) * invEGF2 * dpdu +
                             (f * F - g * E) * invEGF2 * dpdv);

    // Compute error bounds for hyperboloid intersection

    // Compute error bounds for intersection computed with ray equation
    EFloat px = ox + tShapeHit * dx;
    EFloat py = oy + tShapeHit * dy;
    EFloat pz = oz + tShapeHit * dz;
    Vector3f pError = Vector3f(px.GetAbsoluteError(), py.GetAbsoluteError(),
                               pz.GetAbsoluteError());

    // Initialize _SurfaceInteraction_ from parametric information
    *isect = (*ObjectToWorld)(SurfaceInteraction(pHit, pError, Point2f(u, v),
                                                 -ray.d, dpdu, dpdv, dndu, dndv,
                                                 ray.time, this));
    *tHit = (Float)tShapeHit;
    return true;
}
Ejemplo n.º 9
0
//-----------------------------------------------------------------------------
// main application
//-----------------------------------------------------------------------------
int CSceneViewerApp::Main()
{
	g_pMaterialSystem->ModInit();
	if (!SetVideoMode())
		return 0;

	g_pDataCache->SetSize( 64 * 1024 * 1024 );

	InitDefaultEnvCubemap();

	g_pMaterialSystemConfig = &g_pMaterialSystem->GetCurrentConfigForVideoCard();

	// configuration settings
	vgui::system()->SetUserConfigFile("sceneviewer.vdf", "EXECUTABLE_PATH");

	// load scheme
	if (!vgui::scheme()->LoadSchemeFromFile("resource/BoxRocket.res", "SceneViewer" ))
	{
		Assert( 0 );
	}

	g_pVGuiLocalize->AddFile( "resource/boxrocket_%language%.txt" );

	// start vgui
	g_pVGui->Start();

	//vgui::input()->SetAppModalSurface( mainPanel->GetVPanel() );

	// load the base localization file
	g_pVGuiLocalize->AddFile( "Resource/valve_%language%.txt" );
	g_pFullFileSystem->AddSearchPath("platform", "PLATFORM");
	g_pVGuiLocalize->AddFile( "Resource/vgui_%language%.txt");
	g_pVGuiLocalize->AddFile( "Resource/dmecontrols_%language%.txt");

	// add our main window
	vgui::Panel *mainPanel = CreateSceneViewerPanel();

	// run app frame loop
	CMatRenderContextPtr pRenderContext( g_pMaterialSystem );
	vgui::VPANEL root = vgui::surface()->GetEmbeddedPanel();
	vgui::surface()->Invalidate( root );

	// See if there was a DMX file passed on the command line

	for ( int i( CommandLine()->ParmCount() - 1 ); i > 0; --i )
	{
		const char *const arg( CommandLine()->GetParm( i ) );

		if ( arg && *arg != '\0' && _access( arg, 04 ) == 0 )
		{
			if ( !CommandLine()->FindParm( "-nozoom" ) )
			{
				KeyValues *oz( new KeyValues( "PinAndZoomIt" ) );
				mainPanel->PostMessage( mainPanel, oz );
			}

			KeyValues *ofs( new KeyValues( "LoadFile" ) );
			ofs->SetString( "fullpath", arg );
			mainPanel->PostMessage( mainPanel, ofs );

			if ( CommandLine()->FindParm( "-showasset" ) )
			{
				KeyValues *msg( new KeyValues( "ShowAssetBuilder" ) );
				mainPanel->PostMessage( mainPanel, msg );
			}

			if ( CommandLine()->FindParm( "-showcomboeditor" ) )
			{
				KeyValues *msg( new KeyValues( "ShowComboBuilder" ) );
				mainPanel->PostMessage( mainPanel, msg );
			}

			break;
		}
	}

	int nLastTime = Plat_MSTime();
	while (g_pVGui->IsRunning())
	{
		// Give other applications a chance to run
		Sleep( 1 );
		int nTime = Plat_MSTime();
		if ( ( nTime - nLastTime ) < 16 )
			continue;
		nLastTime = nTime;

		AppPumpMessages();
	
		vgui::GetAnimationController()->UpdateAnimations( Sys_FloatTime() );

		g_pMaterialSystem->BeginFrame( 0 );
		pRenderContext->ClearColor4ub( 76, 88, 68, 255 ); 
		pRenderContext->ClearBuffers( true, true );

		g_pVGui->RunFrame();

		g_pVGuiSurface->PaintTraverseEx( root, true );

		g_pMaterialSystem->EndFrame();
		g_pMaterialSystem->SwapBuffers();
	}

	delete mainPanel;

	ShutdownDefaultEnvCubemap();
 	g_pMaterialSystem->ModShutdown();

	// HACK -  this is a bit of a hack, since in theory, there could be multiple of these panels,
	// or there could be elements allocated outside of these panels, but since the filenames are hardcoded,
	// I don't feel too bad about unloading *all* files to make sure they're caught
	int nFiles = g_pDataModel->NumFileIds();
	for ( int i = 0; i < nFiles; ++i )
	{
		DmFileId_t fileid = g_pDataModel->GetFileId( i );
		g_pDataModel->UnloadFile( fileid );
	}

	return 1;
}
Ejemplo n.º 10
0
bool Paraboloid::Intersect(const Ray &r, Float *tHit,
                           SurfaceInteraction *isect) const {
    Float phi;
    Point3f pHit;
    // Transform _Ray_ to object space
    Vector3f oErr, dErr;
    Ray ray = (*WorldToObject)(r, &oErr, &dErr);

    // Compute quadratic paraboloid coefficients

    // Initialize _EFloat_ ray coordinate values
    EFloat ox(ray.o.x, oErr.x), oy(ray.o.y, oErr.y), oz(ray.o.z, oErr.z);
    EFloat dx(ray.d.x, dErr.x), dy(ray.d.y, dErr.y), dz(ray.d.z, dErr.z);
    EFloat k = EFloat(zMax) / (EFloat(radius) * EFloat(radius));
    EFloat a = k * (dx * dx + dy * dy);
    EFloat b = 2.f * k * (dx * ox + dy * oy) - dz;
    EFloat c = k * (ox * ox + oy * oy) - oz;

    // Solve quadratic equation for _t_ values
    EFloat t0, t1;
    if (!Quadratic(a, b, c, &t0, &t1)) return false;

    // Check quadric shape _t0_ and _t1_ for nearest intersection
    if (t0.UpperBound() > ray.tMax || t1.LowerBound() <= 0) return false;
    EFloat tShapeHit = t0;
    if (tShapeHit.LowerBound() <= 0) {
        tShapeHit = t1;
        if (tShapeHit.UpperBound() > ray.tMax) return false;
    }

    // Compute paraboloid inverse mapping
    pHit = ray((Float)tShapeHit);
    phi = std::atan2(pHit.y, pHit.x);
    if (phi < 0.) phi += 2 * Pi;

    // Test paraboloid intersection against clipping parameters
    if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) {
        if (tShapeHit == t1) return false;
        tShapeHit = t1;
        if (t1.UpperBound() > ray.tMax) return false;
        // Compute paraboloid inverse mapping
        pHit = ray((Float)tShapeHit);
        phi = std::atan2(pHit.y, pHit.x);
        if (phi < 0.) phi += 2 * Pi;
        if (pHit.z < zMin || pHit.z > zMax || phi > phiMax) return false;
    }

    // Find parametric representation of paraboloid hit
    Float u = phi / phiMax;
    Float v = (pHit.z - zMin) / (zMax - zMin);

    // Compute paraboloid $\dpdu$ and $\dpdv$
    Vector3f dpdu(-phiMax * pHit.y, phiMax * pHit.x, 0.);
    Vector3f dpdv = (zMax - zMin) *
                    Vector3f(pHit.x / (2 * pHit.z), pHit.y / (2 * pHit.z), 1.);

    // Compute paraboloid $\dndu$ and $\dndv$
    Vector3f d2Pduu = -phiMax * phiMax * Vector3f(pHit.x, pHit.y, 0);
    Vector3f d2Pduv =
        (zMax - zMin) * phiMax *
        Vector3f(-pHit.y / (2 * pHit.z), pHit.x / (2 * pHit.z), 0);
    Vector3f d2Pdvv = -(zMax - zMin) * (zMax - zMin) *
                      Vector3f(pHit.x / (4 * pHit.z * pHit.z),
                               pHit.y / (4 * pHit.z * pHit.z), 0.);

    // Compute coefficients for fundamental forms
    Float E = Dot(dpdu, dpdu);
    Float F = Dot(dpdu, dpdv);
    Float G = Dot(dpdv, dpdv);
    Vector3f N = Normalize(Cross(dpdu, dpdv));
    Float e = Dot(N, d2Pduu);
    Float f = Dot(N, d2Pduv);
    Float g = Dot(N, d2Pdvv);

    // Compute $\dndu$ and $\dndv$ from fundamental form coefficients
    Float invEGF2 = 1 / (E * G - F * F);
    Normal3f dndu = Normal3f((f * F - e * G) * invEGF2 * dpdu +
                             (e * F - f * E) * invEGF2 * dpdv);
    Normal3f dndv = Normal3f((g * F - f * G) * invEGF2 * dpdu +
                             (f * F - g * E) * invEGF2 * dpdv);

    // Compute error bounds for paraboloid intersection

    // Compute error bounds for intersection computed with ray equation
    EFloat px = ox + tShapeHit * dx;
    EFloat py = oy + tShapeHit * dy;
    EFloat pz = oz + tShapeHit * dz;
    Vector3f pError = Vector3f(px.GetAbsoluteError(), py.GetAbsoluteError(),
                               pz.GetAbsoluteError());

    // Initialize _SurfaceInteraction_ from parametric information
    *isect = (*ObjectToWorld)(SurfaceInteraction(pHit, pError, Point2f(u, v),
                                                 -ray.d, dpdu, dpdv, dndu, dndv,
                                                 ray.time, this));
    *tHit = (Float)tShapeHit;
    return true;
}
Ejemplo n.º 11
0
bool Sphere::Intersect(const Ray &r, Float *tHit, SurfaceInteraction *isect,
                       bool testAlphaTexture) const {
    Float phi;
    Point3f pHit;
    // Transform _Ray_ to object space
    Vector3f oErr, dErr;
    Ray ray = (*WorldToObject)(r, &oErr, &dErr);

    // Compute quadratic sphere coefficients

    // Initialize _EFloat_ ray coordinate values
    EFloat ox(ray.o.x, oErr.x), oy(ray.o.y, oErr.y), oz(ray.o.z, oErr.z);
    EFloat dx(ray.d.x, dErr.x), dy(ray.d.y, dErr.y), dz(ray.d.z, dErr.z);
    EFloat a = dx * dx + dy * dy + dz * dz;
    EFloat b = 2 * (dx * ox + dy * oy + dz * oz);
    EFloat c = ox * ox + oy * oy + oz * oz - EFloat(radius) * EFloat(radius);

    // Solve quadratic equation for _t_ values
    EFloat t0, t1;
    if (!Quadratic(a, b, c, &t0, &t1)) return false;

    // Check quadric shape _t0_ and _t1_ for nearest intersection
    if (t0.UpperBound() > ray.tMax || t1.LowerBound() <= 0) return false;
    EFloat tShapeHit = t0;
    if (tShapeHit.LowerBound() <= 0) {
        tShapeHit = t1;
        if (tShapeHit.UpperBound() > ray.tMax) return false;
    }

    // Compute sphere hit position and $\phi$
    pHit = ray((Float)tShapeHit);

    // Refine sphere intersection point
    pHit *= radius / Distance(pHit, Point3f(0, 0, 0));
    if (pHit.x == 0 && pHit.y == 0) pHit.x = 1e-5f * radius;
    phi = std::atan2(pHit.y, pHit.x);
    if (phi < 0) phi += 2 * Pi;

    // Test sphere intersection against clipping parameters
    if ((zMin > -radius && pHit.z < zMin) || (zMax < radius && pHit.z > zMax) ||
        phi > phiMax) {
        if (tShapeHit == t1) return false;
        if (t1.UpperBound() > ray.tMax) return false;
        tShapeHit = t1;
        // Compute sphere hit position and $\phi$
        pHit = ray((Float)tShapeHit);

        // Refine sphere intersection point
        pHit *= radius / Distance(pHit, Point3f(0, 0, 0));
        if (pHit.x == 0 && pHit.y == 0) pHit.x = 1e-5f * radius;
        phi = std::atan2(pHit.y, pHit.x);
        if (phi < 0) phi += 2 * Pi;
        if ((zMin > -radius && pHit.z < zMin) ||
            (zMax < radius && pHit.z > zMax) || phi > phiMax)
            return false;
    }

    // Find parametric representation of sphere hit
    Float u = phi / phiMax;
    Float theta = std::acos(Clamp(pHit.z / radius, -1, 1));
    Float v = (theta - thetaMin) / (thetaMax - thetaMin);

    // Compute sphere $\dpdu$ and $\dpdv$
    Float zRadius = std::sqrt(pHit.x * pHit.x + pHit.y * pHit.y);
    Float invZRadius = 1 / zRadius;
    Float cosPhi = pHit.x * invZRadius;
    Float sinPhi = pHit.y * invZRadius;
    Vector3f dpdu(-phiMax * pHit.y, phiMax * pHit.x, 0);
    Vector3f dpdv =
        (thetaMax - thetaMin) *
        Vector3f(pHit.z * cosPhi, pHit.z * sinPhi, -radius * std::sin(theta));

    // Compute sphere $\dndu$ and $\dndv$
    Vector3f d2Pduu = -phiMax * phiMax * Vector3f(pHit.x, pHit.y, 0);
    Vector3f d2Pduv =
        (thetaMax - thetaMin) * pHit.z * phiMax * Vector3f(-sinPhi, cosPhi, 0.);
    Vector3f d2Pdvv = -(thetaMax - thetaMin) * (thetaMax - thetaMin) *
                      Vector3f(pHit.x, pHit.y, pHit.z);

    // Compute coefficients for fundamental forms
    Float E = Dot(dpdu, dpdu);
    Float F = Dot(dpdu, dpdv);
    Float G = Dot(dpdv, dpdv);
    Vector3f N = Normalize(Cross(dpdu, dpdv));
    Float e = Dot(N, d2Pduu);
    Float f = Dot(N, d2Pduv);
    Float g = Dot(N, d2Pdvv);

    // Compute $\dndu$ and $\dndv$ from fundamental form coefficients
    Float invEGF2 = 1 / (E * G - F * F);
    Normal3f dndu = Normal3f((f * F - e * G) * invEGF2 * dpdu +
                             (e * F - f * E) * invEGF2 * dpdv);
    Normal3f dndv = Normal3f((g * F - f * G) * invEGF2 * dpdu +
                             (f * F - g * E) * invEGF2 * dpdv);

    // Compute error bounds for sphere intersection
    Vector3f pError = gamma(5) * Abs((Vector3f)pHit);

    // Initialize _SurfaceInteraction_ from parametric information
    *isect = (*ObjectToWorld)(SurfaceInteraction(pHit, pError, Point2f(u, v),
                                                 -ray.d, dpdu, dpdv, dndu, dndv,
                                                 ray.time, this));

    // Update _tHit_ for quadric intersection
    *tHit = (Float)tShapeHit;
    return true;
}